
Citation: Lagos-Eulogio, P. ;

Miranda-Romagnoli, P.; Seck-Tuoh-

Mora, J.C.; Hernández-Romero, N.

Improvement in Sizing Constrained

Analog IC via Ts-CPD Algorithm .

Computation 2023, 11, 230. https://

doi.org/10.3390/computation11110230

Academic Editor: Alexandros

Tzanetos

Received: 6 October 2023

Revised: 24 October 2023

Accepted: 2 November 2023

Published: 16 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computation

Article

Improvement in Sizing Constrained Analog IC via
Ts-CPD Algorithm
Pedro Lagos-Eulogio 1,† , Pedro Miranda-Romagnoli 1,*,† , Juan Carlos Seck-Tuoh-Mora 2,*,†

and Norberto Hernández-Romero 2,†

1 Área Académica de Matemáticas y Física, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma
del Estado de Hidalgo, Carr. Pachuca-Tulancingo km. 4.5, Pachuca 42184, Hidalgo, Mexico;
plagos@uaeh.edu.mx

2 Área Académica de Ingeniería, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado
de Hidalgo, Carr. Pachuca-Tulancingo km. 4.5, Pachuca 42184, Hidalgo, Mexico; nhromero@uaeh.edu.mx

* Correspondence: pmiranda@uaeh.edu.mx (P.M.-R.); jseck@uaeh.edu.mx (J.C.S.-T.-M.)
† These authors contributed equally to this work.

Abstract: In this work, we propose a variation of the cellular particle swarm optimization algorithm
with differential evolution hybridization (CPSO-DE) to include constrained optimization, named
Ts-CPD. It is implemented as a kernel of electronic design automation (EDA) tool capable of sizing
circuit components considering a single-objective design with restrictions and constraints. The aim
is to improve the optimization solutions in the sizing of analog circuits. To evaluate our proposal’s
performance, we present the design of three analog circuits: a differential amplifier, a two-stage
operational amplifier (op-amp), and a folded cascode operational transconductance amplifier. Nu-
merical simulation results indicate that Ts-CPD can find better solutions, in terms of the design
objective and the accomplishment of constraints, than those reported in previous works. The Ts-CPD
implementation was performed in Matlab using Ngspice and can be found on GitHub (see Data
Availability Statement).

Keywords: cellular particle swarm optimization (CPSO); constrained optimization; circuit sizing tool;
particle swarm optimization

1. Introduction

In recent years, analog circuit design has received much attention, particularly those
with Very Large Scale of Integration (VLSI), because optimization is a process that involves
many conflicting constraints and a wide range of parameters [1]. For small circuits, the equa-
tions can be stated by hand, as in the design of passive filters [2]. However, developing
more robust Computer-Aided Design (CAD) and Electronic Design Automation (EDA)
tools is necessary to increase productivity and quality and minimize design costs [3].

The design of analog circuits comprises three major stages: selecting a topology,
sizing components, and layout extraction [4]. In the case of sizing, it is possible to use
the experience when the circuits are small, but manual circuit-sizing in analog design is a
time-consuming process [5]. When the circuit grows, it is impossible to size the components
solely by experience; thus, mathematical tools are necessary to optimize the circuits [6].

The complexity when manually implementing an analog project is usually weeks or
months. CAD and EDA tools are used to improve the design process; today’s analog design
environment is made of CAD tools for editing, evaluation, and design verification of analog
integrated circuits, for example, HSPICE, SMASH, and CADENCE. Circuit simulators do
not allow the use of methods such as quadratic or geometric programming, which exploit
particular characteristics of the models. As a result, stochastic heuristic optimization
techniques are used instead [7], such as in [8].
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Many optimization techniques and tools for automation design have been developed
over time [9,10]. Also, the fuzzy logic has been used for the circuit design as in [11,12],
or in [13], where a multi-objective design is presented, while in [14], a tool for analog
synthesis is introduced. In [15], a Neuro-Fuzzy method for analog circuit design is pre-
sented; it is of easy implementation, natural understanding, and better performance than
static methods of fuzzy optimization; however, it still needs the human experience in the
particular circuit to be designed. In [16], the application of an innovative algorithm of
the type Customized Genetic Algorithm (CAG) is reported. Its purpose is to improve the
optimization process of analog Complementary Metal-Oxide-Semiconductor (CMOS) ICs.
A framework for facilitating the design of analog amplifiers is presented in [17].

More recently, evolutionary algorithms have been successfully applied to compo-
nent value selection for analog active filters [18,19], facility location problem [20], truss
structures [21], and to the analog integrated circuits design as in [22], where the sizing is
achieved using a Particle Swarm Optimization (PSO) algorithm implemented in MATLAB
R2008a and the results verified at the end with SPICE. In [23], a CMOS differential amplifier
and a two stages CMOS op-amp are optimized to occupy the minimal possible area by
the circuits and to improve their performances using the gravitational search algorithm in
combination with the particle swarm optimization (GSA-PSO). The design is formulated as
an optimization problem with a single objective function, although certain manual tuning
is necessary to resolve conflicts with either design or performance parameters when using
this method. In the work [24], a crazy PSO (CRPSO) is applied to improve the premature
convergence to a local minimum of the PSO; the application optimizes the minimization of
the total Metal-Oxide-Semiconductor (MOS) area of two amplifier configurations, a two-
stage P-Channel MOS (PMOS) type operational amplifier, and an N-Channel MOS (NMOS)
cascade code amplifier.

Heuristic techniques are necessary to solve problems with many design constraints [25].
Although they do not guarantee finding the optimal solution exactly, they provide an
acceptable approximation to it in an acceptable computation time [26]. Therefore, another
challenge for sizing high-performance analog circuits with tight specifications is the need
for a powerful enough optimization kernel for EDA tools to handle tighter specifications
and improve optimization capability [27]. Different optimization kernels are currently used
for EDA tools; among them, we can mention the kernels based on GA [28], PSO [29], Ant
Colony Optimization (ACO) in [30], Simulated Annealing (SA) in [31], GSA in [23], Non-
dominated Sorting Genetic Algorithm-II (NSGA-II) in [32] and NSGA-II, Multi-Objective
Particle Swarm Optimization (MOPSO), and Multi-Objective Simulated Annealing (MOSA)
in [33].

Most heuristic methods used in the optimization kernels of the EDA tools are based
on multi-objective optimization techniques [7,32] or use a restriction approach with a
single objective and static penalty functions [34]. Penalty functions penalize non-feasible
solutions by adding a specific value to the objective function as an amount proportional
to the violation of the restriction. Thus, the optimization problem is transformed into a
restrictionless optimization problem. The main problem with this methodology is choosing
the appropriate penalty factor for a particular problem; it is often a complicated task,
but if an adequate factor is selected, a premature convergence can occur or solutions
outside the feasible region can be obtained [35]. Another approach currently used in
problems with restrictions is self-adaptive penalty functions, which significantly improve
the results [36]. Unfortunately, many last-generation restricted optimization methods have
yet to be introduced into EDA tools. Therefore, advanced restricted optimization methods
should be applied to circuit dimensioning tools to address this challenge.

In recent years, algorithms inspired by cellular automata neighborhoods to perform a
local search, such as Cellular-PSO (CPSO) [37], CPSO-DE [38], Continuous-state Cellular
Automata Algorithm (CCAA) [39], and Majority-minority Cellular Automata Algorithm
(MmCAA) [40], have shown excellent performance in solving global optimization problems,
demonstrating a good balance between exploration and exploitation, as well as a good
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speed of convergence. Among them, the CPSO-DE has proven to be an excellent design
method for identifying adaptive IIR systems due to the use of a differential evolution rule
for the neighborhoods of cellular automata of the PSO that improves the balance between
exploration and exploitation than the original version of the CPSO.

According to the previous observations, this document introduces the hybrid continu-
ous optimization algorithm called CPSO-DE that incorporates local-search neighborhoods
to improve PSO exploitation capabilities with DE exploitability. The algorithm was tested
on established benchmark functions of Congress on Evolutionary Computation (CEC
2005) [41] against 7 recently published algorithms for global optimization, yielded satisfac-
tory results.

Additionally, Deb’s rules were incorporated into the algorithm to address constrained
optimization [42,43]; this algorithm is called Ts-CPD applied in a single design objective
problem, for the sizing of analog circuits to improve their performance. The approach
is used as the optimization core of an EDA tool to size CMOS analog circuits efficiently.
In particular, we focus on diminishing the total component area as the objective. At the
same time, other specifications, such as dc gain, bandwidth and power dissipation, are
treated as constraints that guarantee good overall performance. The circuits chosen for
testing our method are well known, which allows a comparison of results with other
proposals. We implemented the optimization in Matlab while the circuit simulation was
done in Ngspice. Both optimization and simulation parts are linked.

We compare our proposal with previously published works, including PSO variants
such as Particle Swarm Optimization (PSO) [22], Genetic Algorithm (GA) [44], Harmony
Search (HS) [45], Differential Evolution (DE) [45], Artificial Bee Colony (ABC) [45], Grav-
itational Search Algorithm PSO (GSA-PSO) [23], Geometric Programming (GP) [46] and
Aging Leader and Challenger PSO (ALC-PSO) [1]. The results show that Ts-CPSO can find
a better circuit design solution than the above-listed approaches. In addition, it shows a
rapid convergence in all the studied cases.

Overall, the proposed CPSO-DE algorithm is easy to understand, performs excep-
tionally well for continuous optimization, and is modified with Deb’s rules to define the
Ts-CPD algorithm in order to tackle problems with multiple constraints, as demonstrated
in the area optimization of CMOS analog circuits.

The rest of the paper is organized as follows: Section 2 gives a review of CPSO-DE,
while the hybridization of CPSO-DE with constrained optimization is explained in Section 3.
Section 4 describes three circuits in terms of their design variables and constraints. Section 5
validates the proposed Ts-CPD through three cases of study, contrasting the findings against
results from previous works. Finally, this article is concluded in Section 6.

2. Review of CPSO and CPSO-DE
2.1. Cellular Particle Swarm Optimization

PSO is one of the most frequently applied swarm intelligence-based algorithms for
optimization tasks. PSO simulates the behavior of a bird flock, looking for an equilibrium
between exploration and exploitation of the current solutions. Particles in a d-dimensional
search space are regarded as candidate solutions. We denote the i-th particle as,

Xi = (xi,1, xi,2, . . . , xi,d), (1)

and its velocity as,
Vi = (vi,1, vi,2, . . . , vi,d). (2)

Each particle evolves in the search space, where Pi = (pi,1, pi,2, . . . , pi,d) is the personal
best position of the i-th particle so far and G = (g1, g2, . . . , gd) is the global best position
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discovered by the swarm. At each time step t, both the velocity and position of each particle
are updated to move it into a new position. Velocity and position are updated as follows:

Vt+1
i = Vt

i + c1r1(Pt
i − Xt

i ) + c2r2(Gt − Xt
i )

Xt+1
i = Xt

i + Vt
i

(3)

where c1 and c2 are two positive constants (cognitive and social factors), r1 and r2 are two
uniform random numbers in [0, 1]. The fitness h(Xi) of a particle gives its quality, that is,
a better fitness value means a better particle.

Several papers have presented the adaptation, modification, and hybridization of
PSO with other techniques to solve a huge variety of problems. Relevant surveys can be
consulted in [47–49].

CPSO is a recent variant of PSO that enhances its performance by applying a local
search based on cellular automata neighborhoods [37]. In this reference, it is explained that
there are two crucial factors in population-based optimization algorithms: communication
mechanisms for the cooperation of the population and information inheriting for the
self-adaption of each individual.

The concept of cellular automata (CAs) was first proposed by Von Neumann and
Ulam, and there are an increasing number of researchers using CAs in physics, biology,
social science, computer science, and so on [50–52].

CAs are discrete dynamical systems that operate on a grid of cells. Each cell initially
takes a value from a finite set of states. The simplest CAs are one-dimensional, such as
elementary CA (ECAs), where each cell can be in one of two states, like 0 or 1. To update
the state of a cell in an ECA, the current state of the cell and its neighbors on either side are
taken into account. This creates neighborhoods of three cells, and a mapping specifies how
the central cell of each neighborhood evolves. This mapping, known as the ECA evolution
rule, determines how each cell’s state changes over time. To ensure that all cells have
complete neighborhoods, periodic boundary conditions are typically applied, meaning that
cells at the ends of the one-dimensional array are joined together. All cells update their state
simultaneously, generating a new array of states. In the case of ECAs, each neighborhood
consists of three cells, and each cell can take one of two possible values: 0 or 1. This results
in a total of 8 possible neighborhoods. The central cell of each neighborhood can evolve in
one of two ways, resulting in a total of 256 different possible evolution rules.

ECAs have been extensively studied due to their ability to generate a wide range of
global behaviors, from fixed to complex behaviors. Figure 1 shows examples of different
ECAs taking 200 cells and 200 evolutions, where the evolution rule is identified by the
binary value that specifies the evolution rule, taking the mapping of the neighborhood 000
as the least significant bit. The state 0 is represented with green color and the state 1 with
yellow color. These examples demonstrate the evolution towards fixed point (A), periodic
(B), chaotic (C), and complex (D) behaviors.

Figure 1. Different ECA evolution rules and the dynamic behavior observed in each of them.

CAs have the ability to generate interesting global behaviors by locally mapping blocks
to individual states. In this study, we hypothesize that this CA property can be integrated
as an instrument to improve the effectiveness of the PSO. Specifically, we introduce a local
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search inspired by the neighborhood of a CA into the PSO operation. This mechanism
enables a solution to update its position by taking information from neighboring solutions.

In this paper, we use the Cellular PSO Outer version (CPSO-outer). In this case,
every particle improves its searching capability, generating new solutions not belonging
to the swarm. The whole search space is considered the cell space, so every potential
candidate solution in the search space can be a cell. Every particle in the swarm is a “smart-
cell”, defined by (1), able to construct its neighborhood by a local function, enhancing its
searching capability.

The neighborhood function makes CPSO-outer differ from common PSO adopting
static neighbors. Every particle Xi (or “smart-cell”) in CPSO-outer generates a set of l
neighbors Ni+1 . . . Ni+l taking its current position and the global best position in order to
realize a local search, following the next equation [37]:

Ni+j =



Xt
i +

h(G)
h(Xt

i )
R ◦Vt

i h(Xt
i ) 6= 0, h(G) ≥ 0

Xt
i +

∣∣∣∣ h(Xt
i )

h(G)

∣∣∣∣R ◦Vt
i h(Xt

i ) 6= 0, h(G) < 0

Xt
i +

(
eh(G)

eh(Xt
i )

)2
R ◦Vt

i h(Xt
i ) = 0, h(G) ≥ 0

Xt
i +

(
eh(G)

eh(Xt
i )

)2
R ◦Vt

i h(Xt
i ) = 0, h(G) < 0

(4)

for 1 ≤ j ≤ l. R is a vector composed of d uniform random numbers in [−1, 1] to obtain
random changes in the direction and distance of every new neighbor, and ◦ is the Hadamard
product, h(G) is the fitness of the global best position, h(Xt

i ) is the fitness of ith particle.
The idea is that the search range of every particle would be negligible at early iterations
when the difference of its fitness value with that of h(G) is relatively significant. Then,
when particles converge gradually to h(G), a more extensive search range is used.

The neighbors generated by each particle are evaluated, and the neighbor with the
best fitness value replaces the particle:

f (φ) = min(h(Xi), h(Ni+1), . . . , h(Ni+l))

Xφ =

{
Xi if f (φ) = h(Xi)
Ni+j if f (φ) = h(Ni+j)

Xt+1
i = Xt

φ.

(5)

This transition rule gives particles new information to explore the search space from
an optimal local area to another optimal local area with better fitness value and enhance
the diversity of the swarm. So CPSO-outer has more significant potential to search for the
global optimum.

The CPSO has been applied and modified to solve a variety of theoretical and practical
problems. For instance, in [53], CPSO is used to optimize a milling system. In [54], truss
structures are optimized using variants of CPSO, and parameters controlling process
planning are tuned by the application of CPSO [55]. Nevertheless, CPSO has not been
implemented for sizing analog circuit components.

2.2. Hybrid Cellular Particle Swarm Optimization and Differential Evolution

Hybrid cellular particle swarm optimization and differential evolution (CPSO-DE) is
a recent hybrid method that combines the features of PSO, CA, and DE [38], which is an
incorporation of local differential search to the CPSO-outer algorithm.

The CPSO-DE algorithm utilizes local differential-search elements, which can be
defined as follows.
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(a) configuration: (Q particles or smart-cells);
(b) cell space: the set of all cells;
(c) cell state: the particle’s information at time t, St

i = [Xt
i ];

(d) neighborhood: Φ(i) = {i + δj}, 1 ≤ j ≤ l (l is the neighborhood size). See Figure 2,
(e) transition rule: St+1

i = ϕ(St
i ∪ St

Φ(i)).

smart-cell (CPSO-o)   

cell with the best 

global position

smart-cell (CPSO-DE)   

available neighbors of 

the CPSO-outer

available neighbors of 

the CPSO-DE

Figure 2. Neighborhood for CPSO-outer and CPSO-DE.

In CPSO-DE, the i-th cell state St
i in the iteration t is updated using the PSO algorithm

as follows:
Vt+1

i = wtVt
i + c1r1(Pt

i − St
i ) + c2r2(Pt

g − St
i ) (6)

St+1
i = St

i + Vt+1
i (7)

where i = 1, 2, . . . , Q is the cell index and Q is the number of smart cells, c1 and c2 are
the cognitive and social acceleration parameters respectively, r1 and r2 are two uniform
distributed random numbers within [0, 1], w is the inertial weight and decreases linearly. Pi
is the previous personal best position, Pg is the global best position, and Xi and Vi are the
current positions and velocity.

The operators used to determine each smart cell’s neighborhoods are mutation and
crossover. The mutation scheme “DE/rand/1”creates a new solution as follows:

Ot
i,k = St

r1
+ c3(St

r2
− St

r3
) (8)

where k = 1, 2, . . . , l enumerates every neighbor, and l is the neighborhood size. The r1, r2, r3
∈ {1, 2, . . . , Q} are randomly chosen integers, distinct from each other and different from i.
Factor c3 is a real value between [0, 2] for scaling the difference vector.

The crossover is an introduction to creating l trial vector Hi,k, combining the informa-
tion of the current smart cell with each one of the l mutated vectors, as follows:

Hi,j,k =


Ot

i,j,k, if ri,j ≤ Cr or j = jrand,

St
i,j, otherwise,

(9)

where rij is a uniformly distributed random number within [0, 1], Cr ∈ [0, 1] is the crossover
probability factor, and jrand ∈ {1, 2, . . . , D} is a randomly chosen index, which ensures that
Hi,k copies at least one component from Oi,k. Finally, the transition rule is applied over the
trial vectors to update the state of the current smart-cell:

St+1
i (PΦ) = ϕ( f (St+1

i ), f (Hi,1), f (Hi,2), . . . , f (Hi,l)) (10)

where the f (.) are the fitness functions. In CPSO-outer, the neighborhood function Φ(i)
generates random neighbors within radius ξt away from St

i according to its fitness value
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and the fitness of the best particle. Radius ξt is small when the smart-cell St
i is far from Pt

g, so
the potential neighbors are close to St

i , and only when St
i converges to an equilibrium point,

ξt would be a uniform random number in [−1, 1]. Therefore, the radius of neighborhoods in
CPSO-outer increases when the particles stabilize. Therefore, the best results are obtained
up to the last iterations.

On the other hand, CPSO-DE generates a random neighbor within radius ξt = c3(St
r2−St

r3).
Thus, the radius of neighborhoods depends on the distribution and the improved infor-
mation of the swarm as iteration passes, not just from the difference with the best global
position. Thus, St

i is more likely to obtain better neighbors in any iteration time.

3. Tournament-Selection CPD

The use of local search strategies inspired by cellular automata neighborhoods in
heuristic algorithms has been shown to be effective, more specifically, in the use of adaptive
IIR filters through the hybridization of the CPSO and DE algorithms that use a rule based
on the use of neighborhoods. However, the CPSO-DE algorithm for the problem with
restrictions on the sizing of CMOS circuits has not yet been reported in the literature, hence
the motivation for this work.

In this section, we explain the parts that comprise the proposed Ts-CPD algorithm.
First, we describe the optimization problem to be solved, which contemplates restrictions.
Next, we explain how the initial values are selected, for our algorithm, using tournament
selection (Ts), which is a variant of what Deb proposed [42]. We conclude this section
by explaining the implementation of the Deb rule in the CPSO-DE, to build the new
Ts-CPD algorithm.

3.1. The Circuit Design Problem

Many optimization problems in science and engineering implicate some constraints
that the optimal solution must satisfy. For example, in a generic circuit, the optimization
problem consists of finding optimal values of the design parameters. Then, a circuit
design problem is usually written as a nonlinear programming (NLP) problem of the
following type:

minimize f (X)
X ∈ Rn

Subject to:
|gp| ≥ specgp p = 1 · · · r
hq = spechq q = 1 · · · s
xi,min ≤ xi ≤ xi,max i = 1 · · · n

(11)

In the above NLP problem, f is the cost function that maps the input space into the
output one, f : Rn → R, with n = k + m. There are two types of constraints, inequality
constraints gp that have to be major or minor than certain specgp , and the equality con-
straints hq, that has to be equal to the restriction spechq . The ith variable varies in the range
[xi,min, xi,max].

The k independent variables and m dependent ones determine the circuit design
represented in a single vector as,

X = (x1, . . . , xk, xk+1, . . . , xk+m). (12)

The design variables and constraints for specific circuits studied in this paper are given
in the Section 4.

3.2. Tournament-Selection

As in the cost function f(X) of the optimization problem expressed in (11), the restric-
tions are not considered; we need a method that allows us to assess their contribution.
In [42], Deb proposes a constraint handling method so that while the cost function is mini-
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mized, the constraints in the search for the minimum are considered. We will use Deb’s
method in this work, as explained below.

Let’s say that the CPSO-DE algorithm has encountered two solutions for the problem (11),
X1 and X2, according to the constrained optimization, solution X1 is considered better if [43]:

1. both solutions are feasible, but X1 cost ≤ X2 cost; or,
2. X1 is feasible but X2 is not; or,
3. both solutions are unfeasible, but X1 has less overall constraint violations than X2.

These rules, implemented as Algorithm 1, are advantageous in finding a better solution
for the circuit design, as will be shown in Section 5.

Algorithm 1 Tournament-Selection (X1, X2)

1: if X1 is feasible and X2 is feasible then
2: if f (X1) < f (X2) then
3: return (X1)
4: else
5: return (X2)
6: end if
7: else if constraints violation (X1) < constraints violation (X2) then
8: return (X1)
9: else

10: return (X2)
11: end if

3.3. Ts-CPD Algorithm

This work proposes a new methodology that combines the CPSO-DE algorithm and
Deb’s rules for the problem of sizing CMOS analog circuits with constraints. The proposed
algorithm, Ts-CPD, incorporates the tournament selection (see Algorithm 1) in the Ψ()
function. In this method, a new transition rule is proposed for Ts-CPD, which is applied to
the trial vectors to update the state of the current smart-cell:

St+1
i (PΦ) = Ψ(. . . Ψ(Ψ(St+1

i , Hi,1), Hi,2), . . . , Hi,l) (13)

The transition rule in (13) means that each cell in the neighborhood (including the
same smart-cell) competes in a paired tournament (according to Deb criteria), and the
winner is chosen to update the state of the smart-cell.

The proposed Ts-CPD method is described in Algorithm 2. First, the algorithm sets
the control parameters Q, l, T, xmin, xmax y vmax. Next, the state (S) and velocity (V) are
randomly initialized for each smart-cell. Then, each cell is evaluated, and its number of
violated constraints is quantified. In line 9, Algorithm 1 is used to identify the best global
position. The process halts according to the stopping criteria of iteration and convergence,
according to line 10. Then, the cell state is updated using (6) and (7) in line 12. Later,
the neighborhood of size l is generated for each smart-cell, using the DE method. Each
neighbor is defined by the mutation and crossover rules in lines 14 and 15 using (8) and (9),
respectively. The new transition rule inspired by Deb’s rules and CA behavior, defined
in (13) , is applied in line 16 to determine the new cell state. Finally, the best local and global
positions are updated in lines 18 and 19, respectively, using Algorithm 1. The process is
repeated by each smart-cell and neighbor.
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Algorithm 2 Ts-CPD
1: //** Initialization
2: Set the control parameters: Q, l, T, xmin, xmax, vmax;
3: for i = 1 to Q do
4: Initialize Si ∈ (xmin, xmax) randomly;
5: Initialize Vi ∈ (−vmax, vmax) randomly;
6: Pi = Si;
7: end for
8: Evaluate each cell f (Si);
9: Identify the best global position (Pg): using Algorithm 1;

//*** Loop
10: while stopping criterion is not satisfied do
11: for i = 1 to Q do
12: Update cell state: using Equations (6) and (7);

//***Generate l neighbors using DE method
13: for k = 1 to l do
14: Mutation rule: using Equation (8);
15: Crossover rule: using Equation (9);
16: New transition rule: using Equation (13);
17: end for
18: Identify the best local position (Pi): using Algorithm 1;
19: end for
20: Identify the best global position (Pg): using Algorithm 1;
21: end while

3.4. Performance of the Ts-CPD Algorithm

To test the effectiveness of the Ts-CPD algorithm (without Deb’s rules), we compared
it to seven recently published algorithms, namely Archimedes Optimization Algorithm
(AOA) [56], Harris Hawks Optimization (HHO) [57], Weighted Superposition Attrac-
tion (WSA) [58], CCAA [39], MmCAA [40], Reversible Elementary Cellular Automata
(RECAA) [59], and Political Optimizer (PO) [60]. 25 benchmark functions were used from
CEC 2005 benchmark functions [41], which included five unimodal functions ( f1, . . . , f5),
seven multimodal functions ( f6, . . . , f12), two expanded multimodal functions ( f13, f14),
and 11 hybrid composition multimodal functions ( f15, . . . , f25). We obtained the codes and
parameters for these algorithms from the references cited in this study. This ensured that
we used the same implementations as the original authors, making the comparison more
objective. All parameter settings are given in Table 1.

Table 1. Parameter settings of algorithms employed for comparison with Ts-CPD.

Algorithm Parameters

Ts-CPD Q = 12, l = 6, c1 = 2, c2 = 2, c3 = 0.5, Cr = 0.9, wmax = 0.7, wmin = 0.15

AOA N = 60, C1 = 2, C2 = 6, C3 = 1, C4 = 0.2, u = 0.9, l = 0.1

HHO N = 60, E0 = 2 · rand− 1, J = 2 · (1− rand)

WSA N = 60, τ = 0.8, slo = 0.035, λ = 0.75, ϕ = 0.001

CCAA Q = 12, l = 6, ph = 2, pl = 1, dM = 1, dm = 3, rmax = 4, rmin = 1

MmCAAA Q = 12, l = 6, dM = 1.7, rmax = 6, rmin = 2, e = 2

RECAA Q = 12, l = 6, p = 1.5, rmax = 6, rmin = 1

PO n = 8 (N = 64), λ = 1, areas = 7, parties = 7

Tables 2 and 3 present the average values and standard deviations of the objective
function values obtained by each algorithm. We ran each algorithm independently 30 times.
In unimodal problems, the Ts-CPD algorithm showed excellent performance, ranking
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first among the eight algorithms in terms of average value. Moreover, it surpassed other
algorithms in three cases based on standard deviation, highlighting its proficiency in
information exploitation.

Table 2. Performance of metaheuristic algorithms compared with Ts-CPD on 30-dimensional uni-
modal problems. The best values are in bold.

Benchmark Ts-CPD AOA HHO WSA CCAA MmCAA RECAA PO

f1 Avg 1.08 3.54× 104 2.51× 103 7.42× 104 1.99× 104 2.23× 103 8.51× 102 1.88× 104

Std 2.93 5.35× 103 1.22× 103 5.97× 103 7.33× 103 6.25× 102 4.39× 102 7.28× 103

f2 Avg 1.60× 102 4.11× 104 2.40× 104 1.11× 105 2.44× 104 4.23× 104 1.70× 104 1.92× 104

Std 1.68× 102 5.24× 103 2.82× 103 3.02× 104 4.56× 103 6.21× 103 5.52× 103 4.97× 103

f3 Avg 2.60× 106 5.23× 108 1.11× 108 1.00× 108 1.19× 108 7.82× 107 3.79× 107 1.68× 108

Std 1.40× 106 1.74× 108 3.41× 107 0.00 5.26× 107 2.80× 107 1.33× 107 1.05× 108

f4 Avg 9.37× 102 4.83× 104 5.46× 104 1.11× 105 3.49× 104 5.26× 104 2.69× 104 2.89× 104

Std 4.80× 102 7.16× 103 8.20× 103 2.13× 104 6.61× 103 7.99× 103 5.06× 103 6.62× 103

f5 Avg 5.78× 103 2.97× 104 2.49× 104 4.32× 104 2.17× 104 1.41× 104 8.76× 103 2.52× 104

Std 1.57× 103 3.48× 103 3.38× 103 4.19× 103 3.87× 103 2.32× 103 1.24× 103 2.73× 103

Table 3. Performance of metaheuristic algorithms compared with Ts-CPD on 30-dimensional multi-
modal problems. The best values are in bold.

Benchmark Ts-CPD AOA HHO WSA CCAA MmCAA RECAA PO

f6 Avg 2.40× 103 1.10× 1010 1.32× 108 1.00× 108 2.56× 109 4.27× 107 2.00× 106 2.98× 109

Std 4.84× 103 3.16× 109 1.20× 108 0.00 1.93× 109 1.67× 107 1.19× 106 1.98× 109

f7 Avg 4.72 1.32× 103 3.15× 102 3.61× 103 5.85× 101 1.40× 102 5.57× 101 4.81× 101

Std 7.72 1.68× 102 7.29× 101 5.20× 102 1.47× 101 3.44× 101 1.70× 101 2.70× 101

f8 Avg 2.10× 101 2.11× 101 2.09× 101 2.11× 101 2.10× 101 2.10× 101 2.10× 101 2.05× 101

Std 5.48× 10−2 8.26× 10−2 8.58× 10−2 5.72× 10−2 8.31× 10−2 6.76× 10−2 6.42× 10−2 7.97× 10−2

f9 Avg 1.02× 102 3.04× 102 3.14× 102 4.01× 102 2.24× 102 2.31× 102 1.63× 102 2.50× 102

Std 2.64× 101 2.18× 101 2.60× 101 1.34× 101 2.52× 101 1.70× 101 2.06× 101 4.29× 101

f10 Avg 4.89× 101 4.66× 102 4.21× 102 7.25× 102 5.18× 102 3.93× 102 2.54× 102 4.05× 102

Std 1.45× 101 4.68× 101 7.25× 101 5.27× 101 6.17× 101 5.68× 101 2.38× 101 4.22× 101

f11 Avg 2.16× 101 4.17× 101 4.07× 101 4.37× 101 2.97× 101 3.55× 101 3.27× 101 3.04× 101

Std 2.57 2.49 2.56 2.12 2.07 2.01 1.41 8.22

f12 Avg 1.29× 106 1.50× 106 7.22× 105 1.50× 106 7.89× 105 6.94× 105 7.14× 105 9.86× 105

Std 1.44× 105 2.46× 105 2.00× 105 1.66× 105 1.39× 105 1.67× 105 1.25× 105 7.79× 103

f13 Avg 6.45 2.82× 101 3.31× 101 1.27× 102 1.46× 101 2.20× 101 1.76× 101 1.15× 101

Std 4.29 5.82 5.18 3.60× 101 2.80 1.40 1.72 3.09

f14 Avg 1.30× 101 1.35× 101 1.37× 101 1.39× 101 1.34× 101 1.36× 101 1.34× 101 1.41× 101

Std 3.26× 10−1 3.42× 10−1 2.04× 10−1 2.21× 10−1 2.90× 10−1 1.35× 10−1 2.26× 10−1 1.43× 10−1

f15 Avg 5.69× 102 9.80× 102 7.41× 102 1.24× 103 6.92× 102 5.69× 102 5.13× 102 1.03× 103

Std 1.31× 102 7.26× 101 1.26× 102 8.68× 101 1.08× 102 4.77× 101 5.78× 101 1.16× 102

f16 Avg 2.91× 102 8.22× 102 4.92× 102 1.17× 103 5.57× 102 4.04× 102 3.07× 102 6.98× 102

Std 1.79× 102 9.05× 101 8.22× 101 1.41× 102 1.05× 102 5.04× 101 4.74× 101 1.03× 102

f17 Avg 2.90× 102 8.79× 102 5.91× 102 1.18× 103 6.23× 102 4.83× 102 3.52× 102 7.86× 102

Std 1.92× 102 1.40× 102 7.63× 101 1.61× 102 1.21× 102 6.79× 101 5.10× 101 9.67× 101

f18 Avg 9.77× 102 9.77× 102 9.00× 102 9.00× 102 9.00× 102 9.00× 102 9.00× 102 9.00× 102

Std 6.41× 101 1.44× 102 0.00 3.95× 10−6 0.00 0.00 0.00 0.00

f19 Avg 9.72× 102 1.01× 103 9.00× 102 9.00× 102 9.00× 102 9.00× 102 9.00× 102 9.00× 102

Std 3.42× 101 1.53× 102 0.00 4.51× 10−6 0.00 0.00 0.00 0.00

f20 Avg 9.79× 102 9.73× 102 9.00× 102 9.00× 102 9.00× 102 9.00× 102 9.00× 102 9.00× 102

Std 3.99× 101 1.36× 102 0.00 4.48× 10−6 0.00 0.00 0.00 0.00

f21 Avg 9.64× 102 1.31× 103 1.21× 103 1.40× 103 1.33× 103 1.25× 103 8.36× 102 1.14× 103

Std 3.34× 102 1.57× 101 1.09× 102 1.18× 101 3.48× 101 7.07× 101 1.32× 102 1.95× 101

f22 Avg 9.21× 102 1.42× 103 1.28× 103 1.82× 103 1.24× 103 1.13× 103 1.05× 103 1.09× 103

Std 1.66× 101 7.23× 101 1.20× 102 1.05× 102 9.86× 101 3.48× 101 4.37× 101 8.81× 101
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Table 3. Cont.

Benchmark Ts-CPD AOA HHO WSA CCAA MmCAA RECAA PO

f23 Avg 1.07× 103 1.31× 103 1.24× 103 1.40× 103 1.35× 103 1.25× 103 9.26× 102 1.15× 103

Std 2.02× 102 1.69× 101 8.21× 101 1.39× 101 2.77× 101 4.86× 101 1.66× 102 2.41× 101

f24 Avg 2.26× 102 1.37× 103 1.34× 103 1.46× 103 1.39× 103 1.33× 103 9.69× 102 1.07× 103

Std 6.48× 101 1.82× 101 7.33× 101 1.39× 101 4.43× 101 4.04× 101 1.90× 102 1.67× 102

f25 Avg 1.01× 103 1.38× 103 1.40× 103 1.47× 103 1.40× 103 1.39× 103 1.23× 103 1.28× 103

Std 9.32 2.66× 101 2.99× 101 8.30 3.26× 101 1.90× 101 4.54× 101 1.26× 102

For the 20 multimodal and hybrid problems, Ts-CPD exhibited the highest average
values in 12 instances. It also demonstrated its ability to explore and exploit simultaneously
while maintaining robustness, achieving the best standard deviation values in four cases.

Table 4 presents the results of the Wilcoxon rank-sum statistical test which compares
Ts-CPD with other methods for each benchmark function. The symbol + indicates a better
result that is statistically significant, ≈ indicates no significant difference, and − indicates a
worse statistically significant result. The Avg column presents the average rank obtained
by each algorithm when optimizing the benchmark functions. The Rank column shows
the order in which each algorithm is ranked based on its average. Ts-CDP obtained the
best rank, followed by RECAA. In all cases, Ts-CPD obtained a more significant difference
in terms of the number of functions with a better significant result in this experiment.
In addition, Figure 3 shows some examples of the convergence curves for different test
functions in 30 dimensions.

Table 4. Wilcoxon rank-sum test and ranking of the compared algorithms on 30-dimensional problems.

Algorithm +/ − / ≈ Avg Rank

Ts-CPD –/–/– 1.88 1
AOA 21/0/4 6.04 7
HHO 16/3/6 4.52 6
WSA 20/2/3 6.88 8

CCAA 18/3/4 4.36 5
MmCAA 15/3/7 3.64 3
RECAA 13/3/9 2.12 2

PO 17/3/5 3.92 4
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Figure 3. Convergence curves of the different algorithms for CEC05 functions in 30 dimensions.

3.5. Complexity Analysis of the Ts-CPD Algorithm

Most evolutionary algorithms imply a complexity of the following three main parts [60,61]:

1. Initialization of population, generally bounded by O(UD) where U is the population
size and D the dimensionality of the problem.

2. Fitness evaluation is bounded in general by O(UCobj) where Cobj is the cost of evalu-
ating the objective function.

3. Optimization loop, generally bounded by O(TUD + TUCobj), here T is the total
iteration number of the loop.

The complexity analysis of the Ts-CPD algorithm takes into account these three parts:

1. Initialization of population is bounded by O(QD), similar to other algorithms (lines
3–7 in Algorithm 2).

2. Fitness evaluation is bounded by O(QCobj) in line 8. Notice that Algorithm 1 is linear
with regard to Cobj when using Deb criteria. The best global position is calculated in
O(Q) in line 9.

3. For the optimization loop, smart-cells are updated with complexity O(TQD) (line 12);
mutation and crossover have complexity O(TQlD) (lines 14 and 15), and the new
transition rule is O(TQlCobj) in line 16. The best local position in line 18 is calculated
in O(TQl), and the best global position is O(TQ) in line 20. Therefore, the complexity
of the optimization loop asymptotically tends to O(TQlD + TQlCobj), which is also
equivalent to the other algorithms.

The complexity analysis concludes that the Ts-CPD algorithm is asymptotically equiv-
alent to the other state-of-the-art methods when Ql is similar to U.
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4. The Proposed Tool for Analog IC Sizing

The EDA tool proposed for the designer of analog circuits through the Ts-CPD algo-
rithm allows obtaining a minimum area of the components used while complying with
the design specifications. It is handy for designing the frequency response of circuits, such
as bandwidth, phase margin, Common Mode Rejection Ratio (CMRR), or Power Supply
Rejection Ratio (PSRR); only the slew rate can be designed in the time domain. For this
purpose, before beginning the design, the designer must introduce the specifications (re-
strictions) of the circuit and the acceptable ranges and values for the parameters according
to the technology used. The parameters to choose are the width and length of the CMOS
transistors, capacitance and resistance (if any) values, bias current, and voltage sources.

The tool consists of two main modules: the optimization and synthesis processes.
The optimization process contains the Ts-CPD algorithm comprising the CPSO-DE and the
Deb rule, with a new transition rule given by (13); this module is implemented in Matlab.
The synthesis process uses the specialized Ngspice v26 software, which allows analog
circuit simulations without mathematical equations. Instead, the standard configurations
necessary to evaluate the performance of circuits are implemented in a netlist format. Both
modules, the optimization and synthesis processes, are linked, allowing an automatic
circuit design. The flow chart for our EDA tool, using Ts-CPD, is shown in Figure 4.

Figure 4. Flow chart of Ts-CPD as part of an EDA Tool.

The following subsection describes three case studies, in terms of their variables and
constraints, that will be used to verify the efficiency of the EDA tool.

4.1. Cases of Study

To test our algorithm and tool, we chose three case studies, a “CMOS Differential
Amplifier”, a “CMOS two-stage operational amplifier”, and a “CMOS folded cascode
operational transconductance amplifier”. These cases were chosen because they have
already been studied previously, and therefore, it is possible to compare the results of
our algorithm against previous results, which is very interesting. In this sense, case 1 has
5 independent variables and 11 restrictions to meet, case 2 has 5 independent variables
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and 11 restrictions, while case 3, the most complete, has 9 independent variables and
13 restrictions to meet at the same time.

4.1.1. Case 1: CMOS Differential Amplifier

Figure 5 shows our first case of study, a CMOS differential amplifier, where, W is the
width and L is the length of the CMOS transistor. First, M1 must be equally sized than M2;
thus, the following equality restrictions must be satisfied:

Secondly, s of the current source, M3 and M4, must be equally sized, too, thus

W3 = W4 and L3 = L4. (14)

Figure 5. CMOS differential amplifier.

W1 = W2 and L1 = L2. (15)

We let both W5 and W6 be independent variables, and our algorithm selects their
values while L5 = L6. That is because the sizes of all s are within a specific range imposed
by the technology used for this design:

Wn,min ≤Wn < Wn,max, n = 1, 2, · · · , 6. (16)

In our case, Wn,min was fixed to 4 µm for a better comparison with other works,
and Wn,max was fixed to 120 µm to have a value large enough. For this example, there are
5 independent variables (W1, W3, W5, W6 and Ibias) and 2 dependent ones (W2 and W4). On
the other hand, the design specifications to be met will be treated as constraints. For this
case, there are 11 constraints: load capacitance, slew rate, power dissipation, phase margin,
cut-off frequency, DC gain, VIC(min), VIC(max), Common Mode Rejection Ratio (CMRR),
Positive Power Supply Rejection Ratio (PSRR+) and Negative Power Supply Rejection
Ratio (PSRR−).

4.1.2. Case 2: CMOS Two-Stage Operational Amplifier

Figure 6 shows our second case of study, a CMOS two-stage operational amplifier
consisting of 8 s. The first amplification stage, differential input, has the stipulation that M1
must be equally sized as M2, so that Equations (15) and (14) are still valid, and we add,

W5 = W8 and L5 = L8. (17)
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Figure 6. CMOS two-stage operational amplifier.

Also, to avoid an output offset at the second amplification stage, the following restric-
tion is imposed:

W7/L7

W5/L5
= 2

W6/L6

W4/L4
. (18)

Similarly, as in (16), sizes of the CMOS two-stage operational amplifier are in a specific
range, but now n = 8. Also, the compensation capacitance is within a range of values,
between CC,min and CC,max, which the designer selects:

CC,min ≤ CC < CC,max. (19)

The CC,min and CC,max values are fed to the Ts-CPD algorithm through a file in our EDA
tool. We choose CC,min = 2 pF, because lower values than that are challenging to achieve
and CC,max = 14 pF to avoid using significant areas, but these values are easily changed.

On the other hand, bias current IBIAS also is within a range o values:

IBIAS,min ≤ IBIAS < IBIAS,max. (20)

It is clear from Equations (15), (14) and (17) that, for the purpose of design, W2, W4
and W6 can be handled as independent variables, while W1, W3 and W5 as can be handled
as dependent ones. W7 is deduced from (18), thus, W7 is also a dependent variable; IBIAS
and CC are considered independent variables whose values are bounded by (19) and (20),
respectively. Therefore, this example has 5 independent variables, W2, W4, W6, IBIAS and
Cc, whose values are selected by our algorithm and 5 dependent variables W1, W3, W5, W7
and W8, whose impact over cost function and restrictions is evaluated by our algorithm to
determine new values for independent variables, in an iterative process.

In this paper, the length of s is considered constant. However, when lengths are
considered variables, the minimum and maximum values must be established, as for
widths in Equation (16). For this case, there are 11 constraints: load capacitance, slew rate,
power dissipation, phase margin, unity gain bandwidth, DC gain, VIC(min), VIC(max),
CMRR, PSRR+, and PSRR−.

4.1.3. Case 3: CMOS Foilded Cascode Operational Transconductance Amplifier

A third case of study is the Folded Cascode Operational Transconductance Ampli-
fier (FCOTA) shown in Figure 7. The transistors M1 and M2 are equally sized; thus,
Equation (15) is also valid. We considered the transistor widths W3 and W4 independent
variables and W5 and W14 dependent ones, as follows:
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In addition, W6, W8, W12 and W15 are considered independent variables while W7, W9,
W10, W11, and W13 are considered dependent variables, as follows:

W6 = W7 = W13 and L6 = L7 = L13, (21)

R1 R2

M7

M9

M11

M5
M4M14

M13

M12
M10

M8

M6

Vin+Vin- M1 M2

M3
M15

Ibias

Vdd

Vss

CL

Vout

Figure 7. CMOS folded cascode operational transconductance amplifier.

W4 = W5 = W14 and L4 = L5 = L14. (22)

W8 = W9 = W10 = W11 and L8 = L9 = L10 = L11. (23)

Table 5. Design criteria for CMOS differential amplifier (Case 1) and results obtained with several
evolutionary algorithms. The best values are in bold.

Design Criteria Specs. Ts-CPD MOL [62] SOA [63] PSO [22] HS [45] DE [45] ABC [45] GA [44]

Load capacitance (pF) ≥2 2.1 5 3.5 5 5 5 5 2
Slew rate (V/µs) ≥10 24.3 10 12.28 22.4 14.916 18.451 15.67 3.2
Power dissipation (µW) ≤2000 1075 863 117 1260 886 990 830 31
Phase margin (◦) >45 86.1 89 83.73 83.8 89.1 88.81 91.248 72
Cut-off frequency (KHz) ≥100 100.5 - 104.8 100 114 129.7 112.367 -
Unity gain bandwidth (MHz) ≥1 10 17.87 12.5 12.3 - - - 3.8
DC gain (dB) ≥40 40.3 30 44.02 42 40.98 41.23 42.045 60
VIC(min) (V) ≥−1.5 −0.8 −0.5 −0.37 −0.8 −0.7 −0.92 −0.97 −1.3
VIC(max) (V) ≤2 1.1 0.7 1.57 1.4 1.2 1.15 1.2 1.9
CMRR (dB) >40 81.0 59 83.17 84.2 78.5 78.39 79.67 -
PSRR+ (dB) >40 41.2 41 60.59 40.1 42.93 43.14 43.857 -
PSRR− (dB) >40 78.1 68 108.6 68 67.64 68.175 68.423 -
Total component area (µm2) <300 109 235 236 296 - - - 6500
AFOMSS (MHz·pF)/(µW·mm2) 179 457 318 165 - - - 40

The values of the bias current IBIAS are bounded by (20) and properly selected by our
algorithm. For design, we considered R1 as an independent variable. Thus, our algorithm
also selects its value within 1000 < R1 < 6000, while R2 is considered a dependent variable,
with R1 = R2. This way, there are 9 independent variables (W1, W3, W4, W6, W8, W12, W15,
IBIAS and R1) and 9 dependent variables (W2, W5, W7, W9, W10, W11, W13, W14 and R2).
The constraints for this case are 13: load capacitance, slew rate, power dissipation, phase
margin, unity gain bandwidth, DC gain, VIC(min), VIC(max), Vout(min), Vout(max), CMRR,
PSRR+ and PSRR−.
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5. Numerical Results and Discussion

In order to test our proposed tool, three examples of design are shown in this section.
First, the optimization is implemented in MATLAB R2014b, while the simulation of circuits
is implemented in the NGSPICE r26 simulator; both are linked, so the design process is
completely automated. On the other hand, the model of NMOS and PMOS transistors
for 0.35 µm technology was downloaded from the MOL database. Finally, the transistor
lengths were set to fixed values close to those in the literature for comparison purposes.

Our design objective is to minimize the area of analog circuits. However, designing
an amplifier is always a trade-off, so we introduce the Area Figure of Merit for small-
signal (AFOMss) that considers silicon area to assess the designed circuits’ overall perfor-
mance [64]:

AFOMSS = ( fu · CL/PQ · Area) (24)

where fu is the unity gain frequency, CL is the load capacitance, PQ is the power consump-
tion at quiescent, and Area is the component (transistors) area.

5.1. Numerical Results for CMOS Differential Amplifier (Case 1)

As a first example, the differential amplifier of Figure 5 is designed. We aim to
minimize the total component area, which is our cost function, below 300 µm2 while
restrictions are still met. As shown in Table 5, the power dissipation is specified to be
<2200 µW, DC gain ≥40 dB, slew rate ≥ 10 V/µs and the cut-off frequency ≥ 100 KHz.
Other specifications are CMRR, PSRR+, PSRR−, and the Input Common-Mode Range
(ICMR), all to be >40 dB, and finally VIC(min) ≥ −1.5 V and VIC(max) ≤ 2 V. The circuit’s
load determines load capacitance, but the specification to be satisfied is ≥2 pF; we choose
2.1 pF. The AFOMSS is also shown.

For the optimization purpose, some variables are set to a fixed value, and the micro-
channel lengths were set to L1 = L2 = L3 = L4 = 3.5 µm, L5 = L6 = 1.4 µm, and voltage
sources were set to Vdd = −Vss = 2.5V. On the other hand, Cc and Ibias are treated as
independent variables with restrictions, i.e., they can run within a specific range of values
in our algorithm.

The numerical results for the differential amplifier of Figure 5 are shown in Table 5;
it presents a comparison of Ts-CPD with several methods: Many Optimizing Liaisons
(MOLs) [62], Seeker Optimization Algorithm (SOA) [63], PSO [22], Harmony Search (HS) [45],
DE [45], Artificial Bee Colony (ABC) [45], and GA [44]. The Ts-CPD obtains the lower total
component area for methods that report this design objective and obtains the higher slew rate
and PSRR−; other specifications are also accomplished. Here, the MOLs algorithm has the
higher AFOMSS value. Table 6 shows the result of the designed differential amplifier for three
evolutionary algorithms.

Table 6. Design parameters for three algorithms (Case 1).

Design Parameters Ts-CPD PSO [22] GA [44]

W1/L1 (µm/µm) 7.6/3.5 29.4/3.5 240/13.2
W2/L2 (µm/µm) 7.6/3.5 29.4/3.5 240/13.2
W3/L3 (µm/µm) 4.6/3.5 11.3/3.5 7.3/7.7
W4/L4 (µm/µm) 4.6/3.5 11.3/3.5 7.3/7.7
W5/L5 (µm/µm) 5.9/1.4 4.2/1.4 4.6/2.4
W6/L6 (µm/µm) 11.2/1.4 4.2/1.4 2.4/2.4
Ibias (µA) 141 125 2

In order to explore the performance of the differential amplifier designed, we show the
DC gain and phase margin in Figure 8a; The CMRR, PSRR+, and PSRR− in Figure 8b; Slew
rate in Figure 8c; and the ICMR in Figure 8d, which is used for the graphical determination
of VIC(min) and VIC(max). These graphics demonstrate that the designed circuit behaves
well and is accomplished with all the constraints (Specifications).
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Figure 8. Performance of CMOS differential amplifier.

Figure 9a shows the convergence of our algorithm for this circuit design, which has an
excellent profile. Our algorithm’s behavior was also tested with 50 runs; the corresponding
Box and Whisker plot is shown in Figure 9b. The median is 1.4168 × 10−10 m2, which is
still below the results reported for other algorithms; see Table 5.

0 5 10 15 20

Iteration

0

0.2

0.4

0.6

0.8

1
10

-9

Ts-CPD

(a) Ts-CPD convergence profile.

Ts-CPD

Algorithm

1.5

2

2.5

3

3.5

4

10-10

Median: 1.4168  10
-10

Group: Ts-CPD

Maximum: 4.389  10
-10

Minimum: 1.0909  10
-10

Num Point: 50

Num Finite Outliers: 3

Num NaN's or Inf's: 0

(b) Ts-CPD Box and Whisker plot.

Figure 9. Ts-CPDtest for CMOS differential amplifier.

5.2. Numerical Results for CMOS Two-Stage Operational Amplifier (Case 2)

As a second example, we designed the two-stage operational amplifier in Figure 6.
Again, the aim is to minimize the total component area as much as possible while constraints
are still met. The total component area is specified to be <300 µm2, and in this case, the DC
gain > 60 dB, unity gain bandwidth ≥ 3 MHz, phase margin ≥ 45◦, slew rate ≥ 10 V/µs
and load capacitance ≥ 7 pF. In other set of specifications, CMRR> 60 dB, PSRR+ > 70 dB,
PSRR+ > 70 dB, VIC(min) > −1.5 V and VIC(max) ≤ 2 V. At the end, the AFOMSS is shown.

The microchannel lengths of all MOS transistors have been set to a fixed value,
L1 = L2 · · · L8 = 0.8 µm, while voltage sources are set to Vdd = −Vss = 2.5 V. Here, Cc
and Ibias are independent variables. Thus, our algorithm determines its values in concor-
dance with (19) and (20), respectively.
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Table 7 shows the complete set of restrictions and design objective for the CMOS
operational amplifier of Figure 6, as well as the comparison of methods Ts-CPD, GSA-
PSO [23], PSO, and Geometric Programming (GP) [46]. As expected, the Ts-CPD has the
lower component area and the highest slew rate and PSRR−. The AFOMSS, on the other
hand, is higher for our algorithm. The design parameters of the optimized circuit are shown
in Table 8.

Table 7. Design criteria for CMOS two-stage operational amplifier and results obtained with
several algorithms. The best values are in bold.

Design Criteria Specs. Ts-CPD GSA-PSO [23] PSO [22] GP [46]

Load capacitance (pF) ≥7 7.1 7.2 10 3
Slew rate (V/µs) ≥10 11.9 10.88 11.13 88
Power dissipation (µW) ≤2500 1084 712.8 2370 5000
Phase margin (◦) >45 46 66.2 66.55 60
Unity gain bandwidth (MHz) ≥3 6.2 5.776 5.32 86
DC gain (dB) >60 64.7 75.43 63.8 89.2
VIC(min) (V) ≥−1.5 −1.15 −0.886 −0.8 -
VIC(max) (V) ≤2 1.6 1.9 1.75 -
CMRR (dB) >60 74.0 75.43 63.8 89.2
PSRR+ (dB) >70 72.5 83.2 78.27 116
PSRR− (dB) >70 92.9 110.4 93.56 98.4
Total component area (µm2) <300 45.6 109.6 265 8200
AFOMSS (MHz·pF)/(µW·mm2) 902 532 85 6

Table 8. Design parameters for the four algorithms (Case 2).

Design Variables Ts-CPD GSA-PSO [23] PSO [22] GP [46]

W1/L1 (µm/µm) 4.1/0.8 4/2 4.9/2 232.8/0.8
W2/L2 (µm/µm) 4.1/0.8 4/2 4.9/2 232.8/0.8
W3/L3 (µm/µm) 4.0/0.8 4/2 5.9/2 143.6/0.8
W4/L4 (µm/µm) 4.0/0.8 4/2 5.9/2 143.6/0.8
W5/L5 (µm/µm) 4.7/0.8 2.8/2 2.1/2 64.6/0.8
W6/L6 (µm/µm) 19.8/0.8 24/2 90.9/2 588.8/0.8
W7/L7 (µm/µm) 11.5/0.8 9.2/2 16.3/2 132.6/0.8
W8/L8 (µm/µm) 4.7/0.8 2.8/2 2.1/2 2/0.8
CC (pF) 3.8 2.8 3 3.5
Ibias (µA) 42.7 28 40.39 10

The performance of the CMOS two-stage operational amplifier can be evaluated
through the gain and phase plot in Figure 10a; the CMRR, PSRR+, and PSRR− plots in
Figure 10b; the ICMR in Figure 10c; and the slew rate in Figure 10d. These plots also
demonstrate the excellent performance of the designed circuit.

−20

 0

 20

 40

 60

 1  10  100  1000  10000 100000 1×10
6

 1×10
7

−250

−200

−150

−100

−50

 0

 50

Unity Gain Bandwidth (6.2MHz)

Phase

(6.2MHz, −133.6
o
)

Gain (64.7dB)

G
a
in

 (
d
B

)

P
h
a
s
e
 (

o
)

Frecuency (Hz)

Gain
Phase

(a) Gain and phase.

 0

 20

 40

 60

 80

 100

 1  10  100  1000  10000  100000  1×10
6

 1×10
7

92.9dB

74.0dB

72.5dB

(d
B

)

Frecuency (Hz) 

CMRR
PSRR+

PSRR − 

(b) CMRR, PSRR+ and PSRR−.

Figure 10. Cont.



Computation 2023, 11, 230 20 of 26

−0.5

 0

 0.5

 1

 1.5

 2

 2.5

−2×10
−6  0  2×10

−6
 4×10

−6
 6×10

−6
 8×10

−6

(34.0ns, 0.2V)

(143.0ns, 1.5V)
V

o
lt
a

g
e

 (
V

)

Time (s)

Input pulse
Circuit response

(c) Slew rate.

−3

−2

−1

 0

 1

 2

 3

 4

 5

−2 −1  0  1  2

 0

 10

 20

 30

 40

 50

VIC(max)

(1.6V)

VIC(min)

(−1.15V)

(V
)

(µ
A

)

VIN (V)

VGS1−VTN
VDS1
IDS5

(d) ICMR.

Figure 10. Performance of CMOS two-stage operational amplifier.

On the other hand, we evaluated the performance of our algorithm with the conver-
gence profile in Figure 11a, and the Box and Whisker plot of Figure 11b. After 16 iterations,
the Ts-CPD reached convergence; see Figure 11a. We executed 50 trial runs for the circuit
design; Figure 11b shows the corresponding Box and Whisker plot for the total MOS area
of transistors. The best value is 4.557 × 10−11 m2, but the median (6.1738 × 10−11 m2) is
also lower than others reported for this circuit, as can be seen in Table 7.
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Figure 11. Ts-CPD test for CMOS two-stage operational amplifier.

5.3. Numerical Results for CMOS Folded Cascode Operational Transconductance Amplifier
(Case 3)

Our third example is the folded cascode operational amplifier shown in Figure 7.
The total component area specified is < 1315.9 µm2 (our design objective). At the same
time, specified constraints are gain > 74 dB, unity bandwidth ≥ 10 MHz, phase margin
> 60◦, slew rate ≥ 10 V/µs and load capacitance ≥ 10 pF (we chose exactly 10.0 pF). More
constraints are CMRR, PSRR+, PSRR− all three ≥ 55 dB, VIC(min) ≥ −1.5, VIC(max) ≤ 2.5,
and finally Vout(min) ≥ −2 and Vout(max) ≤ 2. And at the end, the AFOMSS is shown.

For all MOS transistors, the lengths have been set to a fixed value, L1 = L2 · · ·
L15 = 1.5 µm, and the voltage sources are set to Vdd = −Vss = 2.5 V. Besides the transistor
widths (Wi), Ibias, R1 and R2 are also variables.

Table 9 shows the numerical results for the FCOTA of Figure 7 and a comparison
of methods Ts-CPD and PSO with Aging Leader and Challengers (ALC-PSO) [1]. Our
proposal, Ts-CPD, has the lower total component area (our design objective) and the
highest Unity gain bandwidth, phase margin, CMRR, and PSRR−, while other constraints
are also met. Additionally, the AFOMSS is greater for our algorithm. The parameters of the
optimized circuit for the two proposals are shown in Table 10.
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Table 9. Designcriteria for CMOS folded cascode operational transconductance amplifier. The best
values are in bold.

Design Criteria Specs. Ts-CPD ALC-PSO [1]

Load capacitance (pF) ≥10 10.0 10.028
Slew rate (V/µs) ≥10 13.8 19.37
Power dissipation (mW) ≤5 3.3 2.504
Phase margin (◦) >60 83.9 63.1
Unity gain bandwidth (MHz) ≥10 17.8 11.11
DC gain (dB) >74 74.1 76.97
VIC(min) (V) ≥−1.5 −0.69 −1.466
VIC(max) (V) ≤2.5 2.41 2.486
Vout(min) (V) ≥−2 −2.0 −1.936
Vout(max) (V) ≤2 1.99 1.996
CMRR (dB) >55 111.8 87.58
PSRR+ (dB) >55 82.9 84.21
PSRR− (dB) >55 74.6 61.47
Total component area (µm2) <1315.9 600.9 835.2625
AFOMSS (MHz·pF)/(µW·mm2) 89,764 53,269

Table 10. Design parameters for Case 3.

Design Variables Ts-CPD ALC-PSO [1]

W1/L1 (µm/µm) 48.43/1.25 60.46/1.25
W2/L2 (µm/µm) 48.43/1.25 60.46/1.25
W3/L3 (µm/µm) 78.66/1.25 35.8/1.25
W4/L4 (µm/µm) 13.40/1.25 40.1/1.25
W5/L5 (µm/µm) 13.40/1.25 40.1/1.25
W6/L6 (µm/µm) 24.26/1.25 45.94/1.25
W7/L7 (µm/µm) 24.26/1.25 45.1/1.25
W8/L8 (µm/µm) 25.35/1.25 59.63/1.25
W9/L9 (µm/µm) 25.35/1.25 59.63/1.25
W10/L10 (µm/µm) 25.35/1.25 59.63/1.25
W11/L11 (µm/µm) 25.35/1.25 59.63/1.25
W12/L12 (µm/µm) 55.60/1.25 14.85/1.25
W13/L13 (µm/µm) 24.26/1.25 45.94/1.25
W14/L14 (µm/µm) 13.34/1.25 40.1/1.25
W15/L15 (µm/µm) 35.23/1.25 -
Ibias (µA) 119.3 -
R1 (kΩ) 4.83 1.89
R2 (kΩ) 4.83 1.89

The excellent performance of the CMOS folded cascode operational transconductance
amplifier is demonstrated through the plots of gain and phase in Figure 12a; CMRR, PSRR+,
and PSRR− in Figure 12b; the slew rate in Figure 12c; and the ICMR, Figure 12d.
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Figure 12. Performance of CMOS folded cascode operational transconductance amplifier.

The Ts-CPD performance is evaluated with the convergence profile shown in Figure 13a
and the Box and Whisker plot of Figure 13b. As can be seen in Figure 13a, the Ts-CPD
converges very quickly for this circuit design in just 5 iterations. Figure 13b shows the
Box and Whisker plot for 50 trial runs for the total MOS area of transistors. The median is
5.9674 × 10−11 m2, and the solutions are very clustered towards this value.
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Figure 13. Ts-CPD test for CMOS folded cascode operational transconductance amplifier.

6. Conclusions

The Ts-CPSO algorithm that was proposed and implemented improves the CPSO by
incorporating a way of evaluating the performance of constraints, through the optimization-
with-constraints method, with a new rule we proposed. This algorithm has the advantage
of not only minimizing the objective function but also ensuring that the constraints are
met and then generating the new parameter values. Then the Ts-CPSO algorithm is
incorporated into our EDA tool for the optimal sizing of analog circuits, which does not
require mathematical equations since the optimization is linked to a simulator that provides
the circuit’s behavior.

The Ts-CPD algorithm, as part of our EDA tool, was tested with three cases of study
in a 0.35 µm CMOS technology, a differential amplifier, a two-stage operational amplifier,
and a folded cascode operational transconductance amplifier. It was proposed as a design
objective to reduce the total area occupied by the transistors while complying with some
established constraints. In all cases, our tool found a better solution, for the objective,
than previously reported tools, while the constraints were kept within the desired limits.

In future work, we are going to implement a multi-objective algorithm, which we will
add as the kernel of our EDA tool. We will also do design tests with analog circuits with
more transistors and large-scale analog circuits, such as the Analog-to-Digital Converter
(ADC), considering the Layout design. As another potential future project, a framework
incorporating multiple algorithms for optimizing various analog circuits can be developed.
This framework would allow users to customize each algorithm’s parameters to enhance
its performance, compare the different methods with convergence plots and identify the
optimal design. It would be interesting to conduct a future study comparing Ts-CPD with
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other algorithms that are known for their success in solving CEC test problems and real-
world applications. Some of these algorithms include Adaptive Differential Evolution with
Optional External Archive (JADE), Success-History Based Adaptive Differential Evolution
(SHADE), Self-adaptive Differential Evolution with Lévy-flight (LSHADE) and Improving
Multi-objective Differential Evolutionary (IMODE).
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Abbreviations
The following abbreviations were used in this research:

ABC Artificial Bee Colony
ACO Ant Colony Optimization
ADC Analog-to-Digital Converter
AFOMSS Area Figure of Merit (for small signal)
ALC-PSO PSO with Aging Leader and Challengers
AOA Archimedes Optimization Algorithm
CA Cellular Automata
CAD Computer-Aided Design
CCAA Continuous-state Cellular Automata Algorithm
CGA Customized Genetic Algorithm
CMOS Complementary Metal-Oxide-Semiconductor
CMRR Common Mode Rejection Ratio
CPSO-DE Cellular Particle Swarm Optimization with Differential Evolution
CRPSO Crazy PSO
DE Differential Evolution
ECA Elementary Cellular Automaton
EDA Electronic Design Automation
FCOTA Folded Cascode Operational Transconductance Amplifier
GA Genetic Algorithm
GP Geometric Programming
GSA-PSO Gravitational Search Algorithm with PSO
HHO Harris Hawks Optimization
HS Harmony Search
ICMR Input Common-Mode Range
LCPSO Leader and Challenger PSO
MmCCAA Majority-minority Cellular Automata Algorithm
MOLs Many Optimizing Liaisons
MOPSO Multi-Objective Particle Swarm Optimization
MOS Metal-Oxide-Semiconductor
MOSA Multi-Objective Simulated Annealing
NLP Nonlinear Programming
NMOS N-Channel MOS
NSGA Non-dominated Sorting Genetic Algorithm
op-amp Operational Amplifier
PMOS P-Channel MOS
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PO Political Optimizer
PSO Particle Swarm Optimization
PSRR Power Supply Rejection Ratio
PSRR+ Positive Power Supply Rejection Ratio
PSRR− Negative Power Supply Rejection Ratio
RECAA Reversible Elementary Cellular Automata
SA Simulated Annealing
SOA Seeker Optimization Algorithm
Ts-CDP Tournament-selection CPSO-DE
VLSI Very Large Scale of Integration
WSA Weighted Superposition Attraction
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58. Baykasoğlu, A.; Akpinar, Ş. Weighted Superposition Attraction (WSA): A swarm intelligence algorithm for optimization
problems–Part 1: Unconstrained optimization. Appl. Soft Comput. 2017, 56, 520–540. [CrossRef]

59. Seck-Tuoh-Mora, J.C.; Lopez-Arias, O.; Hernandez-Romero, N.; Martínez, G.J.; Volpi-Leon, V. A New Algorithm Inspired on
Reversible Elementary Cellular Automata for Global Optimization. IEEE Access 2022, 10, 112211–112229. [CrossRef]

60. Askari, Q.; Younas, I.; Saeed, M. Political Optimizer: A novel socio-inspired meta-heuristic for global optimization. Knowl.-Based
Syst. 2020, 195, 105709. [CrossRef]

61. Osaba, E.; Villar-Rodriguez, E.; Del Ser, J.; Nebro, A.J.; Molina, D.; LaTorre, A.; Suganthan, P.N.; Coello, C.A.C.; Herrera, F. A
tutorial on the design, experimentation and application of metaheuristic algorithms to real-world optimization problems. Swarm
Evol. Comput. 2021, 64, 100888. [CrossRef]

62. Valencia-Ponce, M.A.; Tlelo-Cuautle, E.; de la Fraga, L.G. On the Sizing of CMOS Operational Amplifiers by Applying Many-
Objective Optimization Algorithms. Electronics 2021, 10, 3148. [CrossRef]

63. Maji, K.B.; De, B.P.; Kar, R.; Mandal, D.; Ghoshal, S.P. CMOS Analog Amplifier Circuits Design Using Seeker Optimization
Algorithm. IETE J. Res. 2022, 68, 1376–1385. [CrossRef]

64. Paul, A.; Ramírez-Angulo, J.; Sánchez, A.D.; López-Martín, A.J.; Carvajal, R.G.; Li, F.X. An Enhanced Gain-Bandwidth Class-AB
Miller op-amp with 23,800 MHz·pF/mW FOM, 11-16 Current Efficiency and Wide Range of Resistive and Capacitive Loads
Driving Capability. IEEE Access 2021, 9, 69783–69797. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s00170-012-4572-7
http://dx.doi.org/10.1007/s10489-020-01893-z
http://dx.doi.org/10.1016/j.future.2019.02.028
http://dx.doi.org/10.1016/j.asoc.2015.10.036
http://dx.doi.org/10.1109/ACCESS.2022.3216321
http://dx.doi.org/10.1016/j.knosys.2020.105709
http://dx.doi.org/10.1016/j.swevo.2021.100888
http://dx.doi.org/10.3390/electronics10243148
http://dx.doi.org/10.1080/03772063.2019.1649207
http://dx.doi.org/10.1109/ACCESS.2021.3077532

	Introduction
	Review of CPSO and CPSO-DE
	Cellular Particle Swarm Optimization
	Hybrid Cellular Particle Swarm Optimization and Differential Evolution

	Tournament-Selection CPD
	The Circuit Design Problem
	Tournament-Selection
	Ts-CPD Algorithm
	Performance of the Ts-CPD Algorithm
	Complexity Analysis of the Ts-CPD Algorithm

	 The Proposed Tool for Analog IC Sizing
	Cases of Study
	Case 1: CMOS Differential Amplifier
	Case 2: CMOS Two-Stage Operational Amplifier
	Case 3: CMOS Foilded Cascode Operational Transconductance Amplifier


	Numerical Results and Discussion
	Numerical Results for CMOS Differential Amplifier (Case 1)
	Numerical Results for CMOS Two-Stage Operational Amplifier (Case 2)
	Numerical Results for CMOS Folded Cascode Operational Transconductance Amplifier (Case 3)

	Conclusions
	References

