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Abstract: In this paper, we present an innovative approach to solve a system of boundary value
problems (BVPs), using the newly developed discontinuous Galerkin (DG) method, which eliminates
the need for auxiliary variables. This work is the first in a series of papers on DG methods applied
to partial differential equations (PDEs). By consecutively applying the DG method to each space
variable of the PDE using the method of lines, we transform the problem into a system of ordinary
differential equations (ODEs). We investigate the convergence criteria of the DG method on systems
of ODEs and generalize the error analysis to PDEs. Our analysis demonstrates that the DG error’s
leading term is determined by a combination of specific Jacobi polynomials in each element. Thus,
we prove that DG solutions are superconvergent at the roots of these polynomials, with an order of
convergence of O(hp+2).

Keywords: discontinuous Galerkin method; superconvergence; systems; boundary value problems;
optimal rate
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1. Introduction

The discontinuous Galerkin (DG) technique was first introduced by Reed and Hill [1]
in 1973, with the aim of addressing the hyperbolic equation of neutron transport. They
developed a discontinuous Galerkin method, a locally conservative and parallelizable
method that can effectively handle complex geometries and does not require continuity
across element boundaries. These desirable features have contributed to the DG method’s
widespread use in solving various challenging real-world problems including, but not
limited to, Troesch’s problem [2], α-synuclein spreading in Parkinson’s disease [3], fully
coupled hydro-mechanical modeling of two-phase flow in deformable fractured porous
media [4], the recovery of conductivity in electrical impedance tomography [5], wave
propagation phenomena in thermo-poroelastic media [6], Maxwell’s equations in optics
and photonics [7], solidification problems in a semitransparent medium-filled cavity [8],
and seismic wave propagation problems [9].

A notable refinement of the DG approach emerged with the introduction of the
Runge–Kutta DG scheme by Cockburn et al. This advancement was detailed in a sequence
of works [10–13], where they aimed to tackle nonlinear hyperbolic conservation laws.
Over time, the DG methodology has been extended to handle scenarios involving higher-
order derivatives. A comprehensive and current overview of the evolution and applications
of the DG method was presented by Shu in his surveys [14,15].

In 2007, Adjerid and Temimi [16] developed a novel DG scheme for handling higher-
order initial value problems without requiring any auxiliary variables like the local DG
methods. Using p-degree piecewise polynomials, they proved that their method achieves
a convergence rate of p + 1. In [17], Chen and Shu introduced a range of ultra-weak
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discontinuous Galerkin (UWDG) techniques. These methods were designed to address
boundary value problems encompassing second-order to fifth-order ordinary differential
equations (ODEs). Their strategy combined the DG method for spatial discretization
with the TVD high-order Runge–Kutta method for temporal discretization. By carefully
selecting numerical fluxes, they demonstrated the stability of their proposed schemes and
numerically showed that their method achieves an optimal (p + 1)-th convergence rate
despite the theoretical sub-optimal error estimates.

In [18], Adjerid and Temimi expanded upon their earlier research and employed
it in the context of the wave equation through the utilization of the method of lines.
This approach involves the integration of the standard finite element method and the
discontinuous Galerkin method in the spatial and temporal dimensions, respectively.
The researchers showcased the efficacy of this new technique by deriving a range of
optimal error estimates in both space and time domains. In addition, they conducted a
comparative analysis against existing methodologies. Furthermore, the study revealed the
superconvergence of the DG solution within each space-time element, specifically at the
intersecting points of the Lobatto polynomials in space and the Jacobi polynomials in time.
Later, Temimi [19] solved the one-dimensional second-order BVPs using the developed
DG scheme and demonstrated that a specific combination of Jacobi polynomials generates
the leading term of the discretization error in each element. He proved that the p-degree
DG solution achieves an O(hp+2) superconvergence rate at the roots of these particular
polynomials. Baccouch and Temimi [20] further extended the DG error analysis to second-
order BVPs and showed that when using p-degree piecewise polynomials, the UWDG
solution and its derivative exhibit a superconvergence rate of O(h2p) at the upwind and
downwind endpoints. Moreover, Baccouch and Temimi [21] proposed a novel DG scheme
for solving the wave equation based on the method of lines. They demonstrated that the
DG solution achieves in the L2-norm an optimal rate of convergence.

Recently, several superconvergence studies have elaborated. In [22], Baccouch pre-
sented superconvergence results for the local discontinuous Galerkin method applied to
the sine-Gordon nonlinear hyperbolic equation in one space dimension. Additionally,
Baccouch [23,24] explored the convergence and superconvergence properties of a local
discontinuous Galerkin method for nonlinear second-order two-point boundary value
problems. Subsequently, Baccouch [25] delved into the convergence and superconver-
gence properties of an ultra-weak discontinuous Galerkin method for linear fourth-order
boundary value problems. In a related vein, Ma [26] presented a comprehensive anal-
ysis of superconvergence properties for a wide class of mixed discontinuous Galerkin
methods. In [27], Liu et al. investigated the superconvergence properties of local dis-
continuous Galerkin methods with generalized alternating fluxes for one-dimensional
linear convection–diffusion equations. More recently, in 2023, Singh et al. [28] provided
a detailed superconvergence error analysis of the discontinuous Galerkin method with
interior penalties for 2D elliptic convection–diffusion–reaction problems.

To the best of our knowledge, none of the previous references have investigated a
system of boundary value problems or provided a detailed form of the leading term of the
DG errors, which serve as a foundation for interesting superconvergence criteria. In our
current work, we developed a local error analysis of the DG method for systems of second-
order BVPs. Our findings revealed that, within each element, the error’s leading term
is a combination of specific Jacobi polynomials. Notably, we demonstrated that the DG
solutions are O(hp+2) superconvergent at these combined Jacobi polynomial roots. These
superconvergence results can be further applied to compute efficient a posteriori error
estimates and to construct higher-order DG solutions. The results of our current analysis,
combined with our previous work involving the method of lines, will be integrated in future
phases to develop a fully DG scheme for solving higher-dimensional partial differential
equations. We believe that the new scheme will exhibit superior accuracy and efficiency
compared to existing methods.
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This manuscript is summarized in this way. We develop a DG scheme applied to
systems of boundary value problems in Section 2. The local error analysis with DG super-
convergence properties are provided in Section 3. Then, we carry out several computational
simulations to exhibit the full agreement with theoretical findings in Section 4. Finally,
some concluding remarks are stated in Section 5.

2. Model Problem

In this section, we develop the DG formulation of the system of BVPs given by

ÿ + ẏ + Ky = f(x), x ∈ (a, b), (1a)

subject to mixed boundary conditions

y(a) = yl , ẏ(b) = yrx. (1b)

The Dirichlet boundary conditions scenario is also explored:

y(a) = yl , y(b) = yr. (2)

where

y(x) =


y1(x)
y2(x)
...
yn(x)

, yl =


y1,l
y2,l
...
yn,l

, yrx =


y1,rx
y2,rx
...
yn,rx

, yr =


y1,r
y2,r
...
yn,r


where C and K are two matrices defined respectively by C = (Cij)1≤i,j≤n and
K = (Kij)1≤i,j≤n. Also, a smooth exact vector solution is achieved by properly choos-
ing the vector function f.

To implement the discontinuous Galerkin method, we initially create a partition
h = (b−a)

N+1 . For k = 0, 1, 2, · · · , N, we let xk = a + k · h and Ik = (xk, xk+1); we also construct
a finite-dimensional space SN,p

SN,p = {Y : [a, b]→ Rn, Y|Ik ∈ [Pp]
n}, (3)

where Pp designates the p-degree polynomial space.
Next, we multiply (1a) by a vector test function v(x) ∈ [H2([a, b])]n. We integrate the

resulting system of equations over Ik and we integrate it by parts twice to derive the weak
discontinuous Galerkin (DG) formulation for (1). Then, for k = 0, 1, . . . , N we have∫

Ik

(
v̈ty + v̇ty + vtKy

)
dx + vtẏ|xk+1

xk − v̇ty|xk+1
xk + vtKy|xk+1

xk =
∫

Ik

vtfdx. (4)

In (4), replacing y by Yk(x) = Y|[xk ,xk+1]
∈ SN,p and v by V ∈ SN,p leads to∫

Ik

(
V̈tYk + V̇tYk + VtKYk

)
dx + Vt(x−k+1)

̂̇Yk(xk+1)−Vt(x+k )
̂̇Yk(xk)−

V̇(x−k+1)
tŶk(xk+1) + V̇t(x+k )Ŷk(xk) + Vt(x−k+1)KŶk(xk+1)−

Vt(x+k )KŶk(xk) =
∫

Ik

Vtfdx, ∀ V ∈ SN,p (5)
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where Yk = [Y1,k, Y2,k, · · · , Yn,k]
t and where Ŷk(xk), Ŷk(xk+1), ̂̇Yk(xk) and ̂̇Yk(xk+1) denote

the numerical fluxes defined by Cheng et al. [17] as follows:{
Ŷ0(a) = yl , Ŷ0(x1) = Y0(x−1 ),
Ŷk(xk) = Yk−1(x−k ), Ŷk(xk+1) = Yk(x−k+1), k = 1, · · · , N,

(6)

{ ̂̇Yk(xk) = Ẏk(x+k ),
̂̇Yk(xk+1) = Ẏk+1(x+k+1), k = 0, · · · , N − 1,̂̇YN(xN) = ẎN(x+N),
̂̇YN(b) = yrx.

(7)

The numerical fluxes, for the case of Dirichlet boundary conditions, are given by
Ŷ0(a) = yl , Ŷ0(x1) = Y0(x−1 ),
Ŷk(xk) = Yk−1(x−k ), Ŷk(xk+1) = Yk(x−k+1), k = 1, · · · , N − 1,
ŶN(xN) = YN−1(x−N), ŶN(b) = yr,

(8)

and 
̂̇Y0(a) = Ẏ0(a+), ̂̇Y0(x1) = Ẏ1(x+1 ),̂̇Yk(xk) = Ẏk(x+k ),

̂̇Yk(xk+1) = Ẏk+1(x+k+1), k = 1, · · · , N − 1,̂̇YN(xN) = ẎN(x+N),
̂̇YN(b) = ẎN(b−) +

p
h (YN(b−)− yr).

(9)

Therefore, the discrete formulation involves finding Yk(x) = Y|[xk ,xk+1]
∈ SN,p such

that ∀ V ∈ SN,p∫
I0

(
V̈tY0 + V̇tY0 + VtKY0

)
dx + Vt(x−1 )Ẏ1(x+1 )−Vt(a+)Ẏ0(a+)−

V̇(x−1 )tY0(x−1 ) + V̇t(a+)yl + Vt(x−1 )KY0(x−1 )−Vt(a+)Kyl =
∫

I0

Vtfdx, (10a)

For k = 1, · · · , N − 1∫
Ik

(
V̈tYk + V̇tYk + VtKYk

)
dx + Vt(x−k+1)Ẏk+1(x+k+1)−Vt(x+k )Ẏk(x+k )−

V̇(x−k+1)
tYk(x−k+1) + V̇t(x+k )Yk−1(x−k ) + Vt(x−k+1)KYk(x−k+1)−

Vt(x+k )KYk−1(x−k ) =
∫

Ik

Vtfdx, (10b)

and ∫
IN

(
V̈tYN + V̇tYN + VtKYN

)
dx + Vt(b−)yrx −Vt(x+N)ẎN(x+N)−

V̇(b−)tYN(b−) + V̇t(x+N)YN−1(x−N) + Vt(b−)KYN(b−)−

Vt(x+N)KYN−1(x−N) =
∫

IN

Vtfdx. (10c)

When subjected to Dirichlet boundary conditions, (10c) is written as∫
IN

(
V̈tYN + V̇tYN + VtKYN

)
dx + Vt(b−)

(
ẎN(b−) +

p
h
(YN(b−)− yr)

)
−

Vt(x+N)ẎN(x+N)− V̇(b−)tyr + V̇t(x+N)YN−1(x−N) + Vt(b−)Kyr−
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Vt(x+N)KYN−1(x−N) =
∫

IN

Vtfdx. (10d)

3. Local Error Analysis

In order to perform a complete analysis of the method, we first define the Jacobi
polynomials [29] using Rodgrigues’ formula:

Pα,β
q (ξ) =

(−1)q

2qq!
(1− ξ)−α(1 + ξ)−β dq

dξq [(1− ξ)α+q(1 + ξ)β+q],

α, β > −1, q = 0, 1, · · · . (11)

Ref. [30] states some valuable properties of Jacobi polynomials that would be useful
to formulate the error’s leading term.

In order to investigate the local behavior of the error, we analyze the problem (1) in its
reduced form defined on one reference element [0, h]:

ÿ + ẏ + Ky = f(x), x ∈ (0, h), (12a)

subject to
y(0) = yl , ẏ(h) = yrx. (12b)

Therefore, problem (12) can be written as, for i = 1, . . . , n,

y′′i +
n

∑
j=1

Kijy′j +
n

∑
j=1

Cijyj = fi(x) 0 < x < h, (13a)

subject to
yi(0) = y1,l , y′i(h) = yrx. (13b)

This simplified version of the problem, even if it is not the original one, affords
identifying the error’s leading term. In this paper, we do not show the scenario of the
Dirichlet boundary conditions given that it would be readily achievable by adopting almost
identical analysis steps.

Therefore, the weak DG formulation of (13) is given by

yi,rxv
(
h−
)
− y′i

(
0+
)
v
(
0+
)
− yi

(
h−
)
v′
(
h−
)
+ yi,lv′

(
0+
)
+

n

∑
j=1

Kij
[
yj
(
h−
)
v
(
h−
)
− yi,lv

(
0+
)]
+

∫ h

0

(
yiv′′ −

n

∑
j=1

Kijyjv′ +
n

∑
j=1

Cijyjv

)
dx =

∫ h

0
fivdx, x ∈ [0, h], (14)

and the discrete formulation entails finding Yi(x) ∈ Pp for i = 1, . . . , n such that ∀ V ∈ Pp

Yi,rxV
(
h−
)
−Y′i

(
0+
)
V
(
0+
)
−Yi

(
h−
)
V′
(
h−
)
+ Yi,lV′

(
0+
)
+

n

∑
j=1

Kij
[
Yj
(
h−
)
V
(
h−
)
−Yi,lV

(
0+
)]
+

∫ h

0

(
YiV′′ −

n

∑
j=1

KijYjV′ +
n

∑
j=1

CijYjV

)
dx =

∫ h

0
fiVdx. (15)
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Next, we replace v by V ∈ Pp in (14) and subtract (15) to achieve the discontinuous
Galerkin condition of the local error ei = yi −Yi for i = 1, . . . , n on [0, h]

−e′i
(
O+
)
V
(
O+
)
− ei

(
h−
)
V′
(
h−
)
+

n

∑
j=1

Kijej
(
h−
)
V
(
h−
)
+

∫ h

0

(
eiV′′ −

n

∑
j=1

KijejV′ +
n

∑
j=1

CijejV

)
dx = 0, ∀ V ∈ Pp. (16)

By implementing a linear mapping from [0, h] to the canonical element [−1, 1] and
denoting by ê, the mapped local error on [−1, 1], (16) becomes

−ê′i(−1)V(−1)− êi(1)V′(1) +
h
2

n

∑
j=1

Kij êj(1)V(1)+

∫ 1

−1

(
êiV′′ −

h
2

n

∑
j=1

Kij êiV′ +
h2

2

n

∑
j=1

Cij êjV

)
dξ = 0, ∀ V ∈ Pp. (17)

Next, we present and demonstrate our major finding on the local discretization error.

Theorem 1. Let y ∈ [C2p+2]n be the solution of (1) and Yk ∈ SN,p, p ≥ 2, solution of (10).
Therefore, for each i = 1, . . . , n, the local discretization error satisfies

êi =
∞

∑
l=p+1

Qi,l(ξ)hl , (18a)

where Qi,l(ξ) ∈ Pl , and its leading term is defined by

Qi,p+1(ξ) = ci,p+1(ξ − 1)

[
P1,0

p (ξ) +

(
p + 1

p

)2
P1,0

p−1(ξ)

]
. (18b)

Proof. Given that yi ∈ C2p+2, the local error’s Maclaurin series of êi with respect to h is
given by

êi =
∞

∑
l=0

Qi,l(ξ)hl . (19)

Replacing (19) in (17) and assembling the terms with the same powers of h leads to[
−Qi,0(1)V′(1) +

∫ 1

−1
Qi,0V′′dξ

]
+

[
−Q′i,1(−1)V(−1)−Qi,1(1)V′(1) +

n

∑
j=1

1
2

KijQj,0(1)V(1)+

∫ 1

−1

(
Qi,1V′′ −

n

∑
j=1

1
2

KijQj,0V′
)

dξ

]
h+

∞

∑
l=2

[
−Q′i,l(−1)V(−1)−Qi,l(1)V′(1) +

n

∑
j=1

1
2

KijQ
(1)
j,l−1V(1)+

∫ 1

−1

(
Qi,kV′′ −

n

∑
j=1

1
2

KijQj,l−1V′ +
n

∑
j=1

1
4

CijQj,l−2V

)
dξ

]
hl = 0. ∀ V ∈ Pp. (20)
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The O(1) term gives

−Qi,0(1)V′(1) +
∫ 1

−1
Qi,0V′′dξ = 0, ∀ V ∈ Pp. (21)

Letting V = ξ − 1 leads to Qi,0 = 0 for i = 1, . . . , n.
The O(h) yields

−Q′i,1(−1)V(−1)−Qi,1(1)V′(1) +
∫ 1

−1
Qi,1V′′dξ = 0, ∀ V ∈ Pp. (22)

Using V = 1 gives Q′i,1(−1) = 0 and V = ξ − 1 results in Qi,1(1) = 0, leading to
Qi,1 = 0 for i = 1, . . . , n.

Reasoning by induction, we suppose that Qi,m = 0 for m = 0, 1, · · · , l − 1 where
l ≤ p− 2. Thus, the O(hl) term gives

−Q′i,l(−1)V(−1)−Qi,l(1)V′(1) +
∫ 1

−1
Qi,lV′′dξ = 0, ∀ V ∈ Pp. (23)

Using V = 1 gives Q′i,l(−1) = 0 and V = ξ − 1 results in Qi,l(1) = 0, and we obtain

∫ 1

−1
Qi,lV′′dξ = 0, ∀ V ∈ Pp. (24)

Thus, for l ≤ p− 2, Qi,l = 0.
Moreover, the O(hp−1) term results in to Qi,p−1 = 0 and the O(hp) in Qi,p = 0,

for i = 1, . . . , n.
The O(hp+1) term gives

−Q′i,p+1(−1)V(−1)−Qi,p+1(1)V′(1) +
∫ 1

−1
Qi,p+1V′′dξ = 0, ∀ V ∈ Pp. (25)

Again, using V = 1 gives Qi,p+1(1) = 0 and V = ξ − 1 results in Q′i,p+1(−1) = 0,
for i = 1, . . . , n, leading to ∫ 1

−1
Qi,p+1V′′dξ = 0, ∀ V ∈ Pp. (26)

We can express Qi,p+1(ξ) as

Qi,p+1(ξ) =
p+1

∑
j=0

βi,jP
0,0
j (ξ), (27)

where P0,0
j are Legendre (specific Jacobi) polynomials of degree j. By plugging (27) in (26),

we achieve
Qi,p+1(ξ) = βi,p−1P0,0

p−1(ξ) + βi,pP0,0
p (ξ) + βi,p+1P0,0

p+1(ξ), (28)

using Qi,p+1(1) = 0 for i = 1, . . . , n gives

βi,p−1 + βi,p + βi,p+1 = 0. (29)

Moreover,

Q′p+1(ξ) = βi,p−1
p
2

P1,1
p−2(ξ) + βi,p

p + 1
2

P1,1
p−1(ξ) + βi,p+1

p + 2
2

P1,1
p (ξ), (30)
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using Q′i,p+1(−1) = 0 for i = 1, . . . , n gives

αi,p−1(p− 1)p + αi,p p(p + 1) + αi,p+1(p + 1)(p + 2) = 0 (31)

Therefore, for i = 1, . . . , n

Qp+1(ξ) = ci,p+1

[
P0,0

p+1(ξ) +
2p + 1

p2 P0,0
p (ξ)−

(
p + 1

p

)2
P0,0

p−1(ξ)

]
, (32)

Finally, we prove our theorem by using properties of the Jacobi polynomial [30]:

Qp+1(ξ) = ci,p+1(ξ − 1)

[
P1,0

p +

(
p + 1

p

)2
P1,0

p−1

]
. (33)

In the following corollary, we prove that the DG solutions are superconvergent at
some specific interior points.

Corollary 1. Let y ∈ [C2p+2]n be the solution of (1) and Yk ∈ SN,p, p ≥ 2, solution of (10);
therefore, the DG solutions are superconvergent at x̂j

ei(x̃j) = O(hp+2), j = 1, · · · , p, i = 1, · · · , n,

where x̃j are the roots of
[

P1,0
p (ξ) +

(
p+1

p

)2
P1,0

p−1(ξ)

]
shifted to each element and the downwind

endpoints of each element Ik for k = 0, 1, · · · , N.

Proof. Using Theorem 1, we have that, for each i = 1, . . . , n, the local discretization error
satisfies

êi(ξ) = Qi,p+1(ξ)hp+1 +
∞

∑
l=p+2

Qi,l(ξ)hl , (34a)

using (18b), we obtain

êi(ξ) = ci,p+1(ξ − 1)

[
P1,0

p (ξ) +

(
p + 1

p

)2
P1,0

p−1(ξ)

]
+

∞

∑
l=p+2

Qi,l(ξ)hl . (34b)

By letting x̃j be the roots of
[

P1,0
p (ξ) +

(
p+1

p

)2
P1,0

p−1(ξ)

]
on [−1, 1], (34b) becomes

êi(x̃j) =
∞

∑
l=p+2

Qi,l(x̃j)hl . (35)

which can be written as

êi(x̃j) = Qi,p+2(x̃j)hp+2 +
∞

∑
l=p+3

Qi,l(x̃j)hl . (36)

Then, by mapping êi and shifting x̃j to each element Ik, the proof is achieved.

4. Numerical Examples

In order to validate our theory, we consider two systems of second-order differential
equations subject to Neumann and Dirichlet boundary conditions. The numerical rate of
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convergence is defined by ln(‖e‖(N1)/‖e‖(N2))
ln(N1/N2)

, where ‖e‖(N) denotes the error ‖e‖ = ‖yi −Yi‖,
for i = 1, 2, · · · , n using N elements.

Example 1. Let us consider the following system of three second-order differential equations
u′′1 − u′1 + u′2 + u1 − u2 − u3 = f1(x)
u′′2 + u′1 − 3u′3 + 3u1 + u2 + u3 = f2(x), x ∈ [0, 1],
u′′3 + 2u′1 + u′2 + 2u′3 + 2u1 − 2u2 = f3(x)

(37a)

subject to Neumann and Dirichlet boundary conditions
u1(0) = 0
u2(0) = 0 ,
u3(0) = 0

(37b)

and 
u′1(1) = 1− tanh(1)2

u′2(1) = 2− 2 tanh(2)2 ,
u′3(1) = 3− 3 tanh(3)2

(37c)

We choose f1, f2 and f3 such that the exact solutions are given by
u1(x) = tanh(x)
u2(x) = tanh(2x) .
u3(x) = tanh(3x)

(38)

We solve problem (37) using a uniform mesh with h = 0.05 and p = 2, 3, 4 and plot
the errors ui − Ui,DG for i = 1, 2, 3 versus x in Figures 1–3. These plots show that the

errors are crossing the x-axis at the roots of the polynomial
[

P1,0
p (ξ) +

(
p+1

p

)2
P1,0

p−1(ξ)

]
shifted to each element and at the downwind endpoints of each element. Therefore, these
results confirm the established theory on the leading term of the errors for each of the
three solutions.

Moreover, on uniform meshes with N = 10, 15, · · · , 30 steps, problem (37) is solved
for p = 2, 3, 4, 5. We exhibit ||ui(x̃j)−Ui,DG(x̃j)||∞ for i = 1, 2, 3, where x̃j are the roots
of the mapped polynomials Qi,p+1, along with their convergence rates in Tables 1–3. We
notice that ||ui(x̃j)−Ui,DG(x̃j)||∞ for i = 1, 2, 3 are O(hp+2) superconvergent. As expected,
there is full agreement between these results and the stated theory.

Table 1. The maximum error ||u1(x̃j)−U1,DG(x̃j)||∞ at (x̃j) the roots of mapped polynomials Q1,p+1

for problem (37) on uniform meshes.

p = 2 p = 3 p = 4 p = 5

N ||e1(x̃j)||∞ Rate ||e1(x̃j)||∞ Rate ||e1(x̃j)||∞ Rate ||e1(x̃j)||∞ Rate

10 7.5961 × 10−6 . . . 5.8505 × 10−8 . . . 1.2823 × 10−9 . . . 2.5832 × 10−11 . . .
15 1.5830 × 10−6 3.87 7.2451 × 10−9 5.15 1.1635 × 10−10 5.92 1.4520 × 10−12 7.09
20 4.9887 × 10−7 4.01 1.6525 × 10−9 5.13 2.0909 × 10−11 5.97 1.8596 × 10−13 7.14
25 2.0541 × 10−7 3.98 5.2684 × 10−10 5.12 5.5017 × 10−12 5.98 3.9774 × 10−14 6.91
30 9.9025 × 10−8 4.00 2.0754 × 10−10 5.10 1.8459 × 10−12 5.99 1.1241 × 10−14 6.93
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Figure 1. The error u1 −U1,DG for problem (37) with p = 2, 3, 4 and N = 20 and + denotes the roots of
Q1,p+1 mapped to each element.
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Figure 2. The error u2 −U2,DG for problem (37) with p = 2, 3, 4 and N = 20 and + denotes the roots of
Q2,p+1 mapped to each element.
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Figure 3. The error u3 −U3,DG for problem (37) with p = 2, 3, 4 and N = 20 and + denotes the roots of
Q3,p+1 mapped to each element.

Table 2. The maximum error ||u2(x̃j)−U2,DG(x̃j)||∞ at (x̃j) the roots of mapped polynomials Q2,p+1

for problem (37) on uniform meshes.

p = 2 p = 3 p = 4 p = 5

N ||e2(x̃j)||∞ Rate ||e2(x̃j)||∞ Rate ||e2(x̃j)||∞ Rate ||e2(x̃j)||∞ Rate

10 4.5986 × 10−5 . . . 9.0804 × 10−7 . . . 2.3762 × 10−8 . . . 7.1286 × 10−10 . . .
15 1.0249 × 10−5 3.70 1.1199 × 10−7 5.16 2.4137 × 10−9 5.64 5.3654 × 10−11 6.38
20 3.4145 × 10−6 3.82 2.7619 × 10−8 4.87 4.5279 × 10−10 5.82 6.8065 × 10−12 7.17
25 1.4386 × 10−6 3.87 8.9665 × 10−9 5.04 1.2177 × 10−10 5.88 1.5068 × 10−12 6.76
30 7.0618 × 10−7 3.90 3.5610 × 10−9 5.06 4.1381 × 10−11 5.92 4.1211 × 10−13 7.11

Table 3. The maximum error ||u3(x̃j)−U3,DG(x̃j)||∞ at (x̃j) the roots of mapped polynomials Q3,p+1

for problem (37) on uniform meshes.

p = 2 p = 3 p = 4 p = 5

N ||e3(x̃j)||∞ Rate ||e3(x̃j)||∞ Rate ||e3(x̃j)||∞ Rate ||e3(x̃j)||∞ Rate

10 5.2266 × 10−5 . . . 9.7683 × 10−7 . . . 5.1465 × 10−8 . . . 1.5770 × 10−9 . . .
15 1.0337 × 10−5 4.00 1.3039 × 10−7 4.97 5.1178 × 10−9 5.69 1.0687 × 10−10 6.64
20 3.2481 × 10−6 4.02 3.0870 × 10−8 5.00 9.2283 × 10−10 5.95 1.6011 × 10−11 6.60
25 1.3376 × 10−6 3.98 1.0067 × 10−8 5.02 2.3949 × 10−10 6.04 3.5490 × 10−12 6.75
30 6.5181 × 10−7 3.94 4.1795 × 10−9 4.82 8.1987 × 10−11 5.88 1.0226 × 10−12 6.82

Example 2. Next, let us consider the following system of ten second-order differential equations:

u′′ + Ku′ + Cu = f(x) x ∈ [0, π] (39a)
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subject to Dirichlet boundary conditions

ui(0) = 0 i = 1, 2, · · · , 10, (39b)

and
ui(π) = 0 i = 1, 2, · · · , 10, (39c)

where

K =



0.20 0.00 0.00 0.10 0.25 0.10 0.25 0.00 0.05 0.05
0.10 0.10 0.20 0.15 0.15 0.15 0.15 0.05 0.20 0.25
0.25 0.15 0.00 0.05 0.25 0.20 0.25 0.10 0.00 0.05
0.15 0.25 0.05 0.20 0.05 0.20 0.20 0.00 0.15 0.25
0.25 0.05 0.15 0.10 0.25 0.10 0.05 0.05 0.25 0.20
0.10 0.15 0.15 0.00 0.05 0.00 0.15 0.05 0.10 0.05
0.10 0.20 0.10 0.05 0.25 0.05 0.15 0.20 0.15 0.25
0.15 0.05 0.15 0.05 0.10 0.20 0.25 0.05 0.25 0.05
0.25 0.00 0.25 0.00 0.05 0.25 0.15 0.20 0.05 0.20
0.00 0.10 0.20 0.05 0.20 0.15 0.25 0.15 0.20 0.20


,

C =



0.25 0.15 0.20 0.15 −0.10 −0.05 0.05 −0.15 0.00 −0.05
0.00 −0.15 0.25 0.25 −0.10 −0.05 0.10 −0.10 0.10 −0.25
0.00 −0.10 0.05 0.00 0.20 −0.05 0.15 0.10 −0.15 −0.10
0.00 0.10 −0.05 −0.20 −0.05 0.00 0.20 −0.15 −0.20 −0.20
−0.10 −0.15 −0.05 0.00 −0.25 −0.10 −0.20 −0.25 0.05 0.25
−0.10 0.20 0.10 0.15 0.20 0.00 0.10 0.25 −0.15 −0.05

0.25 −0.20 −0.15 0.10 −0.05 −0.25 0.15 −0.15 −0.10 0.00
0.00 0.25 −0.25 0.20 −0.20 −0.20 0.10 0.25 0.25 −0.15
0.10 0.10 0.25 0.15 −0.25 −0.10 0.05 0.05 −0.10 0.20
0.10 −0.20 0.25 0.05 0.10 0.15 −0.25 −0.15 0.25 −0.20


We choose fi for i = 1, 2, · · · , 10 such that the exact solutions are given by

ui(x) = sin(i · x) i = 1, 2, · · · , 10. (40)

We solve problem (39) using a uniform mesh with h = π
20 and p = 2, 3, 4. Without loss

of generality, we plot the errors u5 −U5,DG and u10 −U10,DG versus x in Figures 4 and 5.
These plots indicate that the errors intersect the x-axis at the roots of the polynomial[

P1,0
p (ξ) +

(
p+1

p

)2
P1,0

p−1(ξ)

]
shifted to each element and at the downwind endpoints of

each element. Thus, these results perfectly support the established theory.
Moreover, on uniform meshes with N = 60, 65, · · · , 80 steps, problem (39) is solved

for p = 2, 3, 4, 5. Tables 4–7 exhibit the maximum of the errors ei = ui −Ui,DG for i =
3, 5, 8, 10 at the roots of polynomials Qi,p+1 mapped to each element along with their
convergence rates. As we can clearly see, ||ui(x̃j) − Ui,DG(x̃j)||∞ for i = 3, 5, 8, 10 are
O(hp+2) superconvergent at these specific roots. Consequently, the stated theory is fully
supported by these results.
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Figure 4. The error u5 −U5,DG for problem (39) with p = 2, 3, 4 and N = 20 and + denotes the roots of
Q5,p+1 mapped to each element.
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Figure 5. The error u10 −U10,DG for problem (39) with p=2,3,4 and N=20 and + denotes the roots of
Q10,p+1 mapped to each element.
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Table 4. The maximum error ||u3(x̃j)−U3,DG(x̃j)||∞ at (x̃j) the roots of mapped polynomials Q3,p+1

for problem (39) on uniform meshes.

p = 2 p = 3 p = 4 p = 5

N ||e3(x̃j)||∞ Rate ||e3(x̃j)||∞ Rate ||e3(x̃j)||∞ Rate ||e3(x̃j)||∞ Rate

60 1.1663 × 10−5 . . . 5.5757 × 10−8 . . . 8.1254 × 10−10 . . . 9.1438 × 10−12 . . .
65 8.5227 × 10−6 3.92 3.7016 × 10−8 5.11 5.0436 × 10−10 5.96 5.1827 × 10−12 7.09
70 6.3717 × 10−6 3.92 2.5835 × 10−8 4.85 3.2419 × 10−10 5.96 3.0594 × 10−12 7.11
75 4.8584 × 10−6 3.93 1.8239 × 10−8 5.04 2.1476 × 10−10 5.97 1.9088 × 10−12 6.84
80 3.7688 × 10−6 3.93 1.3070 × 10−8 5.16 1.4606 × 10−10 5.97 1.2143 × 10−12 7.00

Table 5. The maximum error ||u5(x̃j)−U5,DG(x̃j)||∞ at (x̃j) the roots of Q5,p+1 for problem (39) on
uniform meshes.

p = 2 p = 3 p = 4 p = 5

N ||e5(x̃j)||∞ Rate ||e5(x̃j)||∞ Rate ||e5(x̃j)||∞ Rate ||e5(x̃j)||∞ Rate

60 5.3921 × 10−5 . . . 1.2012 × 10−7 . . . 9.8735 × 10−9 . . . 2.6052 × 10−11 . . .
65 3.9423 × 10−5 3.91 7.9812 × 10−8 5.10 6.1964 × 10−9 5.82 1.4974 × 10−11 6.92
70 2.9484 × 10−5 3.92 5.5651 × 10−8 4.86 4.0216 × 10−9 5.83 8.8272 × 10−12 7.13
75 2.2488 × 10−5 3.93 3.9720 × 10−8 4.89 2.6872 × 10−9 5.84 5.4370 × 10−12 7.02
80 1.7449 × 10−5 3.93 2.8855 × 10−8 4.95 1.8417 × 10−9 5.85 3.4998 × 10−12 6.82

Table 6. The maximum error ||u8(x̃j)−U8,DG(x̃j)||∞ at (x̃j) the roots of Q8,p+1 for problem (39) on
uniform meshes.

p = 2 p = 3 p = 4 p = 5

N ||e8(x̃j)||∞ Rate ||e8(x̃j)||∞ Rate ||e8(x̃j)||∞ Rate ||e8(x̃j)||∞ Rate

60 6.1027 × 10−5 . . . 3.7466 × 10−7 . . . 3.7554 × 10−8 . . . 9.3362 × 10−11 . . .
65 4.4357 × 10−5 3.99 2.5290 × 10−7 4.91 2.3550 × 10−8 5.83 5.2846 × 10−11 7.11
70 3.3004 × 10−5 3.99 1.7440 × 10−7 5.01 1.5273 × 10−8 5.84 3.1868 × 10−11 6.82
75 2.5058 × 10−5 3.99 1.2363 × 10−7 4.99 1.0198 × 10−8 5.85 1.9518 × 10−11 7.10
80 1.9364 × 10−5 3.99 8.9393 × 10−8 5.02 6.9847 × 10−9 5.86 1.2476 × 10−11 6.93

Table 7. The maximum error ||u10(x̃j)−U10,DG(x̃j)||∞ at (x̃j) the roots of Q10,p+1 for problem (39)
on uniform meshes.

p = 2 p = 3 p = 4 p = 5

N ||e10(x̃j)||∞ Rate ||e10(x̃j)||∞ Rate ||e10(x̃j)||∞ Rate ||e10(x̃j)||∞ Rate

60 1.1247 × 10−4 . . . 1.2042 × 10−6 . . . 1.1329 × 10−7 . . . 4.4964 × 10−10 . . .
65 8.1578 × 10−5 4.01 8.0998 × 10−7 4.95 7.1090 × 10−8 5.82 2.6198 × 10−10 6.75
70 6.0586 × 10−5 4.01 5.6076 × 10−7 4.96 4.6127 × 10−8 5.84 1.5403 × 10−10 7.16
75 4.5924 × 10−5 4.01 3.9802 × 10−7 4.97 3.0810 × 10−8 5.85 9.6233 × 10−11 6.82
80 3.5435 × 10−5 4.01 2.8874 × 10−7 4.97 2.1107 × 10−8 5.86 6.0768 × 10−11 7.12

5. Conclusions

In this study, we conducted a local error analysis of the DG method for systems of
second-order boundary value problems. We explored the superconvergence criteria and
demonstrated that the leading error term on each element is a combination of specific
Jacobi polynomials. We established that DG solutions exhibit superconvergence of O(hp+2)
at the roots of these combined Jacobi polynomials. We further validated the established
theory through some numerical simulations, and we showed the full agreement between
the theory and the computational results. In our forthcoming paper, we will integrate
the findings from this analysis with our earlier work involving the method of lines to
create a comprehensive DG scheme for solving higher-dimensional partial differential
equations. In our future research endeavors, we aim to expand the application of DG
methods to address a variety of challenging real-world problems including, but not limited
to, the two-dimensional hyperbolic partial differential equation of the Telegraph type [31],
the integro-differential Beam problem [32], the nonlinear Bratu problem [33,34], delayed
differential equations [35] and nonlinear Boussinesq and Klein–Gordon equations [36].
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