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Abstract: Background: The COVID-19 pandemic has profoundly transformed the global scenario,
marked by overwhelming infections, fatalities, overburdened healthcare infrastructures, economic
upheavals, and significant lifestyle modifications. Concurrently, the Russian full-scale invasion of
Ukraine on 24 February 2022, triggered a severe humanitarian and public health crisis, leading to
healthcare disruptions, medical resource shortages, and heightened emergency care needs. Italy
emerged as a significant refuge for displaced Ukrainians during this period. Aim: This research aims
to discern the impact of the Russian full-scale invasion of Ukraine on the COVID-19 transmission
dynamics in Italy. Materials and Methods: The study employed advanced simulation methodologies,
particularly those integrating machine learning, to model the pandemic’s trajectory. The XGBoost
algorithm was adopted to construct a predictive model for the COVID-19 epidemic trajectory in
Italy. Results: The model demonstrated a commendable accuracy of 86.03% in forecasting new
COVID-19 cases in Italy over 30 days and an impressive 96.29% accuracy in estimating fatalities.
When applied to the initial 30 days following the escalation of the conflict (24 February 2022, to
25 March 2022), the model’s projections suggested that the influx of Ukrainian refugees into Italy
did not significantly alter the country’s COVID-19 epidemic course. Discussion: While simulation
methodologies have been pivotal in the pandemic response, their accuracy is intrinsically linked to
data quality, assumptions, and modeling techniques. Enhancing these methodologies can further
their applicability in future public health emergencies. The findings from the model underscore that
external geopolitical events, such as the mass migration from Ukraine, did not play a determinative
role in Italy’s COVID-19 epidemic dynamics during the study period. Conclusion: The research
provides empirical evidence negating a substantial influence of the Ukrainian refugee influx due to
the Russian full-scale invasion on the COVID-19 epidemic trajectory in Italy. The robust performance
of the developed model affirms its potential value in public health analyses.

Keywords: epidemic model; epidemic simulation; machine learning; XGBoost; simulation; war

1. Introduction

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has had a profound im-
pact on the world’s health, economy, and social fabric. Since the first cases were reported in
Wuhan, China, in December 2019, the virus has rapidly spread across the globe, resulting
in millions of infections and deaths [1]. The disease primarily spreads through respiratory
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droplets, and symptoms can range from mild to severe, including fever, cough, and short-
ness of breath [2]. The pandemic has prompted widespread public health interventions,
including lockdowns, travel restrictions, and the widespread use of personal protective
equipment [3]. The development of effective vaccines has been a critical milestone in
the fight against COVID-19, but the emergence of new variants of the virus and vaccine
hesitancy pose ongoing challenges [4].

Countermeasures against the COVID-19 pandemic have been diverse and multifaceted,
encompassing public health interventions, clinical management, and vaccination strategies.
Non-pharmaceutical interventions, such as social distancing, wearing face masks, and
hand hygiene practices, have been widely implemented to reduce the transmission of the
virus [5]. Clinical management of COVID-19 patients has involved a range of approaches,
including the use of antiviral drugs, corticosteroids, and oxygen therapy, depending on the
severity of the illness [6]. The development and deployment of effective vaccines against
SARS-CoV-2 have been a critical component of the response, with multiple vaccines being
authorized for emergency use globally. Mass vaccination campaigns are ongoing, but
challenges remain, including vaccine hesitancy, equitable distribution, and the emergence
of new variants of the virus. Continued surveillance, testing, and genomic sequencing of
the virus are essential for monitoring the efficacy of countermeasures and adapting to the
evolving pandemic situation.

The development of the pandemic has stimulated research groups around the world
to direct their efforts to develop data-driven approaches aimed at combating COVID-19.
Such studies included the analysis of medical data [7], the search for the informativeness of
medical factors [8], methods of automated diagnostics [9], complex models of the dynamics
of the epidemic process [10], methods of medical computer vision [11], assessment of
factors affecting the epidemic process [12], the formation of strategies to stop the epidemic
spread of morbidity [13], etc.

Simulation is a valuable tool for decision-making in the context of the COVID-19
pandemic. Simulation models can provide insights into the potential impact of various
interventions and policies, including non-pharmaceutical interventions and vaccination
strategies, on the spread of the virus and the burden on healthcare systems. These models
can take into account various factors, such as demographic characteristics, healthcare
capacity, and the characteristics of the virus itself [14]. By using simulations, decision-
makers can explore different scenarios and assess the potential outcomes of their decisions
before implementation [15]. However, it is crucial to acknowledge the limitations of
simulation models, such as the assumptions made and the uncertainties involved, and
to use multiple models and sensitivity analyses to evaluate the robustness of the results.
Overall, simulation can be a powerful tool for informing evidence-based decision-making
in the context of the COVID-19 pandemic.

On 24 February 2022, Russia began the escalation of the war in Ukraine. The full-scale
invasion caused thousands of victims and started a humanitarian crisis in Ukraine [16].
Hundreds of medical institutions and other infrastructure facilities were destroyed [17].
In addition, Russia’s full-scale invasion of Ukraine has caused mass migration of the
population. These and other factors have a negative impact on the spread of COVID-19
both in Ukraine and in countries that have received a large number of refugees.

During the year of a full-scale war, more than 8 million refugees were registered in
Europe, and more than 5 million became internally displaced persons [18]. As of April 2023,
Italy received 173 thousand people from Ukraine, and became the fourth country in the
world in terms of the number of Ukrainian refugees. In addition, Italy ranks eighth in the
world in terms of the number of cases of COVID-19. The highest dynamics of the spread of
the new coronavirus in the world after China characterized the beginning of the pandemic
in Italy. This has attracted many research groups to study the COVID-19 pandemic in Italy.
Therefore, the situation with COVID-19 in Italy was chosen as a pilot study of the impact
of a full-scale Russian invasion of Ukraine on the dynamics of infectious diseases.
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Thus, the aim of this study is to assess the impact of Russia’s full-scale war in Ukraine
on the dynamics of the COVID-19 epidemic process in Italy using machine learning tools.

To achieve the goal, the following tasks were set:

1. To analyze the methods and patterns of COVID-19 in Italy.
2. To analyze COVID-19 incidence data in Italy.
3. To develop a methodology for assessing the impact of Russia’s full-scale war in

Ukraine on the dynamics of the epidemic process.
4. To develop a model of the COVID-19 epidemic process based on the XGBoost method.
5. To adjust the developed model on the data on morbidity and mortality from COVID-

19 in Italy from 25 January 2022 to 23 February 2023 (30 days before the start of the
escalation of the Russian war in Ukraine).

6. To calculate the forecast dynamics of the COVID-19 epidemic process in Italy from 24
February 2022 to 25 March 2022 (30 days after the start of the escalation of the Russian
war in Ukraine).

7. To analyze the results of the experimental study.

The respective contribution of the study is three-fold. Firstly, the application of a model
based on the XGBoost method will allow us to evaluate the effectiveness of using ensemble
machine learning methods for simulating the COVID-19 epidemic process. Secondly, the
use of real data on the dynamics of COVID-19 in Italy will allow us to investigate the
nature of the epidemic process of COVID-19 in Italy. Thirdly, the methodology proposed
in the paper will allow us to assess the impact of Russia’s full-scale war in Ukraine on the
dynamics of the COVID-19 epidemic process in Italy.

The structure of the paper is the following: Section 2, Current Research Analysis,
provides an overview of models and methods of epidemic process simulation in Italy and
provides a brief description of the COVID-19 pandemic in Italy and the factors influencing
the infectious diseases epidemic process by the Russian full-scale invasion of Ukraine.
Section 3, Materials and Methods, describes the methodology of the study, the XGBoost
model of COVID-19 epidemic process, and the model’s evaluation metrics. Section 4,
Results, describes the results of the model’s performance, and estimation of the developed
model’s adequacy and forecasting accuracy. Section 5, Discussion, discusses the impact of
the Russian full-scale invasion of Ukraine on the COVID-19 epidemic process in Italy. The
conclusion describes the outcomes of the research.

2. Current Research Analysis
2.1. Simulation of COVID-19 Spreading in Italy

Simulation of the epidemic process is an approach that has been used extensively to
study the dynamics of infectious diseases, including the COVID-19 pandemic. The devel-
opment of mathematical models to simulate the spread of infectious diseases dates back to
the early 20th century, with the first models developed for the study of the transmission
of malaria. Over time, these models have become more sophisticated, incorporating more
complex epidemiological dynamics and demographic factors. With the emergence of the
COVID-19 pandemic, simulation models have played a critical role in understanding the
potential impact of various interventions and policies on the spread of the virus and the
burden on healthcare systems. These models have been used to evaluate the effectiveness
of non-pharmaceutical interventions, such as social distancing and the use of face masks,
and to inform the development of vaccination strategies. The ongoing development of
simulation models for COVID-19 is essential for guiding evidence-based decision-making
and informing public health policy in the face of an evolving pandemic.

In the study [19], the authors introduce a novel model, SIDARTHE, to predict the
trajectory of the COVID-19 epidemic in Italy, thus facilitating the formulation of efficacious
containment strategies. This model consists of eight infection phases, distinguishing be-
tween identified and unidentified cases, as well as varying symptom severities. SIDARTHE
elucidates misconceptions regarding case fatality rates and the spread of the epidemic by
matching simulated outcomes with empirical data from Italy’s COVID-19 situation. The
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study posits that a synergy of social distancing, testing, and contact tracing is imperative
to control the ongoing pandemic. Moreover, the model can simulate the epidemic’s pro-
gression, assess potential misjudgments of its scope based on prevailing statistics, and
forecast the repercussions of implementing disparate guidelines and protocols. However,
the predictions are contingent upon parameter values, which are uncertain and susceptible
to fluctuations owing to multiple factors.

The paper [20] examines the efficacy of community quarantine measures in halting
the spread of COVID-19 within Italian towns under lockdown. The authors ascertain
that strict adherence to stay-home policies and reduced household sizes is crucial to con-
trolling the epidemic in enclosed areas. They deduce that absent rigorous community
quarantine protocols encompassing a near-total cessation of communal activities, viral
transmission will persist. Furthermore, smaller household or quarantine groups correlate
with decreased secondary infections. These insights are pivotal for policymakers formu-
lating lockdown strategies to preclude further incursions and dissemination of the virus
within confined regions.

In the paper [21], an SEIR model was employed to project the number of infections
and fatalities due to the COVID-19 epidemic in Northern Italy, mainly focusing on the
Lombardy region. By modifying parameters and initial conditions and calibrating the
model with actual data, the authors estimate approximately 15,600 fatalities and 2.7 million
infections by the epidemic’s conclusion. They highlight the contingent nature of the fatality
rate and other parameters on the precision of available data. The study underscores the
vital role of isolation, social distancing, and comprehension of diffusion conditions in
grasping the epidemic’s dynamics and assessing lockdown efficacy.

The study [22] evaluates the initial stage of the SARS-CoV-2 outbreak in Italy, determining
the basic reproduction number (R0) of the virus. The research focuses on nine cities with the
highest infection rates, applying the SIR model to data from 25 February to 12 March 2020.
Results indicate R0 values for the Italian outbreak ranging between 2.43 and 3.10, aligning
with prior research. The study emphasizes the SIR model’s efficacy in elucidating virus
transmission and ascertaining pivotal epidemiological parameters such as R0.

In paper [23], the ramifications of Italy’s lockdown on COVID-19’s proliferation and
the potential case and recovery numbers with a 60-day lockdown extension are evaluated.
Utilizing case data from mid-February to March’s end, the study employed a seasonal
ARIMA forecasting model, achieving 93.75% and 84.4% accuracy for predicted cases and
recoveries, respectively. The findings indicate that an extended lockdown could diminish
registered cases by 35% and bolster recoveries by 66% by May’s conclusion. The study un-
derscores the crucial role of lockdown and self-isolation in mitigating disease transmission.

Paper [24] introduces a mathematical model assessing lockdown measures’ efficacy in
curbing COVID-19 transmission, considering potential contagion from deceased individu-
als and social distancing impacts. Findings reveal comprehensive lockdowns and social
distancing can decrease fatalities, carriers, and infections. The study emphasizes the impor-
tance of prompt testing and results to enhance disease control. Developed using Italian
data, the authors recommend integrating differential and integral operators to incorporate
non-locality into the mathematical formulations.

Paper [25] investigates the regional disparities in Italy’s COVID-19 epidemic, intro-
ducing a regional-level modeling approach. The study employs early outbreak data to
parameterize the model for each region, validating the national lockdown’s regional effi-
cacy. Furthermore, the authors recommend synchronized regional strategies to avert future
national lockdowns while minimizing costs and precluding regional healthcare system
overload. They assert the adaptability of their methodology to various granular levels to
aid policymakers and decision-makers.

Paper [26] introduces a novel statistical modeling methodology to explore the relation-
ship between COVID-19’s regional spread in Italy and various regional factors, diverging
from the predominant focus on epidemic forecasting and spread pattern analysis. This
approach utilizes a patterned Poisson regression model for longitudinal counts to delineate
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regional spread patterns of daily confirmed COVID-19 cases. Subsequently, it correlates
these regional regression parameters with regional factors to accurately assess their influ-
ence on spread patterns. The study demonstrates that this methodology adeptly identifies
diverse growth and decline patterns and regional turning points and evaluates the impact
of regional factors on the spread of daily confirmed COVID-19 cases.

Paper [27] presents a novel methodology for approximating the magnitude of Italy’s
early-stage COVID-19 outbreak, employing the cumulative and weighted average daily
growth rate (WR) to analyze an epidemic curve. The study utilizes an exponential decay
model (EDM) to calculate the WR across four-time intervals from 27 February to 7 April
2020, comparing its efficacy to the Gompertz model. Results indicate that the EDM,
when applied to WR, surpasses the Gompertz model in short-term epidemic prediction.
Additionally, the study offers credible interval-inclusive estimates of cumulative infection
cases in Italy based on data up to March 31. The authors conclude that an EDM applied to
WR is a valuable tool for estimating COVID-19 case numbers and outbreak peaks in Italy.

Paper [28] evaluates diverse time-series forecasting methodologies to project COVID-
19’s spread during Italy’s second wave, concentrating on hospitalization rates for mild cases
and intensive care unit patients. The study discerns that hybrid models, amalgamating
multiple forecasting methods, outperform singular models in encapsulating the pandemic’s
linear, nonlinear, and seasonal tendencies. The hybrid models forecast a substantial surge
in COVID-19 hospitalizations from October to mid-November 2020, predicting a bed
requirement doubling in 10 days and tripling in approximately 20 days. These projections
align with observed trends, underscoring hybrid models’ utility in informing public health
authority decisions, particularly in the short term.

Paper [29] introduces an epidemic multi-group model composed of SEIR-like struc-
tures to investigate the dynamics of COVID-19 and assess the efficacy of non-pharmaceutical
interventions in Italy. The model, tailored to evaluate inter-regional mobility’s impact, is
applied to epidemiological data from three Italian macro-areas between March and October
2020, encompassing the summer holiday exodus. The simulation results, aligning well with
the data, reveal that while unrestricted mobility alone did not instigate the second wave, it,
in conjunction with the resumption of production, trade, and educational activities, homog-
enized the infection’s spatial distribution nationwide, fueling contagion from September
2020 onwards. The model proves beneficial for forecasting containment measures’ effects
on potential future pandemics.

Paper [30] investigates the risk factors influencing COVID-19 patient Length of Stay
(LoS) in Bologna, Italy, analyzing data from February 2020 to May 2021 and employing
various statistical models such as Poisson, negative binomial, and Hurdle. Findings show
significant LoS predictors include the Intensive Care Unit (ICU) setting and long-term
hospitals, while age group, epidemic wave, and hospital type variably impact average
LoS. Additionally, quantile regression is utilized to explore conditional heterogeneity and
account for unobserved individual characteristics. The study offers valuable insights into
factors contributing to prolonged LoS for COVID-19 patients and is a benchmark for future
model-based analyses.

Paper [31] introduces an augmented version of the SUIHTER epidemiological model
to analyze COVID-19 progression in Italy, considering vaccination efforts and emerging
viral variants. The model incorporates clinical evidence-based characteristics of the variants
and vaccines, including transmission rates and preventative efficacy against hospitalization
and death. Validation is performed by juxtaposing the model’s projections with other
models’ projections and evaluating various scenarios.

Paper [32] presents a deterministic compartmental model to analyze COVID-19’s
spread in Italy, factoring in vaccination efforts, new variant emergence, and mobility restric-
tions. The model considers waning immunity and examines the influence of behavioral
changes, population mobility, seasonal virus infectivity variability, and new variants on the
epidemiological curve. The study identifies seasonal virus stability variation as the most
significant mechanism, with awareness following closely. The Delta variant and mobility
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shifts have negligible impacts. The paper anticipates the emergence and dominance of the
more contagious Omicron variant by January 2022, highlighting the potentially catastrophic
scenario without vaccines, marked by a significant increase in total infections and deaths.

Paper [33] introduces a fractional order SEIQRD compartmental model utilizing the
Caputo approach to explore COVID-19 transmission dynamics in Italy, establishing findings
on existence, uniqueness, non-negativity, and solution boundedness. The Routh-Hurwitz
criteria and La-Salle invariant principle analyze equilibrium dynamics, while fractional-
order Taylor’s approach approximates the model’s solution. The study also evaluates the
effectiveness of consistent mask-wearing in mitigating COVID-19 spread, validating the
model through real-world data comparison.

The overview of the COVID-19 models in Italy is presented in Table A1.
Despite that most models applied to Italian data are based on compartmental models,

the machine learning approach shows higher accuracy [34]. Machine learning approaches
have shown great promise in the simulation and prediction of epidemic processes due to
their ability to automatically learn and adapt to complex and dynamic systems. Unlike
traditional mathematical models, which rely on pre-defined assumptions and parameters,
machine learning models can learn from large and heterogeneous datasets, including
demographic, social, and environmental factors, and incorporate non-linear and high-
order interactions among different variables. Moreover, machine learning models can
handle missing or noisy data and make real-time predictions, making them particularly
useful in the context of fast-spreading and evolving epidemics such as COVID-19. The use
of machine learning approaches can provide valuable insights into epidemic dynamics,
identify risk factors and intervention strategies, and ultimately support decision-making
for public health policies and resource allocation.

2.2. Background on COVID-19 in Italy

Italy was one of the first countries outside Asia to be severely affected by the COVID-19
pandemic. The first cases of COVID-19 in Italy were officially registered at the end of
February 2020 in the Lombardy region [35]. Since this initial discovery, there has been
a rapid spike in cases, and the virus has spread throughout Lombardy and neighboring
regions. By early March 2020, Italy had the highest number of confirmed COVID-19 cases
outside of China, making it the global epicenter of the virus. Several factors contributed
to this rapid escalation. Italy’s population is among the oldest in the world, making it
especially vulnerable to the virus, disproportionately affecting the elderly. In addition, the
spread of the virus was facilitated by high population density in cities and high mobility
within and between regions [36].

At the same time, Italy’s early status as an epicenter was also affected by the country’s
proactive approach to testing [37]. Unlike other countries that initially tested only those
with symptoms, Italy has conducted extensive testing, including asymptomatic contacts
with confirmed cases. While this approach helped increase the number of reported cases, it
also gave a more accurate picture of the spread of the virus.

At the same time, the death rate from COVID-19 in Italy was notably high. Early in the
pandemic, Italy reported a higher case fatality rate than most other countries [38]. Factors
such as a higher prevalence of comorbidities in the elderly, including cardiovascular disease,
diabetes, and respiratory disease, exacerbated the risk of severe illness and mortality [39].
In addition, the sudden and rapid surge in cases early in the pandemic overwhelmed the
healthcare system, especially in the hardest-hit northern regions [40]. This significantly
affected the ability to provide adequate care to all critically ill patients, contributing to the
higher mortality rate.

The dramatic increase in cases has required a corresponding increase in healthcare
capacity. In some regions, hospitals operated at or near full capacity, with additional
makeshift facilities to accommodate the influx of patients. Despite these efforts, resources
have been depleted, and numerous reports of overcrowded hospitals and malnourished
medical workers have been reported. In response to these challenges, the Italian healthcare
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system has taken numerous measures to increase capacity, provide essential equipment and
protect healthcare workers. However, the strain on the system had significant implications
for patient care and outcomes, especially during the peak periods of the pandemic.

In response to the exponential rise in COVID-19 cases and the resulting strain on the
healthcare system, the Italian government has implemented one of Europe’s earliest and most
stringent national lockdowns [41]. The sequence of interventions clearly illustrated the scale
and speed with which the government had to respond to the escalation of the crisis.

The effectiveness of the lockdown in reducing the spread of the virus and reducing the
burden on the healthcare system is a complex issue. Early research suggests that lockdown
helped reduce transmission and lower infection rates. However, more comprehensive assess-
ments are needed to fully understand the implications, including indirect effects on mental
health, social structures, and economic conditions. The acceptability and sustainability of
these interventions also raise important questions for current and future pandemic strategies.

The vaccination campaign in Italy, as in other countries, was an important component
of the strategy to control the spread of COVID-19 and mitigate its impact [42]. Italy
launched the vaccination campaign on 27 December 2020 as part of a coordinated effort
by the European Union. Initial doses of the vaccine were provided by Pfizer-BioNTech
(mRNA, BNT162b2), and other vaccines, such as those from Moderna (mRNA-1273) and
AstraZeneca (recombinant vaccine ChAdOx1-S), have subsequently been added to the
portfolio. The first vaccines were given to healthcare workers and nursing home residents,
given their high risk of infection and severe illness. The vaccination campaign prioritized
certain groups based on risk. After healthcare workers and residents of nursing homes,
priority was given to the elderly and people with certain high-risk diseases. As vaccine
supplies increased, the vaccination program expanded to reach younger age groups and a
wider population.

At the beginning of May 2022, 25.8 million cases were registered in Italy, of which
190.2 thousand were fatal [43]. Moreover, 80.46% of the population was vaccinated, 79.6%
received a full vaccination, and 78.02% received a booster course [44].

2.3. Impact of Russian War on Infectious Diseases Spreading

Russia’s war in Ukraine, launched on 24 February 2022, has had a profound impact, re-
sulting in significant loss of life and exacerbating a grave humanitarian crisis. According to
estimates, as of 2 May 2023, civilian casualties in Ukraine currently stands at 23,375 people:
8709 killed and 14,666 injured [45]. The actual figures are considerably higher, as the receipt
of information from some locations where intense hostilities have been going on has been
delayed, and many reports are still pending corroboration. These concern, for example,
Mariupol (Donetsk region), Lysychansk, Popasna, and Sievierodonetsk (Luhansk region),
where there are allegations of numerous civilian casualties. However, the consequences
go beyond the direct destruction and suffering caused by the conflict. Notably, Russia’s
military intervention came amid a wave of the COVID-19 pandemic caused by the Omicron
strain, further exacerbating the situation.

To understand the impact of the war on the situation with COVID-19 in Ukraine, it is
crucial to take into account various factors [46]. The analysis of six key aspects influencing
the spread of infection provides valuable information.

First, detecting cases of COVID-19 is very difficult in occupied territories and areas
affected by hostilities. The collapse of medical facilities and the shortage of medical staff
prevent people from seeking the necessary medical care, forcing them to rely on online
consultations with family doctors.

Secondly, diagnostic problems arise in connection with combat operations. In the areas
temporarily occupied by Russian troops, medical institutions practically do not function,
and there are no laboratory facilities for diagnostic purposes. Therefore, PCR and rapid tests
are not available. In the eastern and southern regions of Ukraine, controlled by Ukraine
but still affected by the conflict, only a small proportion (2.5–3%) of diagnostic laboratories
operate, mainly diagnosing severe cases requiring hospitalization.
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Thirdly, the registration of COVID-19 cases is severely limited throughout Ukraine.
The electronic case registration system is limited, and data transmission mainly depends
on telephone service in areas where connectivity is available. As a result, the number
of reported cases of COVID-19 is significantly lower than the actual numbers. The lack
of data for Ukraine on the Johns Hopkins University dashboard further highlights the
problem of underreporting. Consequently, only severe cases requiring hospitalization are
recorded [47].

Fourth, treating patients with COVID-19 is facing significant difficulties due to the
overwhelming number of wounded military personnel and civilians in hospitals. Repurpos-
ing medical facilities to provide emergency care to the wounded significantly reduces the
availability of dedicated COVID-19 beds and limits access to vital resources such as oxygen.
Intense fighting and occupation make getting medical supplies to the affected areas even
more difficult. In addition, the growing number of deaths makes post-mortem diagnosis
of COVID-19 impossible, as autopsies are not performed. Providing medical assistance
to internally displaced persons is also tricky, as family doctors assigned to them remain
in other regions of Ukraine. Access to medical care without an established declaration is
possible only through ambulances in severe cases requiring hospitalization.

Fifth, anti-epidemic activities are facing significant obstacles due to the war. People
living in the territories temporarily not controlled by Ukraine and in areas affected by
hostilities are forced to take shelter in bomb shelters, basements, and subways to protect
themselves from artillery shelling and air strikes. These shelters typically have a high
population density and lack social distancing measures, mask-wearing rules, and adequate
ventilation, which increases the risk of virus transmission. In addition, the imposition of
martial law prevents compliance with the rules for wearing masks. The nature of military
conditions makes contact tracing, testing, and isolation measure impractical, making
it difficult to identify epidemic chains. Self-isolation becomes challenging in combat,
allowing symptomatic people to continue spreading the virus. The evacuation process also
contributes to the increased circulation of the virus due to the high population density in
trains and stations, with many evacuees being children, primarily unvaccinated.

Sixth, the war in Ukraine has seriously undermined preventive measures, particularly
the COVID-19 vaccination campaign. Prior to the outbreak of the conflict, Ukraine launched
a vaccination campaign on 24 February 2021, exactly one year before the start of the war [48].
However, vaccination coverage remained relatively low, with only 36.93% of the population
receiving two doses. Russia’s active anti-vaccination information campaign partly explains
this low coverage.

Thus, the Russian war in Ukraine has far-reaching consequences, including significant
loss of life and a severe humanitarian crisis. In addition to the immediate destruction
and suffering caused by the conflict, the war has exacerbated the COVID-19 situation in
Ukraine. Problems in detecting, diagnosing, reporting, and treating cases of COVID-19
have arisen due to the destruction of medical infrastructure and lack of resources. The need
for shelter hampered the adoption of anti-epidemic measures during hostilities and the
impossibility of contact tracing and isolation. The disruption of the vaccination campaign,
fueled by anti-vaccination propaganda and logistical difficulties, further exacerbated the
situation. The chaotic nature of the war and shifting priorities have pushed COVID-19 out
of the spotlight, leading to the virus’s rapid spread. Overall, Russia’s war in Ukraine has
contributed significantly to exacerbating the country’s COVID-19 crisis and the existing
humanitarian catastrophe.

According to the United Nations, more than 8.2 million refugees are registered in
Europe as of May 2023 [49], and 5.9 million are internally displaced persons at the end of
2022 [50]. The massive population migration carries with it the risk of changing the nature
of the epidemic process in the territories that have received many refugees [51]. Therefore,
this study tests the hypothesis about the impact of migration from Ukraine on the dynamics
of the COVID-19 epidemic process in Italy.
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3. Materials and Methods
3.1. Methodology

Figure 1 presents a framework for assessing the impact of the Russian war in Ukraine
on the dynamics of the epidemic process of infectious diseases.
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This study proposes a methodology to assess the impact of the Russian war in Ukraine
on the dynamics of infectious diseases consisting of the following steps:

1. To develop a machine learning model for the dynamics of the epidemic process in the
selected area.

2. To verify the constructed model on the data of morbidity and mortality from infectious
diseases from 25 January 2022 to 23 February 2022, i.e., 30 days before the start of a
full-scale Russian invasion of Ukraine.

3. To calculate the predicted incidence and mortality from an infectious disease in the
study area from 24 February 2022 to 25 March 2022, i.e., 30 days after the start of a
full-scale Russian invasion of Ukraine.

4. To calculate the deviation of actual morbidity and mortality from infectious disease
from the estimated forecast in the study area.
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5. To assess the factors that affect the epidemic process, depending on the specifics of
the infectious disease and the study area.

6. To analyze the results, identify risks for the public health system, and determine the
necessary measures to control the epidemic spread of an infectious disease.

Most studies of the dynamics of COVID-19 use morbidity and mortality data provided
by the John Hopkins Coronavirus Resource Center [47]. However, this dashboard does not
provide data on COVID-19 in Ukraine starting from 24 February 2022. In addition, the data
presented in the dashboard for periods earlier do not correspond to the official statistics
on the incidence of COVID-19 in Ukraine. Therefore, this study is based on data from the
World Health Organization COVID-19 Dashboard [48].

3.2. XGBoost Model

Machine learning has become a valuable tool in recent years for predicting the spread
of infectious diseases. An essential application is to build sophisticated predictive models
that can analyze vast amounts of data from various sources, including medical records,
social media feeds, and global transportation patterns, to predict future cases. Machine
learning-based predictive models use algorithms trained on historical data to identify
patterns and correlations that may indicate an impending outbreak.

Machine learning has shown significant promise in the early detection of epidemics.
In traditional epidemiological models, outbreaks are usually detected after a significant
number of reported cases. However, machine learning models can detect subtle changes in
population behavior and public health patterns to detect an outbreak much earlier. Such
early warning systems can help public health officials take preventive action before an
epidemic spreads widely, saving lives and resources. Similarly, machine learning algorithms
can also predict the spread of a disease by analyzing factors that influence its transmission,
such as population density, climatic conditions, and vaccination rates, and predicting how
changes in these factors might affect the spread of the disease in the future.

Ensemble machine learning methods are designed to improve the accuracy and sta-
bility of predictions by combining the output of multiple models. They can be especially
effective in forecasting problems where the forecasting problem is complex, and no single
model can efficiently account for all relevant factors.

There are three main types of ensemble methods: bagging, boosting, and stacking.
In bagging, multiple models are trained independently on different subsets of the training

data, and their predictions are averaged (in regression) or accepted as a majority vote (in
classification). This method is designed to reduce the forecast variance without increasing the
bias. Random Forest is a classic example of an ensemble model based on bags.

Boosting builds a sequence of models, where each model tries to correct the errors of
the previous ones. It aims to reduce systematic error as well as the variance in order to
increase the prediction accuracy. Unlike bagging, models in boosting are not independent;
each model learns from its predecessor and updates misclassified instances to improve the
next model. Gradient Boosting and AdaBoost are typical examples of boosting methods.

Stacking involves training several different models and then combining them by
training a meta-model to make a final prediction based on the predictions of the individual
models. Individual model predictions are treated as “meta-features”, and the meta-model
is trained to use these features for the final prediction best.

Ensemble methods are widely used in disease prediction due to their reliability and
excellent predictive performance. They can handle complex relationships and interactions
between variables, which is especially useful in epidemiology, where many factors can
influence the spread of disease [52]. It is important to note that ensemble models can also
provide some uncertainty in their predictions, which can be critical in decision-making
processes during an outbreak.

XGBoost, short for eXtreme Gradient Boosting, is an extended implementation of the
gradient boosting algorithm [53]. In the context of forecasting the dynamics of COVID-19,
XGBoost is used to predict future case numbers, death rates, and more.



Computation 2023, 11, 221 11 of 26

The first step in using XGBoost for prediction is feature selection. Relevant features
could include information about the pandemic’s current state, such as infection rates
and deaths, as well as other potentially important variables, such as population density,
vaccination rates, mobility data, and social distancing measures. Then historical data about
these features are collected and prepared for input into the model.

During the training phase, XGBoost creates a set of decision trees that predict the
outcome (for example, the future number of cases). Initially, all instances are assigned
the same weight. However, in each subsequent iteration, XGBoost adds a new tree to
correct the errors made by the current ensemble of trees. This is achieved by defining a
differentiable loss function and using gradient descent to minimize the loss. At each step,
the algorithm calculates the gradient of the loss function concerning the current model’s
prediction and uses it to update the model.

XGBoost includes several regularization methods to help avoid overfitting. This is
especially important in forecasting, where overfitting can cause predictions to be overly
influenced by noise in the training data, reducing their accuracy on unseen data. XGBoost
uses L1 (lasso regression) and L2 (ridge regression) regularization to prevent overfitting.

Once trained, the XGBoost model can predict future COVID-19 dynamics by inputting
relevant feature data and generating a forecast. This can be done periodically, with the
model continually retraining on the most recent data to keep the predictions accurate.

Uncertainty in forecasts can be estimated using bootstrapping, a technique that in-
volves creating multiple resamples of the data, training a separate model for each one,
and then using the variation in the forecasts to estimate the uncertainty. Bootstrap is built
directly into the XGBoost platform, providing a powerful predictive tool for quantifying
uncertainty. It is often used for classification and regression problems and has gained
popularity due to its efficiency and performance.

In Gradient Boosting, we construct an additive model in a form of a sum of simple
base models. Mathematically, if we denote our prediction model at step i by Fi(x), and our
base model by h(x), the model at step i + 1 is given by

Fi+1(x) = Fi(x) + hi(x). (1)

The function hi(x) is chosen to minimize the loss function L(y, Fi(x) + hi(x)), where y is
the true label.

In the case of XGBoost, the specific form of the base model hi(x) and the loss function
L(y, F) depend on the task and the specific settings of the XGBoost method.

The power of XGBoost comes from the fact that it introduces an additional layer of
complexity to the boosting procedure by considering a regularized learning objective. The
objective function to be minimized in XGBoost at each step includes both a differentiable
loss function L and a regularization term Ω. It is given by:

∑(L(yi, F(xi))) + Ω(F). (2)

where
Ω(F) = γT +

1
2
λ‖w‖2, (3)

T is the number of leaves in the tree, w are the leaf weights, y is the parameter that
controls the complexity of the model, λ is the L2 regularization on the leaf scores.

The addition of the regularization term helps to control the complexity of the model,
reducing overfitting and making XGBoost more robust to noise in the data.

Advantages of the XGBoost method:

• XGBoost can handle numeric and categorical variables and be used for binary, multi-
class classification problems, and regression problems. This allows for a wide range of
data types and problems that can arise in infectious disease prediction.
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• XGBoost includes regularization options to prevent overfitting, making the data more
robust to noise and outliers. This is especially important in epidemiology, where data
are often noisy or incomplete.

• XGBoost consistently demonstrates superior predictive performance across a wide
range of tasks. In infectious disease forecasting, this can lead to more accurate and
timely forecasts to aid in decision-making processes.

• XGBoost has a built-in procedure for handling missing values. This ability can be
critical when dealing with public health data that often contain missing or incom-
plete records.

• XGBoost implements parallel processing, which makes it significantly faster than other
gradient boosting algorithms. This can be critical in a pandemic situation where timely
forecasts are needed.

Disadvantages of the XGBoost method:

• Like other ensemble methods, XGBoost models can be difficult to interpret. This lack
of interpretability can be a barrier to understanding the underlying dynamics of the
disease and communicating the results to stakeholders.

• XGBoost requires careful parameter tuning for optimal performance. Customization
needs can take a long time and a certain level of expertise.

• Despite built-in regularization, XGBoost can still overfit if the data are too noisy or the
hyperparameters are set incorrectly.

• Although XGBoost is faster than many other gradient boosting algorithms, it is still
computationally intensive, especially when working with large datasets. This can be a
problem in resource-constrained settings or where real-time forecasts are required.

However, despite these shortcomings, XGBoost is well suited to the task of this study.

3.3. Evaluation Metrics

To assess the adequacy of the constructed model, it is proposed to use Mean Absolute
Percentage Error (MAPE). MAPE is a common metric used to evaluate the accuracy of
forecasting models. It measures the average magnitude of errors in a set of predictions,
without considering their direction. It does this by averaging the absolute percentage
difference between the actual and the predicted values. The formula for MAPE is:

MAPE =
100%

n

n

∑
t=1

∣∣∣∣ At − Ft

At

∣∣∣∣, (4)

where At is the actual value, Ft is the forecasted value.
One of the main advantages of MAPE is that it is easy to interpret, as it gives the error

rate as a percentage. However, it can lead to issues when the actual values are close to
zero, as the error can approach infinity in those cases. Moreover, it tends to put a heavier
penalty on forecasts that exceed the actual values compared to those that are below the
actual values.

To assess the impact of the Russian war in Ukraine on the dynamics of the COVID-19
epidemic process in Italy, it is proposed to calculate the deviation of the forecast calculated
for 24 February 2022 to 25 March 2022 from the actual incidence:

D = |Ft − At|, (5)

where At is the actual value, and Ft is the forecasted value.

4. Results
4.1. Model Tuning

The model based on the XGBoost method was implemented using Python. Forecasts
for new cases and deaths from COVID-19 in Italy were calculated to tune the model. The
forecast was built for 3, 7, 10, 20, and 30 days. To verify the model, we used data on
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morbidity and mortality from COVID-19 in Italy from 25 January 2022 to 23 February 2022,
i.e., for the period 30 days before Russia’s full-scale invasion of Ukraine.

During data cleaning for time-series data concerning daily incidence and fatality
rates of COVID-19, one of the primary concerns revolves around handling missing values.
Missing data can arise due to delays in reporting or errors during data entry. One strategy
is to propagate the last valid observation forward to the next valid data point or utilize
the subsequent valid observation to bridge the gap, a technique known as forward-fill
or backward-fill. Another sophisticated method is interpolation, especially pertinent to
time-series data where trends are discernible. Alternatively, one might consider omitting
records with missing values altogether, though this decision should be approached with
caution to ensure significant data are not lost. However, data on COVID-19 incidence
and mortality in Italy obtained from the WHO dashboard did not contain missing data.
However, such a step may be necessary for other epidemic processes and study areas.

After cleaning, preprocessing time-series data is imperative for refining the dataset
and making it suitable for modeling. Initially, data normalization or standardization plays a
crucial role. This ensures that the model does not unduly prioritize variables with inherently
larger magnitudes. However, in our case, the XGBoost method includes regularization
and makes the data robust to noise and outliers. On the other hand, smoothing is a critical
step, especially for time-series data like the daily incidence and fatality rates of COVID-19,
which might exhibit volatility when using other machine learning techniques.

Forecasting over varying time horizons, such as 3, 7, 10, 20, and 30 days, plays a vital
role in evaluating a predictive model for several interconnected reasons.

One of the most significant reasons is understanding short-term versus long-term
trends. In the context of epidemiological data, there can be a clear distinction between
these two. Daily case counts may show considerable volatility due to reporting anomalies,
testing rate changes, or transient events. In contrast, the overall trajectory of the epidemic
often follows more stable, longer-term trends. By using different time horizons, we can
capture both these short-term fluctuations and long-term patterns.

Evaluating the model’s predictions over different periods allows us to assess its stabil-
ity and resilience to temporal variability. A model that can deliver consistent predictive
accuracy over different time frames demonstrates its ability to adapt to changes in the data
pattern over time. This is a key aspect of model robustness.

The effect of external interventions also plays a role in why we need different time
horizons. Changes in government policies or other interventions to control the disease’s
spread may have different impacts over short and long periods. For instance, the effects
of a lockdown might not be immediately apparent in the three-day forecast but may
significantly influence the 30-day trend. Therefore, different time horizons can help us
understand and account for the potential effects of such interventions.

Using multiple time horizons, we also estimate the time shifts between the date
migrants came to the country and the infection was registered.

We incorporated a rigorous verification process to ascertain the model’s robustness
and prevent overfitting. Rather than merely training the model on the most recent data
and risking the capture of transient noise, we leveraged data on morbidity and mortality
rates of COVID-19 in Italy from 25 January 2022 to 23 February 2022. This 30-day period,
which precedes the onset of Russia’s full-scale military invasion of Ukraine, provided us
with a stable and relevant historical dataset.

By training our model on this specific dataset and testing its forecasting capabilities on
subsequent data, we ensured that our model was generalizing patterns from the historical
data rather than memorizing them. This methodological diligence gives us confidence in
the model’s predictions, as it demonstrates resilience against overfitting and positions it to
provide reliable forecasts in diverse scenarios.

In our study, hyperparameter optimization was conducted through a structured
methodology, amalgamating both grid search and cross-validation techniques. The grid
search protocol comprehensively explores a predefined hyperparameter domain, examin-
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ing each potential combination therein. To enhance the model’s generalization capabilities
and circumvent potential overfitting during tuning, we incorporated k-fold cross-validation.
The training dataset is systematically segmented into ‘k’ uniform partitions in this pro-
cedure. Subsequent training transpires on k-1 partitions, while the singular remaining
partition is the validation set. This iterative process continues until every individual fold
functions as the validation subset. The resultant performance metrics across all iterations
are aggregated to furnish a holistic and resilient assessment of the model’s efficacy.

Table 1 presents model accuracy rates for cumulative new and fatal cases of COVID-19
in Italy from 25 January 2022 to 23 February 2022.

Table 1. MAPE of cumulative cases retrospective forecast for 25 January 2022–23 February 2022.

Duration of Forecast (Days) New Cases Fatal Cases

3 days 2.69% 0.56%
7 days 5.49% 1.09%
10 days 7.05% 1.45%
20 days 11.18% 2.67%
30 days 13.97% 3.71%

Figure 2 presents the results of a retrospective forecast of daily new cases of COVID-19
in Italy from 25 January to 23 February 2022.
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Figure 3 presents the results of a retrospective forecast of daily fatal cases of COVID-19
in Italy from 25 January to 23 February 2022.
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Adjustment of the COVID-19 dynamics model in Italy for the data sample from 25
January 2022 to 23 February 2022 shows sufficient accuracy to use the model in public
health practice.

4.2. Experimental Study

Forecasts for new cases and deaths from COVID-19 in Italy were calculated to assess
the impact of the Russian military invasion of Ukraine on the dynamics of the COVID-19
epidemic process in Italy. The forecast was built for 3, 7, 10, 20, and 30 days. To verify the
model, we used data on morbidity and mortality from COVID-19 in Italy from 24 February
2022 to 25 March 2022, i.e., for 30 days after the start of a full-scale Russian invasion of Ukraine.

Table 2 presents model accuracy rates for cumulative new and fatal cases of COVID-19
in Italy from 24 February 2022 to 25 March 2022.

Table 2. MAPE of cumulative cases retrospective forecast for 24 February 2022–25 March 2022.

Duration of Forecast (Days) New Cases Fatal Cases

3 days 0.75% 0.31%
7 days 1.32% 0.57%
10 days 1.75% 0.76%
20 days 3.28% 1.31%
30 days 5.23% 1.77%

Figure 4 presents the results of a retrospective forecast of daily new cases of COVID-19
in Italy from 24 February to 25 March 2022.
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Figure 5 presents the results of a retrospective forecast of daily fatal cases of COVID-19
in Italy from 24 February to 25 March 2022.
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Figure 6 presents the deviation of daily confirmed COVID-19 cases in Italy from 24
February 2022 to 25 March 2022.
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Following the calculated forecasts assessing the potential impact of the Russian mil-
itary invasion of Ukraine on the dynamics of the COVID-19 epidemic process in Italy,
engaging in a more profound interpretation and analysis of these results in the broader
epidemiological context is imperative. Within the 30 days post the onset of the Russian
invasion, the available morbidity and mortality data from COVID-19 in Italy served as
a crucial backdrop against which our forecasts were validated. The selected timeframes
for the forecast—spanning 3, 7, 10, 20, and 30 days—provided a comprehensive short- to
medium-term outlook, allowing for nuanced observations and variances that might have
arisen during the study period.

As we transition into the discussion, we will delve into a granular epidemiological
analysis of these findings. This will facilitate a comprehensive understanding of how
external geopolitical events, such as the military invasion, can potentially intersect with
public health scenarios in a globalized world. The data over the one-month window serve
as a foundation for deriving critical insights on the spread patterns, potential externalities
influencing transmission rates, and the broader implications of these results for both
policymakers and the public health community. The epidemiological lens will further
elucidate potential correlations, causations, and anomalies, ensuring a holistic interpretation
of the impact of the invasion on Italy’s COVID-19 landscape, if any.

5. Discussion

The COVID-19 pandemic has become a severe challenge for all of humanity, forcing
health systems to work with significant overload and necessitating the development of
effective measures to control and prevent the spread of infection. Scientists managed to
create several effective vaccines for the prevention of COVID-19 quickly. However, the
emergence of new strains of the pathogen reduces the effectiveness of vaccine prevention
and requires the implementation of new vaccine doses. At the same time, limited resources
and insufficient capacities for producing vaccines do not allow for achieving the required
high vaccination coverage against COVID-19 in all countries of the world. As of early
May 2023, 69.9% of the world population has received at least one dose of a COVID-19
vaccine. Moreover, 13.37 billion doses have been administered globally, and 209,759 are
now administered daily and 29.5% of people in low-income countries have received at
least one dose [54]. Non-drug measures such as social distancing, face masks, and hand
sanitizers have also been used to prevent the spread of COVID-19.

With Russia’s full-scale invasion of Ukraine, additional risks of a worsening COVID-19
epidemic situation in European countries, including Italy, have arisen. This is due, first
of all, to a large influx of refugees from Ukraine, who, saving their lives, moved mainly
to European countries. As of 28 June 2022, the number of immigrants from Ukraine to
Italy amounted to 141.6 thousand people. Italy became the fourth number on the list of
countries accepting refugees from Ukraine [55].

On the eve of the full-scale Russian invasion of Ukraine in February 2022, the COVID-
19 epidemic was severe. By 23 February 2022, 4,783,835 cases of COVID-19 were registered.
In just one day, 24 February, 2022, 25,789 cases were registered. At the same time, vacci-
nation coverage against COVID-19 was 36.96% of the population, which is not enough to
stop the circulation of the virus. Rocket attacks and artillery attacks forced people to hide
in shelters; in cities with a metro, people moved there and stayed in the metro for a long
time in crowded conditions, with limited air ventilation, and did not observe the mask
regime and distancing. These living conditions facilitated the spread of the SARS-CoV-2
virus among humans. However, the dominant fear for their lives and their children’s lives
forced the population to leave their homes and move to other countries. At the same time,
people with symptoms of the disease did not seek medical help but, along with other
refugees, were sent to overcrowded trains and buses and left the country. Thus, significant
quantities of sources of COVID-19 infection poured into European countries. A sharp
increase in the incidence was to be expected. However, Italy, one of the first European
countries to meet the coronavirus and where there was a high incidence and mortality from
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COVID-19, effectively implemented preventive measures in practice. Vaccination against
the coronavirus in Italy began on 27 December 2020. By 15 February 2022, the mandatory
vaccination requirement for people over 50 was introduced. Before a comprehensive pop-
ulation migration from Ukraine to Italy on 24 February 2022, 80% of the population was
fully vaccinated, and 86% received at least one vaccination. In addition, within 48 h after
entering Italy, at the Sanitary Service Department (ASL) at the place of residence, arrivals
had to do a test for SARS-CoV-2, which made it possible to identify and isolate arriving
sources of infection. Within five days after the test, it was necessary to adhere to the regime
of self-observation with the obligatory wearing of an FFP2-type mask. It was obligatory to
wear an FFP2-type mask and present a certificate with a negative result of a molecular test
made no earlier than 72 h before or an antigen test 48 h before. The implemented disease
prevention and control measures, primarily high vaccination coverage of the population,
helped to limit the spread of the SARS-CoV-2 virus, despite the influx of many refugees
from Ukraine.

Many published works confirm our point of view. One study [56] analyzes the
measures taken by the Italian government and their impact on the spread of the virus
during the first and second waves of the pandemic from 2 April 2020 to 7 February 2021,
when vaccination was just being introduced in Italy. Vaccination coverage was low, without
significant effect on morbidity. The authors conclude that the policy of soft restrictions had
only a minor impact on the spread of the virus and was ineffective in combating newer,
more contagious variants.

One study [57], devoted to modeling the impact of interventions to contain transmis-
sion of the pathogen on the consequences of an unfolding epidemic, assesses the potential
spread of infection in the absence of interventions to contain foci and various scenarios of
containment measures and their impact on the spread of the epidemic. The results show
that a sequence of restrictions placed on mobility and interaction between people reduced
the transmission of the virus by 45% (from 42 to 49%). The authors conclude that planning
emergency measures based on mathematical modeling can be effective.

The mathematical model presented in [58] was also used to study various alternative
scenarios for Italy’s exit strategy after the quarantine imposed in connection with the
COVID-19 epidemic. The authors conclude that two critical conditions are necessary to pre-
vent the epidemic situation from worsening: low reproduction number and low incidence.
However, even with a significant decrease in the transmission rate, the resumption of social
contacts at pre-pandemic levels rapidly increases the burden of COVID-19. Low incidence,
in our opinion, is an indicator of a small number of sources of COVID-19 infection. The
arrival of a large number of refugees from Ukraine due to Russian aggression, including
non-isolated patients with COVID-19, should have affected the epidemic situation, causing
an increase in the number of cases of COVID-19. However, by the end of February 2022,
another deterrent appeared in Italy—the majority of the Italian population was vaccinated
or partially vaccinated against COVID-19, which created a significant layer of immunity in
the population and limited the circulation of the pathogen.

One paper [32] presented a deterministic compartmental model to describe the evo-
lution of COVID-19 in Italy as a combined effect of a vaccination campaign, the spread
of new variants, and restrictions on mobility. The authors emphasize the importance of
vaccination to contain the spread of infection. They argue that in the absence of vaccines,
with a changing dominant strain of the virus, the emerging scenario of the COVID-19
epidemic process would be dramatic: the difference in the percentage of total infections
and total deaths in both cases would exceed fifty percent.

Our results demonstrated that the mild increase in COVID-19 cases observed in Italy
during February–March 2022 was not directly linked to the influx of migrants from Ukraine.
It is crucial to highlight that, by March 2022, the Omicron strain had become ubiquitous,
accounting for 100% of coronavirus infections and effectively supplanting the Delta variant.
The presence of at least three distinct subvariants of Omicron further complicated the
epidemiological landscape.
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The prevalence of the Omicron strain significantly influenced the dynamics of the
COVID-19 epidemic in Italy, as evidenced by its rapid dissemination and displacement
of the previous Delta strain. This shift in the etiological structure of the virus necessitates
reevaluating the strategies employed to mitigate the spread of COVID-19, considering the
unique characteristics and transmission dynamics of the Omicron variant.

Moreover, the widespread distribution of Omicron subvariants underscores the ne-
cessity for continuous genomic surveillance and research to monitor the emergence of
new variants and assess their potential impact on public health. This knowledge is vital
for developing targeted interventions and policies to manage and eventually curb the
COVID-19 pandemic effectively.

In light of these findings, future research should focus on investigating the specific
factors contributing to the spread of Omicron and its subvariants in Italy and other countries,
as well as exploring the efficacy of existing vaccines and treatments against these new
strains. Additionally, further studies are needed to assess the long-term consequences of
the COVID-19 pandemic, particularly regarding the social, economic, and psychological
impacts on affected populations.

Thus, to develop public policy plans for the regional elimination of COVID-19, it is
necessary to use epidemic modeling data to consider new risks of spreading infections and
determine the most effective and rational preventive and control measures.

The main advantage of the proposed methodology is its flexibility and simplicity.
The proposed approach can be applied not only to the territory of Italy but also to other
territories that have received many refugees from Ukraine. In this article, the XGBoost
method is considered the primary method for the methodology. However, in practice, any
machine learning or deep learning method can be used. This allows the proposed approach
to be implemented in the healthcare system at any level, including ministries of health and
medical and preventive institutions.

In numerous research endeavors to understand the dynamics of the COVID-19 pan-
demic, employing varied forecasting scenarios has been a frequent methodological choice.
These scenarios, often grounded in hypothetical assumptions, serve as tools to envision
potential future trajectories of the epidemic. Such projections, while essential in shap-
ing preemptive policy decisions, often contend with uncertainties inherent to the factors
influencing the pandemic’s evolution.

However, our study adopts a distinct methodological stance, primarily anchored in a
retrospective analysis of the epidemic’s past dynamics. The rationale for this approach is
grounded in the belief that the past holds valuable empirical evidence that can be leveraged
to understand the key determinants and patterns of the epidemic. By eschewing speculative
scenarios and centering our focus on actual historical data, we ensure a rigorous empirical
foundation for our analysis.

Furthermore, to ensure the robustness and validity of our model, its performance was
not gauged through hypothetical scenarios but by juxtaposing its retrospective forecasts
against actual, observed data from the past. This comparative evaluation not only strength-
ens the credibility of our model but also accentuates its relevance. By drawing insights
directly from historical data, we minimize potential biases or inaccuracies that could arise
from speculative scenarios, thereby ensuring that our findings are empirically grounded
and indicative of the epidemic’s actual dynamics.

While multiple scenarios serve as valuable tools in many research contexts, our em-
phasis on analyzing past epidemic dynamics via a retrospective lens offers a reliable and
data-driven methodology that stands firm against the litmus test of empirical validation.

The main limitation of the proposed approach is the difficulty of interpreting the
machine learning methods on which the methodology is based. Therefore, for a deeper
analysis of the impact of the Russian war in Ukraine on the dynamics of the epidemic, the
cooperation of data scientists and epidemiologists is necessary.



Computation 2023, 11, 221 21 of 26

6. Conclusions

This study assesses the impact of Russia’s full-scale military invasion of Ukraine on
Italy’s COVID-19 epidemic trajectory through a novel methodology that utilizes predictive
machine learning techniques, primarily the XGBoost model. The model was validated
with COVID-19 morbidity and mortality data in Italy from 25 January to 23 February 2022,
before applying it to analyze the epidemic dynamics from 24 February to 25 March 2022,
the initial 30 days following the Russian invasion.

Effective COVID-19 vaccines have been pivotal in mitigating the disease’s spread
globally, with significant progress observed in countries like Italy, where high vaccination
rates provided a buffer against potential outbreaks from the Ukrainian refugee influx.
Concurrently, non-drug preventive measures, including face masks, social distancing,
and sanitization, have reduced transmission. These measures were exemplified by Italy’s
stringent guidelines for incoming refugees. Despite the complexities introduced by external
events such as the Russian invasion of Ukraine and the emergence of new strains like
Omicron, our data indicate that the minor surge in Italy’s COVID-19 cases during early
2022 cannot be primarily attributed to Ukrainian refugees.

A salient feature of this paper is the multidisciplinary collaboration between data sci-
entists and epidemiologists. This collective expertise has facilitated a richer understanding
of the epidemic dynamics, especially in the context of the geopolitical events of the Russian
invasion. Epidemic modeling data become indispensable for framing public policy plans,
and when combined with a cross-disciplinary approach, the outcome is more insightful
and comprehensive.

The methodology presented in this paper is adaptable and straightforward, primarily
using the XGBoost method but also allowing for the integration of various machine learning
and deep learning techniques. This flexibility makes it applicable across diverse healthcare
settings. Nevertheless, interpreting machine learning outcomes can be challenging, high-
lighting the need for ongoing collaboration between data scientists and epidemiologists to
achieve precise and insightful results. This research demonstrates the complex relationship
between vaccination efforts, preventive strategies, external influences, and the importance
of a collaborative, multidisciplinary approach to addressing the pandemic.

The model’s limitations lie in the difficulty of interpreting machine learning models.
Therefore, epidemiologists were involved in the analysis of the obtained results. As a result
of the analysis of the results, it was revealed that the natural increase in the incidence of
COVID-19 in Italy was not associated with migrants from Ukraine. As of March 2022, the
Omicron strain was detected in 100% of cases of coronavirus infection, completely replacing
the Delta strain. At least three varieties of Omicron have been distributed. The changes in the
etiological structure of COVID-19 determined the picture of the epidemic situation in Italy.

The scientific novelty of our research is centered around crafting a universal method-
ology that evaluates the repercussions of unforeseen events on the dynamics of infectious
diseases within specific locales. What further enhances the versatility of this methodology
is its compatibility with various machine learning and deep learning algorithms. Such flex-
ibility ensures that the technique is not solely reliant on high-end computational resources,
making it feasible for implementation even in medical and preventive institutions that lack
specialized computing infrastructure.

The practical novelty of the study lies in the assessment of Russia’s full-scale invasion of
Ukraine on the dynamics of COVID-19 in Italy. At the same time, it should be noted that this
methodology can be applied to other territories that have received many refugees from Ukraine.
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Appendix A

Table A1. The overview of the COVID-19 epidemic process models in Italy.

Paper Task Method Findings

G. Giordano, et al. [19]
To predict the course of the
epidemic to help plan an
effective control strategy.

Compartmental model

A combination of stringent social
distancing protocols, extensive
testing, and thorough contact tracing
is imperative to terminate the
COVID-19 pandemic.

H. Sjödin, et al. [20]

In order to calculate the
burden of the disease and
determine the duration
necessary before quarantine
measures can be lifted, it is
essential to consider the
duration individuals spend in
public spaces and the size of
their households.

Compartmental model

Unless the most rigorous community
quarantine measures are
implemented in a lockdown situation,
entailing a near-total curtailment of
all communal activities, transmission
of the disease will persist.

J.M. Carcione, et al. [21]
To compute the infected
population and the number of
casualties of this epidemic

Compartmental model

A reduction in contacts leads to a
diminished peak intensity, albeit with
a broader temporal distribution and a
delayed occurrence. Conversely, a
higher count of exposed individuals
does not influence the peak’s
intensity but accelerates the onset of
the epidemic.

M. D’Arienzo, A.
Coniglio [22]

To evaluate the basic
reproduction number (R0) of
SARS-CoV-2, data from the
initial stages of the outbreak
in Italy were analyzed.

Compartmental model

Interventions such as social
distancing, quarantine measures, and
travel restrictions are crucial to
mitigate the further dissemination of
the epidemic, particularly in nations
witnessing a delay compared to the
outbreak in Italy.

N. Chintalapudi, et al. [23]

To forecast the COVID-19
evaluation of Italy condition
and the possible effects, if this
lockdown could continue for
another 60 days.

ARIMA model

The country lockdown and self
isolation to control the disease
transmissibility among the Italian
population through data driven
model analysis is important.

https://covid19.who.int/
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Table A1. Cont.

Paper Task Method Findings

A. Atangana [24] To predict the future behavior
of the COVID-19 spread. Compartmental model

The fundamental statistical metrics
were provided to illustrate the spread
profile, and numerical simulations
underscored the efficacy of the
lockdown measures.

F.D. Rossa, et al. [25]

To identify if and when
measures taken by the Italian
government had an effect at
both the national, but most
importantly, at the
regional level.

Compartmental model

The study validates the efficacy of the
national lockdown strategy at the
regional level and advocates for
synchronized regional interventions.
These interventions aim to avert the
necessity of future nationwide
lockdowns, prevent overburdening
regional health systems, and
minimize economic repercussions.

Y. Hao, et al. [26]

To investigate the link
between regional spreading
patterns of COVID-19
development in Italy and
regional factors

Poisson regression model
Geographical patterns play a crucial
role and can confound variables in
epidemiological research.

N. Bartolomeo, et al. [27]

To make short-term forecast
by defining and evaluating
the daily growth rate and
applying the cumulative and
weighted average of the crude
daily growth rate to an
epidemic curve.

Exponential decay model

Applying an exponential decay
model to the accumulated and
weighted average daily growth rate
proves valuable in approximating the
number of cases and the peak of the
COVID-19 outbreak in Italy,
demonstrating heightened reliability
during the exponential growth phase.

G. Perone [28]

To calculate short-term and
medium-term projections for
the number of patients
admitted to hospitals due to
COVID-19 during the
pandemic’s second
infection wave.

ARIMA, Exponential
smoothing, Neural
network autoregression,
trigonometric exponential
smoothing state
space models

While the hybrid models
demonstrated adequate precision, it
is imperative to emphasize that
statistical techniques can introduce
inevitable uncertainty and bias. These
discrepancies can expand over time
due to the gradual enactment of
non-pharmaceutical interventions
(NPIs) by public authorities,
including the shutdown of communal
areas and the imposition of national
or regional lockdowns, which may
not be fully accounted for in
the projections.

P. Di Giamberardino,
et al. [29]

To examine the implications of
the reinstated inter-regional
mobility following the
conclusion of the initial
stringent lockdown in Italy.

Compartmental model

Unregulated mobility seems
inadequate to precipitate the second
wave; however, human movements
played a pivotal role in
homogenizing the spatial distribution
of the infection nationwide. This, in
conjunction with the resumption of
production, commerce, and
educational operations, expedited the
escalation of contagion from
September 2020 onwards.
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Table A1. Cont.

Paper Task Method Findings

A.J. Zeleke, et al. [30]

To identify and explore the
hospital admission risk factors
associated with the length of
stay by applying a relatively
novel statistical method for
count data using predictors
among COVID-19 patients in
Bologna, Italy.

Poisson, negative
binomial, and Hurdle
models

The variables about the intensive care
unit setting, hospitals with prolonged
hospitalization durations, the initial
wave, and the subsequent waves
were statistically significant across all
modeled quantiles.

N. Parolini, et al. [31]

To account for the effect of the
vaccination campaign, from
one side, and the possible
coexistence of different virus
variants, from the other side.

Compartmental model

The findings underscore the efficacy
of the suggested model in providing
dependable short-term predictions of
cases (up to a two-week horizon).
Moreover, for long-term horizon
scenarios (up to four weeks),
successful projections can be
achieved by incorporating forecasts
of fatalities.

A. Fierro, et al. [32]

The objective is to construct a
mean-field model that closely
aligns with empirical data
over an extensive time frame.
Subsequently, individual
mechanisms will be
sequentially deactivated to
assess their respective
contributions to the trajectory
of the epidemiological curve.

Compartmental model

The analysis substantiates the
significant seasonal pattern of the
epidemic. It underscores the
importance of awareness mechanisms
in curbing the spread of the virus
through proactive protective
behaviors adopted in response to
heightened risk perception.
Conversely, the emergence of the
Delta variant and increased summer
contacts had a negligible impact, only
slightly elevating the summer peak,
with the mitigating influence of
summer temperatures prevailing.

S. Paul, et al. [33]
To examine the dynamics of
COVID-19 transmission
within Italy.

Compartmental model

Consistent and appropriate
utilization of face masks can mitigate
the spread of COVID-19. Health
ministries and public health experts
should formulate strategic
approaches to bridge vaccination
disparities and prevent
future outbreaks.
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