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Abstract: An efficient modified leapfrog time-marching scheme for the diblock copolymer model is
investigated in this paper. The proposed scheme offers three main advantages. Firstly, it is linear in
time, requiring only a linear algebra system to be solved at each time-marching step. This leads to a
significant reduction in computational cost compared to other methods. Secondly, the scheme ensures
unconditional energy stability, allowing for a large time step to be used without compromising
solution stability. Thirdly, the existence and uniqueness of the numerical solution at each time step is
rigorously proven, ensuring the reliability and accuracy of the method. A numerical example is also
included to demonstrate and validate the proposed algorithm, showing its accuracy and efficiency in
practical applications.
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1. Introduction
Block copolymers are a unique class of polymers characterized by their structural

organization. They consist of two or more chemically distinct monomer blocks that are
covalently bonded together within a single polymer molecule. These monomer blocks
are arranged in a repetitive pattern, typically in the form of alternating blocks, and are
connected by covalent bonds. One of the remarkable features of block copolymers is their
ability to undergo self-assembly, leading to the formation of well-defined and ordered
nanostructures. This property has garnered significant attention and interest in various
scientific and engineering fields, particularly in the realm of nanotechnology applications.
Researchers and engineers have recognized the potential of block copolymers to create
highly tailored and controlled nanostructures, which can have various applications [1–5].

The governing diblock copolymer model is known to follow an energy dissipation
law, but due to its nonlinearity, maintaining unconditional energy stability at the discrete
level poses a significant challenge. In fact, both the explicit and simple fully-implicit type
discretizations will impose severe time step constraints, depending on the interfacial width
(cf. [6–8]). Recently, some efforts have been made to develop first-order schemes which are
accurate in time and energy-stable for the diblock copolymer model (cf. [2,9,10]). These
schemes are primarily based on either the nonlinear convex splitting approach (cf. [9,11])
or the linear stabilization approach (cf. [12–24]). Obviously, higher order time-marching
schemes that preserve the unconditional energy stability are more preferable. To address
this challenge, several numerical approaches have been developed for this model, each
with its own techniques. Some of the notable approaches include the IEQ (invariant
energy quadratization) approach [25] which was used for the double well potential in
the context of the diblock copolymer model. It involves a technique known as energy
quadratization, which is employed to stabilize the numerical scheme and ensure energy
stability. Additionally, the SAV (scalar auxiliary variable) approach [26] is utilized with a
stabilization technique to create a novel stabilized SAV method. This method incorporates
a crucial linear stabilization term that enhances stability and allows for the use of larger
time steps while maintaining the required accuracy. It has been applied not only to the
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diblock copolymer model but also extended to the magnetic-coupled Cahn–Hilliard phase-
field model for diblock copolymers. Also, the work [27] introduces a new class of linear
time-integration schemes for phase-field models, including the diblock copolymer model.
These schemes extend the energy quadratization technique by introducing additional free
parameters, which serve to further stabilize the schemes and improve their accuracy. These
approaches represent the ongoing efforts in developing numerical methods that can handle
the nonlinearity and energy stability requirements of the diblock copolymer model. They
play a crucial role in enabling simulations and computations related to diblock copolymers,
which have applications in various scientific and engineering domains.

In this paper, the main objective is to develop a linear, second-order-accurate time-
marching scheme for solving the block copolymer model. This scheme is based on the
leapfrog method, which has been recently developed and applied in similar contexts [28,29].
The contributions and advantages of this newly proposed scheme are as follows: Firstly,
the newly proposed scheme maintains that unconditional energy stability can be strictly
proven. This is a crucial property as it ensures that the numerical solution does not
exhibit unphysical behavior and remains stable throughout the simulation. Notably, this
stability is expressed in terms of the original variables used in the model. Secondly,
unlike some other numerical approaches (e.g., invariant energy quadratization [30] or
scalar auxiliary variable approaches [31]), the newly proposed scheme satisfies an energy
dissipation law that is expressed in terms of the original variables of the block copolymer
model. This ensures the accuracy and consistency of the scheme in preserving the physical
properties of the system. Thirdly, the newly proposed scheme is entirely linear in nature.
This means that at each time-marching step, only a linear system needs to be solved.
This linearity is in contrast to convex-splitting nonlinear schemes [11,32], which typically
require the application of nonlinear iterative Newton’s methods. The linearity of the
scheme can significantly enhance computational efficiency. Fourthly, the existence and
uniqueness of the numerical solution can be easily verified within the framework of the
newly proposed scheme. This is important for ensuring the reliability and predictability
of the numerical results obtained through the scheme. Overall, the paper presents a
novel approach to solving the block copolymer model that combines the advantages of
unconditional energy stability, conservation of energy dissipation laws, linearity, and ease
of verifying the numerical solution’s existence and uniqueness. These features make
the proposed scheme a promising and effective tool for numerical simulations of block
copolymer modeling.

The paper’s structure and organization are outlined as follows: The Section 1 provides
an introduction to the key topic and presents the main contributions and advantages of the
proposed numerical scheme for solving the block copolymer model. A brief introduction
to the governing phase field models that are relevant to diblock copolymers is also given.
Section 2 presents an overview of the mathematical framework and equations that describe
the behavior of diblock copolymers. The details of the proposed numerical scheme are
described in Section 3. It explains how the scheme achieves second-order temporal accuracy
in temporal discretization and employs the Fourier pseudo-spectral method for spatial
discretization. A numerical experiment to validate and demonstrate the accuracy and
efficiency of the proposed numerical scheme is presented in Section 4. This experiment
involves solving a specific problem or scenario related to block copolymers using the
developed scheme. Finally, some concluding remarks are made with a summary of the
main contributions.

2. Phase Field Models for Diblock Copolymers
The phase field diblock copolymer model is represented by a partial differential

equation (PDE) involving the phase field variable φ.

φt = −M
(

ε2∆2φ− ∆((φ2 − 1)φ) + α(φ− φ̄)
)

, (1)

where φ is represented as an order parameter representing the local concentration difference
of the components, M > 0 is the mobility parameter, and ε > 0 and α > 0 are physical
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parameters. The average concentration of φ is denoted as φ̄. It is calculated as the integral
of φ over the entire domain divided by the domain’s volume: φ̄ = 1

|Ω|
∫

Ω φ(x, y)dΩ.
For simplicity, we assume a periodic boundary condition for the diblock copolymer

model in (1) in the rest of this section. Let

ψ = (−∆)−1(φ− φ̄), (2)

then the total phenomenological free energy associated with the phase field diblock copoly-
mer model is defined as follows

E(φ) =
∫

Ω

( ε2

2
|∇φ|2 + 1

4
(φ2 − 1)2 +

α

2
|∇ψ|2

)
dΩ. (3)

In general, the model preserves the mass conservation property

d
dt

∫
Ω

φ(x, t)dΩ = 0, (4)

where n is the outward normal on the boundary.
Then, we can easily to obtain the energy dissipation in time

dE
dt

=
∫

Ω

δE
δφ

δφ

δt
dΩ = −

∫
Ω

M|∇
(

ε2∆φ− (φ2 − 1)φ + αψ
)
|2dΩ. (5)

Next, we will give an efficient numerical scheme to the diblock copolymer model in (1).
Due to the fourth-order space derivative of the system (1), it will cause lots of stability

trouble in numerical simulation. Therefore, we can rewrite the system (1) to reduce the
space derivative order as follows

φt = −M∆µ,

µ = −ε2∆φ− (φ2 − 1)φ + αψ,

ψ = (−∆)−1(φ− φ̄).

(6)

Based on the above partial differential equations, we will give the temporal and space dis-
cretization.

3. Numerical Schemes
In this section, we will introduce a numerical approach that combines the leapfrog

method for handling time discretization and the Fourier spectral method for spatial dis-
cretization.

3.1. Temporal Discretization
Suppose the time domain of the diblock copolymer model in (1) is [0, T]. Then we

discretize the time domain [0, T] using a uniform time step, 0 = t0 < t1 < t2 < . . . < tN =
T, with tn = n

N T, and we denote the numerical solutions with respect to time discretization
at tn as φn, 0 ≤ n ≤ N. Now, we propose a second-order time-discrete and linearity
numerical scheme in time as below.

Scheme 1. After we obtain φn−1 and φn, we can calculate φn+1 using the following step scheme:
• Solve for φn+1 using the following scheme

1
2∆t

(φn+1 − φn−1) = M∆µn, (7)

µn = −ε2∆
φn+1 + φn−1

2
+ (φn)2 φn+1 + φn−1

2
− φn + α

ψn+1 + ψn−1

2
, (8)
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The system can have either periodic boundary conditions or the following the physical boundary
conditions:

∇φn+1 · n|∂Ω = 0, ∇µn · n|∂Ω = 0, (9)

where

ψn+1 := (−∆)−1(φn+1 − φ̄n+1) and ψn−1 := (−∆)−1(φn−1 − φ̄n−1). (10)

Remark 1. Given the initial condition φ0, the first step φ1 can be obtained in a second-order
accurate way in terms of ∆t via a first-order time-marching scheme, which was implemented using
significantly smaller time steps. For example, we update φ1 as follows

1
∆t1 (φ

1 − φ0) = M∆µ0, (11)

µ0 = −ε2∆φ1 + (φ0)3 − φ0, (12)

with ∆t1 = ∆t
[ 1

∆t +1]
, K = [ 1

∆t + 1].

Theorem 1. The semi-discrete numerical Scheme 1 possesses the property of unconditional energy
stability. The discrete energy law is as follows

En+1,n − En,n−1 = −∆tM(∇µn,∇µn), (13)

where

En+1,n =
ε2

4
(‖∇φn+1‖2 + ‖∇φn‖2) + (

1
4
(φn+1φn − 1)2, 1) +

α

4
(‖∇ψn+1‖2 + ‖∇ψn‖2),

En,n−1 =
ε2

4
(‖∇φn‖2 + ‖∇φn−1‖2) + (

1
4
(φnφn−1 − 1)2, 1) +

α

4
(‖∇ψn‖2 + ‖∇ψn−1‖2).

(14)

Proof. Taking the inner product of (7) with ∆tµn, we obtain(φn+1 − φn−1

2
, µn
)
= −M∆t(∇µn,∇µn). (15)

Next, taking the inner product of (8) with 1
2 (φ

n+1 − φn−1), we have(φn+1 − φn−1

2
, µn
)

=
ε2

4

(
‖∇φn+1‖2 − ‖∇φn−1‖2

)
+

1
4

(
(φn+1φn)2 − (φnφn−1)2

−2φn+1φn + 2φnφn−1, 1
)
+ α(

ψn+1 + ψn−1

2
,

1
2
(φn+1 − φn−1)).

(16)

Then, we derive from (10) that

−∆(ψn+1 − ψn−1) = φn+1 − φn−1 − (φ̄n+1 − φ̄n−1). (17)

By taking the L2 inner product of (17) with
α

4
(ψn+1 + ψn−1), we obtain

α

4
(‖∇ψn+1‖2 − ‖∇ψn−1‖2) =

α

4
(ψn+1 + ψn−1, φn+1 − φn−1)− α

4
(ψn+1 + ψn−1)(φ̄n+1 − φ̄n−1, 1)

=
α

4
(ψn+1 + ψn−1, φn+1 − φn−1)

(18)

Subtracting Equations (16) and (18) from (15), we have

En+1,n − En,n−1 = −M∆t(∇µn,∇µn). (19)

This completes the proof.
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To establish a comparison with the scheme developed above, we also list the traditional
second-order convex-splitting scheme based on the Crank–Nicolson formula [26] as follows:

Scheme 2. After obtaining φn, we compute φn+1 by:

φn+1 − φn

M∆t
= ∆wn+ 1

2 ,

wn+ 1
2 = −ε2∆φn+ 1

2 + (
(φn+1)2 + (φn)2

2
− 1)

φn+1 + φn

2
+ αψn+ 1

2 ,

ψn+ 1
2 = −(∆−1(φn+ 1

2 − φ̄n+ 1
2 )),

(20)

where φn+ 1
2 =

φn+1 + φn

2
and ψn+ 1

2 =
ψn+1 + ψn

2
. The unconditional energy stability of the

above scheme can be easily proven by employing the comparable idea presented in [32,33]. This
scheme is a nonlinear scheme which needs the Newton iteration or the fixed point iteration method.
Nonetheless, our proposed scheme is a fully linear scheme which can be solved directly in each
time-marching step.

3.2. Spatial Discretization
In this paper, it is natural to utilize the accurate and efficient Fourier pseudo-spectral

method under the periodic boundary conditions. For the sake of simplicity, we will focus
on a two-dimensional domain in this study. However, it is worth noting that an extension
from a two-dimensional domain to a three-dimensional domain can be achieved using the
tensor product method.

Let Lx and Ly denote the lengths in each direction in the spatial domain Ω = [0, Lx]×
[0, Ly]. Let Nx and Ny be two positive even integers. We discretize Ω using uniformly
partitioned meshes with mesh sizes hx = Lx/Nx and hy = Ly/Ny. Therefore, the discrete
domain is given by

Ωh =
{
(xi, yj)|xi = ihx, yj = jhy, 0 ≤ i ≤ Nx − 1, 0 ≤ j ≤ Ny − 1

}
. (21)

Furthermore, we introduce the space of grid functions on Ωh, denoted as

Vh =
{

u|u = {uij|(xi, yj) ∈ Ωh, 0 ≤ i ≤ Nx − 1, 0 ≤ j ≤ Ny − 1}.
}

(22)

For any functions F ∈ Vh, G ∈ Vh, we define the induced discrete inner product and l2
norm as follows

(F, G)h =
Nx−1

∑
i=1

Ny−1

∑
j=1

FijGijhxhy, ‖F‖h =
√
(F, F)h. (23)

The notations for the discrete gradient operator and the discrete Laplace operator are
defined as ∇h and ∆h, respectively. To distinguish it from the semi-discrete solution φn

(n ≥ 0), we denote the full discrete solution with a subscript as φn
N ∈ Vh.

The proposed fully discrete numerical scheme is as follows.

Scheme 3. After we obtain the previous numerical solution φn−1
N , φn

N ∈ Vh, we update φn+1
N ∈ Vh,

with n ≥ 1, via following step:

• We solve for φn+1
N and ûn+1

N using the following scheme:

1
2∆t

(φn+1
N − φn−1

N ) = M∆hµn
N , (24)
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µn
N = −ε2∆h

φn+1
N + φn−1

N
2

+ (φn
N)

2 φn+1
N + φn−1

N
2

− φn
N

+α
ψn+1

N + ψn−1
N

2
,

(25)

with periodic boundary conditions.

Some theoretical results can be obtained for the fully discrete scheme presented in
Scheme 3.

Theorem 2. The fully discrete Scheme 3 guarantees unconditional energy stability. Furthermore,
the fully discrete numerical solutions satisfy the following energy dissipation law

En+1,n
h − En,n−1

h = −∆tM‖∇hµn
N‖2

h, (26)

where

En+1,n
h =

ε2

4
(‖∇φn+1

N ‖2
h + ‖∇φn

N‖2) +
1
4
((φn+1

N φn
N − 1)2, 1)h +

α

4
(‖∇ψn+1

N ‖2 + ‖∇ψn
N‖2),

En,n−1
h =

ε2

4
(‖∇φn

N‖2
h + ‖∇φn−1

N ‖2
h) +

1
4
((φn

Nφn−1
N − 1)2, 1)h +

α

4
(‖∇ψn

N‖2 + ‖∇ψn−1
N ‖2).

(27)

Proof. The proof can follow the idea of the time-discrete Scheme 1. Here, we provide a
brief proof. Firstly, we take the inner product of (24) with ∆tµn

N . Then, we take the inner
product of (25) with 1

2 (φ
n+1
N − φn−1

N ). By subtracting these two inner products, we obtain

En+1,n
h − En,n−1

h = −M∆t‖∇hµn
N‖2

h, (28)

which completes the proof.

Theorem 3. The full discrete Scheme 3 is uniquely solvable, meaning that there exists a unique
solution φn+1

N ∈ Vh for each time-marching step.

Proof. We need to demonstrate the existence of a unique solution for each step of the fully
discrete Scheme 3.

For the step in Equations (24) and (25), it can be expressed as an algebraic linear system
AX = b, where X = (µn

N , φn+1
N , ψn+1

N ) and

A =


−M∆h

1
2∆t 0

−1 − ε2

2 ∆h +
(φn

N)2

2
α

2
0 −I −∆h

, (29)

and b are the remaining explicit terms. To demonstrate that AX = b has a unique solution,
it suffices to prove that AX = 0 only has the solution X = 0.

It is evident that X = 0 is a solution to AX = 0. Next, we will establish that X = 0 if
AX = 0. Let X = (X1, X2, X3). In fact, if we take the inner product of Y = (2X1, X2

∆t , α
2∆t X3)

on both sides of AX = 0, we obtain

2‖
√

M∇hX1‖h +
ε2

2
‖∇hX2‖2

h + (
(φn

N)
2

2
, X2

2)h +
α

2
‖∇hX3‖2

h = 0. (30)
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We immediately observe that ‖X2‖2
h = 0, which implies X2 = 0. Using the given fact

(−∆h)
−1X3 = X2 − X̄2 = 0 and the uniqueness of the inverse of the Laplacian operator ∆h,

we can conclude that X3 = 0. From the second equation of AX = 0, we obtain

X1 =
ε2

2
∆hX2 +

( (φn
N)

2

2

)
X2 +

α

2
X3 = 0. (31)

Therefore, we have shown that X = 0, provided that AX = 0.
This indicates that the step in Equations (24) and (25) has a unique solution. Hence,

we have shown that Scheme 3 also has a unique solution when fully discretized.

Theorem 4. The fully discrete scheme presented in Scheme 3 preserves the total mass of the phase
variable, given by

(φn+1
N , 1)h = (φn

N , 1)h, ∀n ≥ 0. (32)

Proof. To prove the preservation of total mass, we take the discrete inner product of
Equation (24) with φn+1

N and ensure that the starting values preserve the total mass,
i.e., (φ1

N , 1)h = (φ0
N , 1)h.

Similarly, we present the fully discrete scheme of the phase field diblock copolymer
model 1 as follows:

Scheme 4. After obtaining φn
N , we compute φn+1

N by:

φn+1
N − φn

N
M∆t

= ∆wn+ 1
2

N ,

wn+ 1
2

N = −ε2∆φ
n+ 1

2
N + (

(φn+1
N )2 + (φn

N)
2

2
− 1)

φn+1
N + φn

N
2

+ αψ
n+ 1

2
N ,

ψ
n+ 1

2
N = −(∆−1(φ

n+ 1
2

N − φ̄
n+ 1

2
N )),

(33)

where φ
n+ 1

2
N =

φn+1
N + φn

N
2

and ψ
n+ 1

2
N =

ψn+1
N + ψn

N
2

.

4. Numerical Examples for the Diblock Copolymer Model
The focus of this section is the study of spinodal decomposition, a feature of phase sep-

aration dynamics. The example begins by testing the accuracy of the numerical Scheme 3,
which is a crucial component of the methodology for simulating and analyzing spinodal
decomposition. The accuracy test aims to evaluate how well the numerical scheme ap-
proximates the actual behavior of the phase separation process. Such tests are essential
to validate the reliability of the numerical method and ensure accurate results. After the
accuracy test, the example presents numerical simulations, which involve applying the
numerical scheme to specific scenarios or initial conditions related to spinodal decomposi-
tion. The purpose of these simulations is to observe and analyze how the phase separation
dynamics evolve over time according to the numerical scheme.

4.1. Accuracy Test
First of all, we list the setup for the accuracy test of the numerical Scheme 3. The

computational domain is defined as Ω = [0, 4π]2. The parameters used in the simulation
include mobility M = 0.02, phase width ε = 0.05, and nonlocal parameter α = 5.

The initial condition for the concentration field φ at t = 0 is specified as a randomly
perturbed concentration field, defined as:

φ|t=0 = c0 + rand(−0.001, 0.001), (34)
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where c0 is a constant. rand(−0.001, 0.001) generates a random number following a normal
distribution in the range [−0.001, 0.001]. The spatial domain is discretized using a grid
consisting of 256× 256 grid points.

Since the exact solution for the diblock copolymer model is unknown, we take the
numerical results of Scheme 3 with T = 1 and ∆t = 1.0−4 as the exact solution. We
compute the numerical errors at a specific time point, namely at t = 1. It then evaluates the
L2-errors as a function of the time step ∆t. The errors are calculated for different values
of the parameter α while fixing the initial condition. Specifically, the values α = 0.0 and
α = 5.0 are considered. The results presented in Figure 1 show a graphical representation
of the L2-errors as a function of the time step ∆t for both values of the physical parameter
α. We observe a second-order convergence rate at the time step ∆t. We also present the
accuracy test for various physical parameters in Figure 2 with the same initial condition
and α = 0. This figure shows the L2-errors as a function of the time step ∆t, with variations
in the physical parameters ε and M. A second-order convergence rate is verified as the
time step ∆t decreases. Additionally, we conducted numerical tests comparing our new
Scheme 3 to the traditional second-order convex-splitting Scheme 4, which is based on the
Crank–Nicolson formula. We fixed the parameters as follows: N = 256, ∆t = 0.001, T = 1,
M = 0.02, ε = 0.05, α = 0, and c0 = 0.0. The error of the traditional scheme was found to be
9.1× 10−5, while the error of our new scheme under the same parameters was significantly
reduced to 1.9× 10−8. Both Schemes 3 and 4 are unconditionally stable. The computational
time for both schemes with ∆t = 0.0001 and T = 1 is quite close, taking 293 s and 261 s,
respectively, to complete. This analysis offers an assessment of the numerical scheme’s
accuracy and its convergence behavior, providing valuable insights into its performance
for simulating the diblock copolymer model.

Figure 1. Time accuracy convergence test. The figures show the error versus time step ∆t for the
diblock copolymer model using second-order Scheme 3. Two different initial parameters, α = 0.0
(left) and α = 5.0 (right), are used.
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Figure 2. Time accuracy convergence test. The figures show the error versus time step ∆t for the
diblock copolymer model using second-order Scheme 3. (Left): M = 0.02, ε = 0.02, α = 0 and
c0 = 0.0; (Right): M = 0.1, ε = 0.05, α = 0 and c0 = 0.0.

4.2. Phase Separations
In this subsection, we present a simulation of phase separations using the diblock

copolymer model (1). The physical and computational parameters are consistent with those
used in the previous example. The focus of this simulation is to study the time evolution of
the energy associated with the diblock copolymer model. The time interval considered is
t ∈ [0, 150]. The plot of the time evolution of energy with different physical parameters,
c0 = 0.0 (left of the first row), c0 = 0.2 (left of the first row), and c0 = 0.4 (second row)
in semi-log scale in Figure 3, allows to assess how well the numerical Scheme 3 performs
under various conditions and choices of time step ∆t.

Next, we will investigate the impact of different initial conditions on the coarsening
dynamics of the diblock copolymer model. The simulations are conducted with a fixed
time step of ∆t = 1.0−3. The numerical profiles of the phase variable φ are examined at
various time points: t = 1, 5, 10, 20, 40, 150. The contour plots are presented with different
values of the initial conditions in Figure 4 (c0 = 0.0), Figure 5 (c0 = 0.2), and Figure 6
(c0 = 0.4). The results and observations for each case are summarized in the respective
figures. Figure 4 suggests that the blue and red regions become entangled, leading to the
formation of a cylindrical phase as the equilibrium solution. Figure 5 shows the coexistence
of body-centered-cubic and cylindrical phases at T = 150, with the latter phase being
dominant. Figure 6 indicates the presence of body-centered-cubic phases in the entire
domain throughout the evolution process. In summary, this investigation explores how
different initial conditions, represented by various values of c0, influence the coarsening
dynamics of the diblock copolymer model over time. The contour plots visually illustrate
the evolution of the phase variable φ and provide insights into the formation of different
phases and their dominance in the equilibrium state.

Finally, we plot the time evolution of energy decay for the diblock copolymer model
under different sets of parameters. The time step of the simulation is fixed at ∆t = 10−3.
For the first set of Figure 7, we set the parameter α to a constant value of 5, while c0 varies.
In the second set of Figure 8, we set c0 to 0.4, and α varies. We observe how these parameters
influence the rate of energy decay with different values of c0 (Figure 7). Figure 8 shows how
the energy decreases over time for each value of α. It can be seen that the energy decreases
at the same rate initially and decreases faster as α becomes smaller. The observations from
these plots may reveal trends in the energy decay behavior as a function of the chosen
parameters. This analysis helps in understanding the influence of parameter choices on the
energetics of the diblock copolymer model, providing valuable insights into the model’s
behavior and stability.
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Figure 3. Time evolution of the energy decay for the diblock copolymer model. The time step is set at
∆t = 10−3 with different physical parameters c0 = 0.0 (left of the first row), c0 = 0.2 (right of the first
row), and c0 = 0.4 (second row).

Figure 4. Time snapshots of coarsening dynamics driven by the phase field diblock copolymer model
with random initial conditions. The parameters are set as M = 0.02, ε = 0.05. The profiles of φ at
different time slots t = 1, 5, 10, 20, 40, 150, with c0 = 0, are presented.
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Figure 5. Time snapshots of coarsening dynamics driven by the phase field diblock copolymer model
with random initial conditions. The parameters are set as M = 0.02, ε = 0.05. The profiles of φ at
different time slots t = 1, 5, 10, 20, 40, 150, with c0 = 0.2, are presented.

Figure 6. Time snapshots of coarsening dynamics driven by the phase field diblock copolymer model
with random initial conditions. The parameters are set as M = 0.02, ε = 0.05. The profiles of φ at
different time slots t = 1, 5, 10, 20, 40, 150, with c0 = 0.4, are presented.
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Figure 7. Time evolution of the energy decay for the diblock copolymer model. The time step is set at
∆t = 10−3, α = 5 with different parameters c0 = 0.0, 0.1, 0.2, 0.3, 0.4.

Figure 8. Time evolution of the energy decay for the diblock copolymer model. The time step is set at
∆t = 10−3 and c0 = 0.4 with different α = 0, 1, 2, 3, 5.

5. Conclusions
This paper focuses on introducing a second-order numerical scheme that utilizes the

leapfrog time-marching method to approximate phase field models. The scheme offers
several advantages and properties, which are highlighted in this paper. Firstly, the pro-
posed numerical scheme achieves second-order accuracy in time. Secondly, the scheme is
linear in nature, which simplifies the computational process and can lead to more efficient
calculations. Thirdly, the proposed scheme preserves unconditional energy stability, which
ensures that the numerical solutions generated by the scheme remain physically meaningful
and do not exhibit unphysical behavior during simulations.

In addition to presenting the scheme’s features, a series of tests and numerical exam-
ples are included to validate its effectiveness and reliability. These include convergence
tests, where the scheme’s convergence properties are examined, as well as numerical
examples that demonstrate its applicability in solving phase field models. All the tests
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mentioned in this paper are conducted using custom-developed code written in the Fortran
programming language and executed on the Linux platform.
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