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Abstract: Conventional evolutionary optimization techniques often struggle with finding global
optima, getting stuck in local optima instead, and can be sensitive to initial conditions and parameter
settings. Efficient Distributed Generation (DG) allocation in distribution systems hinges on stream-
lined optimization algorithms that handle complex energy operations, support real-time decisions,
adapt to dynamics, and improve system performance, considering cost and power quality. This pa-
per proposes the Simulated-Annealing-Quasi-Oppositional-Teaching-Learning-Based Optimization
Algorithm to efficiently allocate DGs within a distribution test system. The study focuses on wind
turbines, photovoltaic units, and fuel cells as prominent DG due to their growing usage trends. The
optimization goals include minimizing voltage losses, reducing costs, and mitigating greenhouse gas
emissions in the distribution system. The proposed algorithm is implemented and evaluated on the
IEEE 70-bus test system, with a comparative analysis conducted against other evolutionary methods
such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Honey Bee Mating Optimiza-
tion (HBMO), and Teaching-Learning-Based Optimization (TLBO) algorithms. Results indicate that
the proposed algorithm is effective in allocating the DGs. Statistical testing confirms significant
results (probability < 0.1), indicating superior optimization capabilities for this specific problem.
Crucially, the proposed algorithm excels in both accuracy and computational speed compared to
other methods studied.

Keywords: renewable energy resources; distributed generation; optimization algorithm; energy
management; distribution network; evolutionary methods

1. Introduction
1.1. Motivation

Distributed energy resources are small-scale, decentralized power generation and
storage technologies. They offer benefits such as increased resilience, improved energy
efficiency, integration of renewable energy, peak load management, consumer empow-
erment, grid support, and localized economic benefits [1]. Researchers are motivated to
employ optimization algorithms for the allocation of Distributed Generations (DGs) due
to several compelling reasons. Firstly, optimization allows them to enhance the efficiency
and performance of the power system. By strategically determining the optimal size and
placement of DG installations, electric utilities can maximize system performance, minimize
energy losses, and improve overall operational efficiency. This optimized allocation of
DGs ensures their effective utilization, leading to a more efficient and productive power
system [1,2].

Secondly, optimization algorithms offer cost-saving opportunities in DG allocation.
Researchers can identify economically viable solutions by considering factors such as
energy demand, resource availability, and infrastructure constraints. This enables them
to allocate DGs in a manner that reduces the need for expensive infrastructure upgrades,
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minimizes transmission losses, and optimizes energy generation and distribution, resulting
in significant cost reductions [3–5]. Furthermore, optimization algorithms play a vital
role in integrating renewable energy sources into the power system. By determining the
optimal placement of DGs such as solar panels or wind turbines, researchers can maximize
renewable energy generation and reduce reliance on fossil fuel-based power sources,
facilitating the transition towards a more sustainable and environmentally friendly energy
system. Additionally, the allocation of DGs through optimization algorithms enhances grid
reliability and resilience, ensuring stable grid operations and minimizing the risk of power
outages, especially when incorporating intermittent renewable energy sources [6,7].

1.2. Literature Review

Exploring the benefits of DG allocation in distribution systems, various studies have
illuminated its advantages. According to Ref. [8], DGs enhance grid reliability through
localized power generation, while authors in [9] emphasize DGs’ role in reducing trans-
mission losses and enhancing overall energy efficiency when placed closer to load centers.
Additionally, Ref. [10] establishes that DG systems maintain acceptable voltage levels,
especially in regions prone to voltage drops, ensuring grid stability. These collective find-
ings highlight the significant enhancement of power system flexibility provided by DGs.
Notably, researchers in papers [8,11] have developed dynamic DG models, optimizing
power systems with renewable sources and analyzing both economic and technical benefits.
Further insights into DG technicalities and installation are presented in [12], while [13] un-
derscores that integrating DG systems with advanced technologies fosters the development
of smart grids, enriching grid monitoring, control, and optimization capabilities. These
studies collectively underscore that DGs, particularly those rooted in renewable sources,
offer effective solutions to address power quality concerns in distribution systems.

Investigating optimal DG placement in different papers reveals variations in the
chosen objective functions [14,15]. While some authors prioritize loss reduction [16], others
consider objectives such as voltage profile improvement [17], cost reduction [18,19], and
power loss minimization [16,20,21]. However, a significant issue emerges as these studies
lack a multi-objective approach when tackling the optimal DG placement problem in
distribution systems. To address this, objective functions should be tailored based on
decision-maker requirements, encompassing all factors impacting the desired outcome.

Researchers have utilized various optimization algorithms to solve the optimal place-
ment problems of DGs. For instance, an improved honey bee mating optimization (HBMO)
algorithm was presented in [22,23], while Miao et al. [24] employed the gray wolf opti-
mization algorithm for optimal energy storage placement. Ayoubi et al. [25] utilized a
single-objective Cuckoo Search Algorithm for optimal passive filter placement and sizing.
Additionally, papers such as [9,22,26,27] introduced the particle swarm optimization (PSO)
algorithm, genetic algorithm (GA), hybrid evolutionary algorithm, and tabu search algo-
rithm to address the DG placement problem. These studies aimed to identify the most
suitable optimization algorithm, considering factors like calculation speed and accuracy.
Therefore, any new optimization algorithm should be compared with well-established
algorithms for placement problems, such as GA, PSO, and HBMO.

The teaching-learning-based optimization (TLBO) algorithm has gained considerable
attention in recent years among scholars exploring various optimization problems. Its
potential and versatility have been highlighted by researchers in [28–30], who extensively
discussed its strengths and limitations. Additionally, TLBO has been successfully ap-
plied to the analysis of automatic voltage regulator placement in [1], with suggestions
for its applicability in other areas, such as DG placement in distribution systems. Elsisi
et al. [31] proposed a single-objective TLBO algorithm for designing automatic voltage
regulator controllers, emphasizing the need to incorporate a multi-objective approach
for future enhancements. Similarly, Srikanth et al. [32] modified TLBO using weighted
objective functions to address single-objective optimization problems, demonstrating the
value of optimization techniques. However, to further advance their research, the adop-
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tion of optimization techniques for multi-objective optimization problems could yield
improved outcomes.

1.3. Contributions, Gap, and Novelty

While several papers [33] have effectively utilized optimization algorithms to address
the DG placement problem in distribution systems, there still remains a research gap that
necessitates further exploration. The first research gap lies in the need to incorporate the
multi-objective concept and provide decision-making tools for related stakeholders. Based
on the authors’ knowledge, previous studies predominantly treated DG placement as a
single-objective optimization problem [10,16–18,20,21,34,35], overlooking the conflicts that
may arise between objective functions. Although a few studies have presented the Pareto
front of multi-objective solutions, there is still a demand for more accurate algorithms
that offer improved calculation speed. Therefore, scholars should focus on developing
highly precise optimization algorithms with faster computation for electricity marketing
applications, reflecting their future perspective in this area.

Furthermore, another research gap pertains to integrating two well-established op-
timization algorithms reported in early DG placement papers, aiming to leverage the
strengths and mitigate the weaknesses of both approaches [36,37]. Only a few studies have
explored the combination of TLBO and Simulated Annealing (SA) algorithms to harness
the benefits offered by each. Additionally, the decision-making process in DG placement
necessitates a method to eliminate human decision-making biases, which presents another
research gap. Some existing approaches focus solely on DG sizing while neglecting to select
the optimal installation locations, as seen in [12,23].

To bridge the research gaps effectively, this paper proposes the Multi-Objective Quasi-
Oppositional-Simulated-Annealing-Teaching-Learning-Based-Optimization (MQOTLBO)
algorithm for the simultaneous siting and sizing of DGs in the IEEE 70-bus test [38] dis-
tribution system. We address both DG sizing and placement, exhibiting high accuracy
and remarkable computational speed and providing a decision-making tool. The TLBO
algorithm is selected as the starting point for modification due to its simplicity in parameter
implementation but its limitation of premature convergence. To overcome this drawback,
the original TLBO algorithm is enhanced by integrating the SA algorithm, preventing pre-
mature convergence and improving the optimization process. Moreover, the convergence
speed and accuracy are further enhanced by incorporating the concept of quasi-opposition-
based learning (QOBL). By combining the strengths of TLBO, SA, and QOBL, the proposed
MQOTLBO algorithm offers an advanced and effective approach for DG siting and sizing
optimization, promising improved convergence properties and greater accuracy in the
placement of DGs within distribution systems.

In addressing conflicting objective functions within a multi-objective framework,
various techniques can be employed. This study introduces the use of an external cache
to store Pareto optimal solutions discovered during the search process. Additionally, the
concept of fuzzy clustering is employed to regulate the size of the external supply. By
incorporating the Pareto principle into the approach, the focus is on identifying feasible
non-dominated solutions that strike the optimal trade-off among objective functions. The
proposed method further enhances the decision-making process by clustering the multi-
objective optimized solutions using recommended weight factors, effectively eliminating
the need for direct human intervention. With the calculated preferences based on the
assigned weight factors, decision-makers can select the most suitable and compatible
Pareto optimal solutions for their specific needs.

In this study, the proposed algorithm for DG sizing and siting is implemented and eval-
uated using a standard 70-bus test system. Furthermore, the performance of the proposed
algorithm is compared with other widely recognized optimization algorithms, including
GA, PSO, TLBO, and HBMO. These optimization algorithms have been previously ac-
knowledged as the leading approaches in solving DG placement problems [23]. Through
this comparative analysis, the effectiveness and efficiency of the proposed algorithm can
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be assessed, and its competitiveness among established optimization techniques can be
determined. The proposed methods are implemented in MATLAB software on a personal
computer with an i7 core processor, 3.70 GHz, and 32 GB RAM.

The major novelty of this study lies in its enhanced optimization methodology. By
integrating the strengths of two distinct algorithms, TLBO and SA, the proposed approach
capitalizes on their individual advantages and mitigates their weaknesses. Additionally,
the inclusion of the QOBL technique significantly improves the convergence speed, making
it a notable contribution to the optimization process. Furthermore, this paper identifies
the top-performing optimization algorithms for the specific problem at hand, attaining a
significant level of less than 0.1, further emphasizing the significance and robustness of
the proposed approach in achieving optimal results. The significance level is typically set
prior to conducting the statistical test and helps determine whether the observed results
are statistically significant or occurred due to chance.

This paper’s primary contributions are as follows:

• This paper presents a novel modified algorithm for DG sizing and placement in a test
distribution grid. This modification improves the TLBO method proficiency.

• This paper presents a multi-objective optimal solutions clustering method using
suggested weight factors to avoid the human decision-making interface for selecting
the best-compromised solution.

• This paper compares the proposed algorithm’s optimal solutions and the best-reported op-
timization algorithms for DG placement in the distribution system to prove the superiority.

• This paper compares the optimal solutions of DG placement in the cases of a similar
type of DG for fuel cells, photovoltaic units, wind turbines, and a combination of all
the mentioned DGs.

• This paper presents a methodology for integrating DG to improve the power quality
issues of the distribution system.

2. Multi-Objective Formulation for Placement of Distributed Generators

In optimization problems, the multi-objective or single-objective approach can be
employed to derive results based on the specified objective functions. Decision-makers play
a crucial role in identifying their desired objective functions. The multi-objective approach is
particularly relevant when conflicts arise among the objective functions. The main objective
of this paper is to determine the optimal location and size of DG by effectively optimizing
the proposed objective functions. This section presents the proposed objective functions
and practical constraints that constitute the mathematical formulation of the problem.

Some efforts should be performed to point out the difficulties in finding and combining
two optimization algorithms. First of all, the No Free Lunch Theorem shows that no
algorithm is appropriate for all models. Therefore, suitable optimization algorithms should
be selected for combination. In this regard, the literature review of the latest papers about
DG placement helped this research to find TLBO and SA algorithms as the best ones in
this specific optimization problem. The second difficulty is finding the advantages and
disadvantages of each optimization algorithm to eliminate weaknesses. For example, the
liability of these algorithms is that they go to local optimum solutions in some cases instead
of optimum global ones. For this problem, this paper has used the nondominated solutions
of both algorithms simultaneously to decrease the probability of achieving the unwanted
local optimum solution. The last difficulty is finding the correct optimization technique
to increase calculation velocity and accuracy. In this way, this paper has applied a fuzzy
clustering technique.
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2.1. Objective Functions
2.1.1. Total Electricity Generation Cost

In line with the economic considerations of DG, this paper formulates the cost function
for each unit based on the specifications outlined in [39] and are as follows:

C(p) = (Cost1 gen + Cost2gen

)
× p, (1)

Cost1gen =
Cap× Cost× Ar

LT × LF× 365× 24
(2)

Cost2gen = Fcost + O & M cost (3)

The total electricity generation cost mathematic model is as follows:

f1(X) =
Npv

∑
i=1

Cpv
(

Ppv
)
+

N f c

∑
j=1

C f c

(
Pf c

)
+

Nwind

∑
k=1

Cwind(Pwind) + costsub (4)

costsub = Qsub × Psub (5)

F1(X) = min[ f1(X)] (6)

The power and location vector of fuel cell units, photovoltaic units, and wind units
represent X, which this paper will define in Section 3 by Equation (26). The optimization
algorithm should minimize the first objective function, i.e., f1(X) [21].

2.1.2. The Bus Voltage Deviation

This paper defines the bus voltage deviation as follows:

f2(X) =
Nbus

∑
m=1

|Vnom −Vr|
Vnom

(7)

F2(X) = min( f2(X)) (8)

The optimization algorithm should minimize the second objective function. i.e.,
f2(X) [23].

2.1.3. Power Losses

This paper determines the third objective function in the DG placement problem as
follows [19,40]:

f3(X) =
Nlt

∑
a=1

Nnb

∑
b=1

(Rm × |Im|2 × ∆t) (9)

F3(X) = min( f3(X)) (10)

2.1.4. Emission

This paper calculates the total emission of greenhouse gases (i.e., Et) such as nitrogen
oxides (i.e., NOx) and Sulphur oxides (i.e., SOx) caused by fossil-fueled thermal units
as follows:

Et =
nDG

∑
n=1

En(Pn) =
nDG

∑
n=1

(
αnPn

2 + βnPn + γn + ξnexp(9λnPn)
)

(11)

f4(X) = Et f c + Etwind + Etpv (12)
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F4(X) = min( f4(X)) (13)

The fourth objective function for minimizing by optimization algorithm is f4(X) [27].

2.2. Constraints
2.2.1. Limitation of Voltage

The permissible voltage limits are as follows:

Vmin ≤ |Vm| ≤ Vmax (14)

2.2.2. DG Unit’s Number

The distribution network losses may achieve near zero in the ideal case of supplying all
loads with the local DG. But this assumption, in most cases, is infeasible because of the high
capital investment cost for local installation. Consequently, this paper has recommended a
limited DG number but minimizes loss as the objective function [9].

nDG ≤ NDG (15)

2.2.3. Size of DG

This paper has calculated the DG size by considering DG maximum allowable invest-
ment [41] as follows:

nDG

∑
n=1

KWn
DG ≤ ηPload (16)

2.2.4. Other Limitations

DG limitations: DG systems’ limitations for generating electricity are significant factors
in solving DG placement in the distribution system. This paper assumed that photovoltaic
units could only make constant power daily from 6:00 a.m. to 6:00 p.m., and wind turbines
can generate continuous power all the time [42,43]. Wind turbines, photovoltaic units,
and fuel cells are considered PQ models [1] of an ideal generator in a single time step. If
future research requires additional restrictions, such as limitations on hydrogen storage
for fuel cells or specific time intervals like a particular month or year or fluctuations of the
photovoltaic units and wind turbines, these constraints should be explicitly formulated
and integrated into the optimization problem in the part constraints.

Load flow limitations: The load flow limitation should be checked in each iteration of
the optimization algorithm. This paper obtains all calculations of objective functions by
using the backward–forward load flow results. In order to reduce the repetitive discussion,
we refer the interested readers to [10], which has discussed the load flow equations in detail.

If future studies necessitate further limitations, such as incorporating demand response
into constraints within the optimization problem definition or incorporating different types
of generators or energy storage systems, the power generation elements should be added
to the objective functions while their limitations to the constraints of the problem.

3. Proposed MOQTLBO Method

In this work, we introduce the MOQTLBO algorithm as a solution for DG place-
ment and sizing. Initially, we present the modification to the TLBO algorithm to enhance
computational efficiency and accuracy. Subsequently, we define the concepts of quasi-
opposition-based learning and optimization within the context of this problem. Finally, we
discuss the integration of these techniques to propose the MOQTLBO algorithm, which
combines the benefits of the modified TLBO and quasi-opposition-based approaches for
effective DG placement and sizing optimization.
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3.1. Modification of the Original TLBO

This paper designs a new modification for TLBO, intending to improve the con-
vergence accuracy and velocity. The combination of SA and TLBO algorithms expands
the optimization algorithm’s population and prevents premature convergence to a local
minimum [44]. The current study connects an SA algorithm to the TLBO algorithm for
improving the TLBO algorithm. This paper discusses some of the used optimization tech-
niques in Appendix A, which contains a Pareto concept for a multi-objective approach and
the Best-compromise-Solution method. The original TLBO algorithm is summarized in
Appendix B, making a better understanding of the proposed modification.

Initially, the population generation of the SA algorithm in each step is as follows [45]:

Xsa
k+1 = 0.8 ∗ Xold

k + rand ∗
(

1.2 ∗ Xold
k − 0.8 ∗ Xold

k

)
→ Xsa

k+1 =
[

Xsa,1
k+1, Xsa,2

k+1, . . . , Xsa,N
k+1

]
(17)

K represents the vector component number. The algorithm combines the SA vector
with the target vector as follows:

Xnew
K =

{
XSA

K i f rand1 > rand2
Xv

K otherwise
→Xnew

K =
[

Xnew,1
K , Xnew,2

K , . . . , Xnew,N
K

]
(18)

This algorithm compares the trial vector (Xnew
k ) with target vector (Xv

k ) in single-
objective problems to find the capability of it becoming a succeeding population member
as follows:

Xnew
K+1 =

{
Xv

K i f fx
(
Xv

K
)
< fx

(
Xnew

K
)

Xnew
K otherwise

(19)

This algorithm compares the trial vector (Xnew
k ) with target vector (Xv

k ) in multi-
objective problems as follows:

Xnew
K+1 =

{
Xv

K i f fx
(
Xv

K
)

dominate fx
(
Xnew

K
)

Xnew
K i f fx

(
Xnew

K
)

dominate fx
(
Xv

K
) (20)

The relation between the sign “<” in Equation (19) and “dominate” in Equation (20)
is discussed in Appendix A by Equations (A1)–(A3). The algorithm uses the Max-Min
method by applying the achieved µ

f
x(X) of Equation (A4) if none fx

(
Xv

K
)

and fx
(
Xnew

K
)

dominate each other, as follows:

α1 = min
(

µ1
i , µ2

i , . . . , µL
i

)
, α2 = min

(
µ1

new, µ2
new, . . . , µL

new

)
, Xnew

k+1 =

{
Xi

k i f α1 > α2
Xnew

k otherwise
(21)

3.2. Quasi-Opposition-Based Learning

The current study combines the modified TLBO with quasi-opposition-based learning
(QOBL), which leads to finding more feasible solutions in the closing of the global optimum
solution. Initially, this paper presents the concept of QOBL and its application to speed up
the modified TLBO convergence. This paper uses the QOBL idea in generation jumping
and population initialization [34,46].

In applying QOBL, this paper uses the following definitions:

• Opposite number

The opposite number is defined by:

z∗ = a + b− z (22)

where zε[a, b].

• Quasi opposite number:
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The definition of a quasi-opposite number is as follows:

zqo = rand(c, z∗) (23)

where c = a+b
2 .

• Quasi opposite point:

T Let Z = (z1, z2, . . . , zL) be a point in L dimensional space, where z1, z2, . . . , zLεY and
zlε[al , bl ]lε1, 2, . . . , L. The opposite point Z* =

(
z*

1, z*
2, . . . , z*

L
)

is defined by:

z*
d = al + bl − zl (24)

• Quasi opposite point:

The definition of a quasi-opposite point is as follows:

zqo
d = rand(Cd, zo

d) (25)

where Cd = ad+bd
2 , and zd ∈ [ad, bd]; D = {1, 2, . . . , d}.

3.3. Quasi-Oppositional Based Optimization

The quasi-oppositional-based (QOB) optimization involves two sections: the QOB
generation jumping and the QOB initialization. Table 1 shows the QOB initialization
Pseudocode. Also, Table 1 displays the QOB generation jumping Pseudocode. The authors
of [16] have presented a Pseudocode of the original TLBO Algorithm.

Table 1. Pseudocodes of quasi-oppositional based initialization and quasi-oppositional based genera-
tion jumping.

Method Pseudocode

Quasi-oppositional
based initialization

Begin
For d = 1: np(np = population size)

For l = 1: nd(nd = controlvariable)
xq0

dl = rand
(

al+bl
2 , al + bl − xdl

)
End

End
End

Quasi-oppositional based
generation jumping

Begin
If rand (0,1) < jrr

For d = 1:np
For l = 1:nd

xq0
dl = rand

(
al+bl

2 , al + bl − xdl

)
End

End
End

End

3.4. The Implementation of the Proposed MOQTLBO

The electric utilities (i.e., decision-makers of the optimization problem) first deter-
mined the objective functions based on the distribution system’s requirements, such as
minimizing volt-age deviation and loss of the system. The permissible DG number using
DG’s hosting capacity analysis of the distribution system is determined. The MQOTLBO
algorithm can help the electric utility find the best place and size for the determined DG
to optimize the objective functions. The MOQTLBO algorithm’s superiority is related
to accuracy and calculation velocity to find the best optimum solutions. For applying
the MOQTLBO algorithm in the DG placement problem, this paper takes the following
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steps into account, as Table 2 has shown, while Figure 1 shows the proposed algorithm’s
flowchart.

Table 2. MOQTLBO algorithm to approach DG placement.

Steps Description

Step 1
The first step defines the algorithm’s inputs, such as population size, the
iterations number, DG numbers, DG characteristics, constraints, and
network data.

Step 2 This step calculates the initial population by using Equation (26).

Step 3

The third step firstly calculates the objective functions vectors (i.e.,
Equations (6), (8), (10) and (13)) by using the backward-forward
distribution load flow [10] (this paper obtains all calculations of objective
functions by using the results of backward-forward load flow). Secondly,
this step normalizes them by Equation (A4).

Step 4 This step calculates Pareto optimal solutions by normalized objective
function vectors of Step 3, and it saves them in the external cache.

Step 5

This step computes the population mean column-wise, such as in Equation
(27). The algorithm randomly selects a Pareto optimal solution of the
external cache as a teacher (Xold). Then, it calculates Xnew according to
Equation (A7) using Xdiff

k obtained from Equation (A6).

Step 6

This step is the Learner phase. The algorithm checks the limitations of the
considered elements. If an independent variable is higher than the
maximum level, the algorithm makes it similar to the top level. If it is less
than the minimum level, the algorithm changes identically to the minimum
value. This step calculates the new vector’s objective functions (i.e., Xnew)
and compares them with the existing vectors in the external cache. The
algorithm approves it (Xnew) by Equation (19) or Equation (20).

Step 7

This step obtains a new population member (SA vector) by Equation (17)
and then calculates Xk+1

new y Equation (20) and, after that, compares it
with the existing vectors in the external cache. Finally, this step adds Pareto
optimal solutions to the external cache.

Step 8 This step is Quasi-opposition-based learning modification. This step
generates the QOP set and calculates the corresponding fitness values.

Step 9 This step chooses the required fittest vector number from Xi and QOP as a
new population set.

Step 10

Firstly, this step classifies the solutions to find the best one. Secondly, it
assigns that solution to the new teacher. Thirdly, this step modifies each
student’s grade based on the new teacher’s knowledge (i.e., modifying Xi).
Lastly, the algorithm obtains Pareto optimal solutions and adds them to the
external cache.

Step 11

This step specifies the non-dominated solutions of the external cache. The
algorithm added some solutions in steps 7 and 10, and they might
dominate existing solutions. Consequently, the algorithm needs to apply
the Pareto method to find the non-dominated answers among the old and
new external cache members.

Step 12 This step makes a loop by going back to Step 5 until the present iteration
number equals the maxi-mum iteration number.
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As it is shown in Figure 1 and Table 2, the proposed algorithm includes two loops.
The internal loop shows the individual updates from 1 to the number of population (np) to
obtain their results. The external loop offers the iteration updates that result in collecting
the best results among all iterations. In the case of weighted objective functions, the desired
weight will be obtained in a way that ∑4

i wi = 1. After calculating all non-dominated
solutions by the proposed algorithm, the decision-maker can sort the obtained results by
Equation (28), discussed in Section 5.2, as the selection of the best solution.

The definition of the initial population is as follows:

Xr = [Location1, . . . , Locationn, P1 . . . , Pn], r = 1, . . . , np, X =


X1
X2
...

Xnp


np

→ F =


F11 F21 F31 F41
F12 F22 F32 F42
...

...
...

...
F1np F2np F3np F4np


(26)
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F1np , F2np , F3np , and F4np represent objective functions for the feasible solution number
np. And also, n is the DG number, Locationn is the nth DG location with the range between
1 and the maximum bus number, and the nth DG’s size with the range between 0 and
the maximum size of the nth DG represented by Pn. It is noteworthy that Xr has two
variable types (i.e., discrete variables and continuous). These variables are related to the
DG location (discrete) and the DG active power. This paper uses rounding function values
for discrete variables.

The definition of the mean value in step 5 is as follows:

N = [N1, N2, . . . , Nn] (27)

4. Conventional Optimization Approaches

As already mentioned in this work, the performance of the proposed method has been
compared with that of conventional methods such as the GA, PSO, HBMO, and TLBO
algorithms. Here, a brief description of each method is provided. GA is an evolutionary
optimization technique inspired by the process of natural selection. It employs a population-
based approach, where potential solutions evolve over generations through the application
of genetic operators such as selection, crossover, and mutation. GA can explore a large
search space, and its effectiveness lies in preserving promising solutions and gradually
converging toward an optimal or near-optimal solution. More information on GA can be
found in Refs. [37,46].

PSO is a population-based optimization algorithm that mimics the behavior of a social
group. It operates by iteratively updating the positions and velocities of particles in a
search space, with each particle influenced by its own best position and the best position
found by the entire swarm. PSO emphasizes cooperation and information sharing among
particles to search for the global optimum in the search space [9,22,26,27].

HBMO is a nature-inspired algorithm inspired by the mating behavior of honey bees.
HBMO models the optimization problem as the process of finding the best mating partners
among male and female bees. The algorithm iteratively improves the population through
the stages of mating, recombination, and local search. HBMO utilizes the concept of
neighborhood exploitation to enhance solution quality and convergence speed, making it
suitable for various optimization problems. The algorithm, flowchart, Pseudo code, and all
details of HBMO are available in [22,23].

TLBO is a metaheuristic algorithm inspired by the teaching and learning processes in a
classroom. It employs a teacher and learner metaphor to optimize the objective function. In
TLBO, the learner individuals improve their solutions by learning from the better solutions
of the teacher individuals. This iterative process of teaching and learning aims to gradually
improve the overall population and converge towards an optimal solution. Details of TLBO
are available in Appendix B. Briefly, Table 3 displays the comparison of the mentioned
optimization algorithms.

Table 3. Conventional optimization algorithm comparison.

Algorithm Principle Strengths Weaknesses

GA

Based on the process of natural
selection, involving selection,

crossover, and mutation operations
on a population of
potential solutions.

Effective for exploring large solution
spaces, suitable for complex,
multimodal, and nonlinear

optimization problems.

Can get stuck in local optima,
requires tuning of parameters, and
may have slow convergence rates

for some problems.

PSO

Mimics the social behavior of birds
flocking, where particles adjust

their positions based on their own
best experience and the swarm’s

collective knowledge.

Fast convergence, easy
implementation, and good at

escaping local optima. Suitable for
continuous and discrete
optimization problems.

Convergence to global optimum is
not always guaranteed;

performance highly depends on
parameters and initialization.
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Table 3. Cont.

Algorithm Principle Strengths Weaknesses

HBMO Inspired by the mating behavior of
honey bees.

Suitable for both continuous and
discrete problems, capable of

escaping local optima, and often
effective for complex,
multimodal functions.

Requires careful parameter tuning,
might have longer convergence

times for some problems, and could
be sensitive to initializations.

TLBO

Simulates the teaching and learning
processes in a classroom, where

learners (solutions) improve over
iterations by learning from each

other and a teacher (best solution).

Simplicity in implementation, less
parameter tuning, and robust

performance for various problem
types. It’s particularly effective in

continuous optimization.

Can be sensitive to the initial
population, might struggle with

discrete or combinatorial problems,
and might require more iterations
for convergence in certain cases.

5. Simulation Results

This section shows the proposed optimization algorithm results for the DG placement
problem. This paper presents the measured distribution system data in Appendix C. In
essence, smaller systems lead to quicker solutions due to their simplicity, while larger
systems demand more time due to their intricate nature. Smaller systems restrict ideal
placements, whereas larger systems present abundant possibilities. The proposed algorithm
efficiently manages large-scale challenges, offering speedy solutions, albeit without absolute
certainty. In contrast, meticulous yet slower algorithms might yield superior results at the
expense of time. Briefly, the choice of optimization algorithm should be tailored to the
unique characteristics of the system at hand.

The proposed methods are implemented in the MATLAB software on a personal
computer with an i7 core processor, 3.70 GHz, and 32 GB RAM. Two cases are analyzed,
comparing the proposed algorithm with other evolutionary algorithms.

Case study 1 consists of two parts. Firstly, this paper considers single-objective opti-
mization algorithms for the DG allocation. Thus, we suppose all four objective functions for
solving the DG placement problem separately by running the single-objective optimization
algorithms. The results of this part may be helpful for some decision-makers concerned
with only one objective function.

Secondly, in case study 1, multi-objective optimization algorithms are considered using
the Pareto optimal solution for DG placement in the distribution system. The results of two
and three objective functions simultaneously optimized are presented in 2-dimensional
and 3-dimensional spaces. Moreover, multi-objective optimization is applied, considering
different weight options of the objective functions. Because of the variety in selection, nine
cases are supposed to achieve the objective functions. This part may help decision-makers
find the effectiveness of objective functions to each other and find the best solution in the
specific projects.

In case study 2, this paper solves DG placement by a multi-objective optimization
algorithm that considers different types of DG. In the first part, all the generators are the
same in each simulation. The second part considers the combination of varying DG during
the solving process. Case study 2 may help decision-makers to find the best renewable
energy resources for specific projects.

5.1. Case Study1: Part1—Single-Objective Results

Initially, to find the trade-off frontier’s extreme points, all four objective functions,
namely the voltage deviation, total electrical losses, total emission, and total electrical
energy cost, are optimized individually. In this regard, we should omit the Pareto concept
mentioned in Section 3 (i.e., step 4). We have shown the results of PSO, GA, TLBO, HBMO,
and MQOTLBO algorithms for all considered objective functions in Table 4. This paper
selects the worst, average, and best results from feasible solutions after 50 trials of the
simulation. This table displays the worst, best, and average results indicating the minimum,
maximum, and intermediate obtained non-dominated solutions.
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Table 4. Worst, best, and average results after 50 trials (cost ( f1), voltage deviation ( f2), loss ( f2),
emission ( f4)).

Objective Algorithm Average Best Result Worst Result

f1($) GA [46] 6.531 × 107 6.512 × 107 6.568 × 107

PSO [45] 6.526 × 107 6.501 × 107 6.555 × 107

HBMO [35] 6.517 × 107 6.499 × 107 6.540 × 107

TLBO [35] 6.493 × 107 6.474 × 107 6.511 × 107

MQOTLBO 6.453 × 107 6.433 × 107 6.502 × 107

f2(pu) GA [46] 2.55847 2.56384 2.58964
PSO [45] 2.56217 2.55554 2.57894
HBMO [35] 2.55784 2.54194 2.56985
TLBO [35] 2.52719 2.51515 2.54573
MQOTLBO 2.51102 2.50598 2.53169

f3(kWh) GA [46] 132.7814 129.5982 135.8975
PSO [45] 130.1585 128.9817 132.2548
HBMO [35] 128.4562 128.0254 129.8372
TLBO [35] 127.0255 126.2418 128.2651
MQOTLBO 126.0288 125.0252 127.2222

f4(kg/h) GA [46] 1.22908 × 106 1.21003 × 106 1.25609 × 106

PSO [45] 1.08601 × 106 1.08002 × 106 1.08928 × 106

HBMO [35] 1.08250 × 106 1.07382 × 106 1.08530 × 106

TLBO [35] 1.07601 × 106 1.07225 × 106 1.07912 × 106

MQOTLBO 1.07559 × 106 1.07204 × 106 1.07906 × 106

It is noteworthy that this paper has calculated the results of Table 4 in 50 trials. In
the other analysis of this paper, we have considered 100 trials because obtained results in
fewer trials (i.e., 50) are standard for comparing algorithms in the convergence velocity to
the optimum solution. Also, the obtained results with more trials (i.e., 100) can be used
to determine the superiority of the algorithms’ calculation accuracy. The proof of getting
better outcomes for all objective functions is shown in Table 4.

This paper applies twelve fuel cells in this case. Their economic specification is the
same as shown in Table 5, and their coefficients of emission are as follows: α = 4.285 Kg

hMW2 ,

β = −5.094 Kg
hMW , γ = 4.586 Kg

h , ξ = 1.0× 10−6, and λ = 8.00 MW−1.

Table 5. Economic specification of the implemented DG.

DG Type Fuel Cell Photovoltaic Units Wind Turbine (Small) Wind Turbine (Big)

Rated capacity (kW) 100 100 10 100
Capital cost ($/kW) 3674 6675 3866 1500
Fuel cost ($/kWh) 0.029 0 0 0
Operation and Maintenance
cost ($/kWh) 0.01 0.005 0.005 0.005

Lifetime (year) 10 20 20 20

The location of DG, CPU time, and the best solutions obtained for the four objective
functions are presented in separate tables (Tables 6–9). The results presented in these
tables demonstrate the superior performance of the MQOTLBO algorithm across multiple
objective functions compared to other evolutionary algorithms. For instance, Table 6
illustrates that the MQOTLBO algorithm is approximately eight times faster than GA in
achieving the best total cost solution. The calculation speed of these algorithms varies
for different objective functions. For example, Table 7 demonstrates that the MQOTLBO
algorithm is about four times faster than GA in finding the minimum voltage deviation
solution, while Table 8 shows it is approximately 1.5 times faster in achieving the minimum
loss function solution. Table 9 shows the results of different methods obtained by optimizing
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the emission and the MQOTLBO is the best one among them in calculation speed. It is
worth emphasizing that all comparisons and evaluations were conducted on the same
computer setup, ensuring a fair and unbiased assessment. The obtained results affirm the
MQOTLBO algorithm’s potential as a promising optimization technique for DG location
and related challenges in the field of power distribution systems.

Table 6. Results of different methods obtained by optimizing the cost function.

Method Cost ($) DG Placement (Bus Number) CPU Time (s)

GA [46] 6.508 × 107 1, 2, 3, 13, 21, 29, 31, 33, 34, 44, 52, 53 572.63
PSO [45] 6.480 × 107 1, 2, 3, 14, 21, 29, 31, 33, 34, 44, 52, 53 354.2
HBMO [35] 6.489 × 107 1, 2, 3, 14, 21, 29, 31, 33, 34, 44, 52, 53 102.3
TLBO 6.471 × 107 1, 2, 3, 14, 21, 29, 31, 33, 34, 44, 52, 53 75.26
MQOTLBO 6.432 × 107 1, 2, 3, 14, 21, 29, 31, 33, 34, 44, 52, 53 70.32

Table 7. Results of different methods obtained by optimizing voltage deviation of buses.

Method Voltage Deviation (pu) DG Placement (Bus Number) CPU Time (s)

GA [46] 2.54787 10, 12, 13, 18, 28, 34, 35, 44, 51, 53, 66, 67 445.12
PSO [45] 2.52588 11, 12, 13, 18, 28, 34, 35, 44, 51, 53, 66, 67 226.18

HBMO [35] 2.52325 11, 12, 13, 18, 28, 34, 35, 44, 51, 53, 66, 67 124.1
TLBO 2.51255 11, 12, 13, 18, 28, 34, 35, 44, 51, 53, 66, 67 115.67

MQOTLBO 2.50598 11, 12, 13, 18, 28, 34, 35, 44, 51, 53, 66, 67 110.52

Table 8. Results of different methods obtained by optimizing the total power losses.

Method Power Losses (KWh) DG Placement (Bus Number) CPU Time (s)

GA [46] 128.3258 6, 7, 8, 23, 30, 31, 41, 44, 58, 59, 66, 67 147.21
PSO [45] 127.1574 7, 8, 9, 23, 30, 31, 41, 44, 58, 59, 66, 69 306.81

HBMO [35] 126.2312 6, 8, 9, 23, 30, 31, 41, 44, 58, 59, 66, 67 123.89
TLBO 126.2258 6, 8, 9, 23, 30, 31, 41, 44, 58, 59, 66, 67 110.56

MQOTLBO 125.0184 6, 8, 9, 23, 30, 31, 41, 44, 58, 59, 66, 67 104.74

Table 9. Results of different methods obtained by optimizing the emission.

Method Emission (Kg/h) DG Placement (Bus Number) CPU Time (s)

GA [46] 1.15122× 106 6, 7, 8, 23, 30, 31, 41, 44, 58, 59, 66, 67 444.46
PSO [45] 1.07550× 106 7, 9, 10, 23, 30, 31, 41, 44, 58, 59, 66, 67 252.49

HBMO [36] 1.07241× 106 7, 9, 10, 23, 30, 31, 41, 44, 58, 59, 66, 67 122.78
TLBO 1.07225× 106 7, 9, 10, 23, 30, 31, 41, 44, 58, 59, 66, 67 115.52

MQOTLBO 1.07204× 106 7, 9, 10, 23, 30, 31, 41, 44, 58, 59, 66, 67 110.29

We obtained the location of Fuel cell units by a single-objective MQOTLBO for different
objective functions in the 70-bus test system, as shown in Figure 2.

This paper displays the convergence plot of MQOTLBO in Figure 3. This figure aims
to show the capability of MQOTLBO to convergence. Parts A, B, C, and D of Figure 3
display the convergence of cost, emission, loss, and voltage deviation objective functions.

In this paper, the Friedman test among implemented optimization algorithms proves
the superiority of the proposed algorithm. This paper uses the Friedman test to test
for differences between results groups of optimization algorithms when measuring the
dependent variable (i.e., objective function) is ordinal. Ref. [47] explains the formulation
and coding of the Friedman test. The obtained Qs (i.e., test statistic) for the objective
functions cost, loss, emission, and voltage deviations are 285.996, 276.348, 280.432, and 300,
respectively, for 100 trials (i.e., n = 100), five algorithms (i.e., k = 5), and p-value (the level of
significance) is considered less than 0.00001. The results are significant at p less than 0.10. A
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p-value, or probability value, is a number describing how likely it is that your data would
have occurred by random chance. The level of statistical significance is often expressed as a
p-value between 0 and 1. We refer the interested readers to [47] for finding the definition,
meaning, and formulation of n, p, Q, and k. The Friedman test’s analysis shows that the
best optimization algorithms for this specific optimization problem are MQOTLBO, TLBO,
HBMO, PSO, and GA in order.
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5.2. Case Study1: Part2—Multi-Objective Results

The concept of Pareto optimal solutions can help decision-makers select the best
solution according to the comparing interests. We show the Pareto front obtained by
MQOTLBO in Figure 4. Pareto optimal solutions are well distributed over the trade-off
curves. Still, some objective functions, such as the cost and the power losses, offer some
conflict with each other related to their formulations, as explained in Section 1.2.
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This paper shows the obtained Pareto fronts by the MOPSO Algorithm [48], MOGA [49],
and the proposed algorithm in Figure 5. Solutions of the proposed algorithm dominate the
solutions obtained by MOPSO and MOGA. The proposed algorithm’s diversity is higher
than other approaches because of the Quasi-opposition mechanisms used throughout the
optimization process. We have shown only 2 out of 6 positions in Figure 5 for comparison.
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Simultaneously optimizing three objective functions is shown in Figure 6 using three-
dimensional diagrams. Different configurations are shown in Figure 6 to help the decision-
maker (electric utility) choose the best solution.
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To illustrate the improvement/worsening of each objective function to other ones, we
have shown nine cases in Table 10. Cases I–IV involve single-objective optimization results,
and the other issues are as follows:

Case V-assumed objectives: cost, power losses, and voltage deviation (i.e., f1, f2, and f3).
Case VI-assumed objectives: cost, voltage deviation, and emission (i.e., f1, f2, and f4).
Case VII-assumed objectives: power losses, voltage deviation, and emission (i.e., f2, f3, and f4).
Case VIII-assumed objectives: cost, power losses, and emission (i.e., f1, f3, and f4).
Case IX-assumed objectives: all objective functions (i.e., f1, f2, f3, and f4).
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Table 10. Single-objective and multi-objective results of MQOTLBO in cases with different weights.

Cases
Importance Cost

($)
Power Losses

(KWh)
Voltage Deviation

(PU)
Emission
(Kgr/h)W1 W2 W3 W4

Case I - - - - 6.432 × 107 125.6982 2.5289 1.07903 × 106

Case II - - - - 6.501 × 107 127.4935 2.5801 1.07204 × 106

Case III - - - - 6.433 × 107 125.0184 2.5257 1.07542 × 106

Case IV - - - - 6.457 × 107 126.8010 2.5059 1.07447 × 106

Case V

0.33 0.33 0.33 - 6.4660 × 107 128.8938 2.3800 -
0.2 0.4 0.4 - 6.4443 × 107 125.5460 0.1775 -
0.4 0.2 0.4 - 6.4443 × 107 125.5460 0.3732 -
0.4 0.4 0.2 - 6.4443 × 107 125.5460 0.3732 -

Case VI

0.33 - 0.33 0.33 6.4820 × 107 - 2.5098 1.5100 × 106

0.2 - 0.4 0.4 6.4725 × 107 - 0.3691 1.0772 × 106

0.4 - 0.2 0.4 6.4725 × 107 - 0.3691 1.0752 × 106

0.4 - 0.4 0.2 6.4725 × 107 - 0.1746 1.0762 × 106

Case VII

- 0.33 0.33 0.33 - 135.9335 0.3024 1.0785 × 106

- 0.2 0.4 0.4 - 135.9335 0.3808 1.0785 × 106

- 0.4 0.2 0.4 - 135.9335 0.3708 1.0785 × 106

- 0.4 0.4 0.2 - 133.5985 0.1561 1.0808 × 106

Case VIII

0.33 0.33 - 0.33 7.6062 × 107 150.4555 - 1.0757 × 106

0.2 0.4 - 0.4 6.8058 × 107 148.2527 - 1.0807 × 106

0.4 0.2 - 0.4 6.8059 × 107 126.2527 - 1.0807 × 106

0.4 0.4 - 0.2 6.8057 × 107 130.0764 - 1.0807 × 106

Case IX

0.25 0.25 0.25 0.25 7.6813 × 107 141.9335 1.4031 1.2657 × 106

0.1 0.3 0.3 0.3 7.7172 × 107 139.2145 1.3051 1.1659 × 106

0.3 0.1 0.3 0.3 7.6063 × 107 140.7865 1.2747 1.2554 × 106

0.3 0.3 0.1 0.3 7.5772 × 107 138.8321 1.7014 1.2453 × 106

0.3 0.3 0.3 0.1 7.6270 × 107 133.3472 0.3909 1.2873 × 106

Selection of the best solution: In Table 10, cases I–IV show the results obtained by
the single-objective of the proposed algorithm. In case I, the objective–function was total
cost (f1), and we calculated the other objective–function values when f1 was at the mini-
mum point. Moreover, Cases V–VIII show results obtained by optimizing three objective
functions together.

Clearly, Figure 6 shows case VI of Table 10. Each Pareto optimal solution is an option
assumed by the decision-maker.

The decision-maker of the distribution system (i.e., electricity utility) determines the
weight factors for objective functions. In this determination, some issues are considered.
First of all, the condition of the distribution system is the issue. For example, suppose the
distribution system has a considerable amount of voltage deviation problem. In that case,
the decision-maker to solve this problem selects a more significant weight factor voltage
deviation compared to other objective functions because solving this problem is more
important for this specific decision-maker. Secondly, the condition of the decision-maker or
consumer is the issue. For example, suppose the decision-maker needs more benefits from
selling electricity. In that case, the decision-maker determines a more significant weight
factor for cost compared to other objective functions.

The system operator can adopt one of the optimal solutions for the particular frame
based on its preferences over the objective functions. After obtaining all Pareto optimal
solutions based on specific preferences, the decision-maker must select the best compromise
solution. After applying the MQOTLBO to generate Pareto sets, the choice of the best-
compromised solution performs as follows:

Nµ(l) =
∑n

i=1 wi × µli

∑m
l=1 ∑n

i=1 wi × µli
(28)
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where m is the number of non-dominated solutions, n is the number of objective functions,
and wi is the weight factor for the objective-function number k. It is noteworthy that the
decision-maker should determine the importance of the objective function, such as Table 10,
i.e., ∑4

i wi = 1.
This paper proposed selecting best-compromise solutions among all Pareto optimal

solutions, as shown in Table 10. The main points of the obtained results are as follows:

- Comparing the obtained values of objective functions in Cases IV and IX-I shows that
the voltage deviation value of Case IX-I (i.e., 1.4031) is lower than the voltage deviation
of Case IV (i.e., 2.5059). Still, three other objective functions (i.e., cost, power loss,
and emission) of Case IV are lower than Case IX–I. It means that the three objective
functions’ worsened values in Case IV occur due to the reduction of voltage deviation
in Case IX-I.

- The first and second objective functions in case V have no conflict because when w1
and w2 are altered (decreased or increased), the objective functions do not change.

- The objectives related to cost or power losses have the same behavior. The results of
Cases I, II, III, IV, and V have proved this claim. In Cases I and III, cost and power
losses have the same behavior. It means that when we minimize either cost or power
loss individually, the other one is also minimized.

- The cost and emission objective functions are conflicting with others. In Cases I, II, III,
and IV, when the cost function is improved, the emission function is worsened and
vice versa.

5.3. Case Study2: Part1—SAME Generators

This paper presents the effects of changing DG types in the second case study’s
proposed optimization problem. We show results obtained by employing 10 kW and
100 kW wind turbines, photovoltaic units, and fuel cell units in Table 11. Their economic
specification is the same as shown in Table 3. It is noteworthy that we considered that
photovoltaic units and wind turbines can generate power continuously.

Table 11. Comparison of using different types of DG.

DG Type Cost ($) Voltage Deviation (pu) Power Losses (kWh) Emission (kg/h)

10 kW Wind Turbine 6.884 × 107 2.885497 91.1902 0
100 kW Wind Turbine 300.361 × 107 2.124123 144.9812 0
Photovoltaic 12.919 × 107 2.169854 121.6812 0
Fuel cell with CHP 6.437 × 107 2.3854 111.1562 1.07305 × 106

As shown in Table 11, when all 12 DG are fuel cell units, the cost function is the
minimum value because of the lower capital cost of fuel cell units than the other used
DG. On the other hand, the other used DG does not have emissions, while fuel cell units
have. Some scholars have generally criticized intermittent generating power by renewable
resources such as wind and solar power. Therefore, we should combine them with other
continuous power generators. Using wind turbines or photovoltaic units as all power
generators in this part is that obtained simulation results can help the decision-makers
select a combination of renewable resources.

5.4. Case Study2: Part2—The Combination of Generators

This case study applies the combination of fuel cell units, photovoltaic units, and small
wind turbines. In this regard, we assumed eight fuel cell units, two photovoltaic units, and
two small wind turbines in this case study. The maximum generation of the small wind
turbine, photovoltaic unit, and fuel cell unit are 10 kW, 100 kW, and 100 kW.

This paper assumed that small wind turbines could make power all the time and
photovoltaic units could generate power only daily from 6:00 a.m. to 6:00 p.m. And also,
other DG should compensate for the lack of power generation of photovoltaic companies.
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This paper shows the current case study results in Table 12. We offer only ten positions
of 104 calculated non-dominated solutions in Table 12. In this Table, we show the objective
functions’ optimum values optimized separately in boldface. The current case study results
show a slight increase in the cost-objective function, a decrease in the emission objective
function, and a bit of change in the losses and voltage objective functions. The MQOTLBO
algorithm obtains the results of this table.

Table 12. Results for all objective functions and DG placement in the proposed system.

Cost ($) Voltage Deviation
(per unit)

Power Losses
(kWh)

Emission
(ton/h)

Location of Fuel
Cell Units

Location of
Photovoltaic Units

Location of
Wind Units

8.426 × 107 2.569853 134.6857 1.024 × 106 4,7,12,14,21,29,31,33 22,69 56,57
8.487 × 107 2.552981 135.7412 1.072 × 106 5,11,22,34,35,44,47,49 15,66 56,60
8.506 × 107 2.694219 119.5599 1.065 × 106 6,8,18,23,31,33,39,48 66,69 5,26
8.518 × 107 2.727727 116.9998 1.03 × 106 9,23,30,31,41,44,58,59 22,45 57,60
8.525 × 107 2.457199 126.7923 1.069 × 106 11,18,40,47,50,59,62,64 45,66 32,35
8.510 × 107 2.777587 127.1248 1.066 × 106 11,19,40,44,56,57,60,64 15,45 54,60
8.522 × 107 2.565555 128.7498 1.014 × 106 11,17,43,44,52,57,62,64 15,22 5,60
8.527 × 107 2.647498 129.7459 1.061 × 106 8,9,11,13,50,59,65,69 22,45 60,64
8.533 × 107 2.384455 135.1289 1.051 × 106 4,8,11,22,41,46,58,66 45,69 32,57
8.542 × 107 2.484489 129.3355 1.075 × 106 7,12,25,33,44,52,67,69 22,66 54,56

The optimum values of objective functions, which are optimized separately, are shown
in boldface.

The overall analysis of the results shows the superiority of the proposed method in
calculation velocity and accuracy compared to the benchmark algorithms. These superiori-
ties are because of the proposed modification that makes the parameters of the proposed
algorithm needless to tuning during the optimization process and makes the population of
non-dominated solutions more than before. Therefore, the proposed method could achieve
the optimum solution more accurately and faster.

Generalizing that finding, everyone could expect that the proposed optimization algo-
rithm may solve other optimization problems with single or multi-objectives. Additionally,
the electric utility can use the proposed optimization algorithm to plan the installation
of the future DG in the optimum location to improve power quality issues. For example,
in Shiraz, a city located in Iran, the electric utility wants to install DG on the distribution
system while considering the hosting capacity of the distribution system because of the
interests of investors and customers to install DG as well as improving the voltage profile
of the distribution system by using the integration of DG. In this case, the proposed opti-
mization algorithm can help the electric utility find the best places and sizes of DG to allow
the investors and customers to install DG.

Although this paper has proven the proposed method’s feasibility issues, some other
support material from the practical perspective should be considered. The most important
one is the complexity of the software to develop. Therefore, this paper suggests performing
estimating software testing complexity [48] before implementing it practically. In addition,
this method depends on personal factors such as relying on the print length, trust in the
programmer’s style for writing source code, and how many statements one puts in one
line. The estimating software testing complexity details are available in [50].

This paper’s results show that the proposed algorithm performs well in solving
the DG placement problem. However, the No Free Lunch Theorem shows that no one
algorithm is appropriate for all models. In this regard, the next step will be a sensitive and
parameter analysis of the results to limit the proposed algorithm’s limitation in solving the
optimization problems. Moreover, researchers can find the most valuable contributions
in those that introduced nonlinear mathematical models and convexify them using some
second-order cone programming (SOCP) and soft open point (SDP) relaxations for the 3-Ph
unbalanced models.
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6. Conclusions

A fast and accurate new hybrid multi-objective optimization algorithm (i.e., MQOTLBO)
has been presented to handle complex, large-scale energy management problems, facilitate
real-time decision-making, adapt to changing conditions, and optimize system performance.
It is a Pareto-based optimization that leads to the best compromise solution by applying
a fuzzy decision-making tool. The proposed algorithm has been employed for siting and
sizing DG in the distribution network to optimize four objective functions.

Simulation results prove the proposed algorithm’s capability to minimize the cost
of generation, losses, voltage deviations, and emission of greenhouse gasses in the test
distribution system. The ability to obtain several Pareto optimal solutions to help the
decision-maker select the best solution based on company preference and operating condi-
tions of the policy are the main advantages of the proposed algorithm. The results obtained
by other evolutionary algorithms such as PSO, GA, HBMO, and original TLBO compared
with the suggested algorithm results proved the superiority of MQOTLBO in calculation
speed and accuracy. For future planning of the distribution system, the electric utility
can use the proposed optimization algorithm to benefit DG integration with the best size
and location. In this regard, the electric utility should primarily consider the distribution
system’s hosting capacity to install DG. They can then use the proposed optimization
algorithm based on objective functions and determined DG.

In future research, integrating the proposed optimization algorithm with machine
learning techniques can be explored to reduce human decision-making errors. Additionally,
comparing the performance of the new optimization algorithms with the proposed method
can lead to the discovery of more accurate and efficient optimization algorithms.
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Abbreviations

Ar Rate of annual interest
a, b Two real numbers (b is bigger than a)
Cap The capacity of the generator [kW]
C f c Summation Cost1gen and Cost2gen when the generator is a

fuel cell unit
Cost Capital cost [$/kW]
Cost1gen The capital cost of the generator in the lifetime based on capacity,

annual interest, and load factor
Cost2gen Summation of fuel cost and operation and maintenance cost
C(p) Cost function
Cpv Summation Cost1gen and Cost2gen when a generator is a

photovoltaic unit
costsub Cost of substation
Cwind Summation Cost1gen and Cost2gen when the generator is

a wind turbine
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En Emission of nth DG
Et The total emission of greenhouse gases from one kind of DG unit
Et f c The total emission of greenhouse gases from fuel cell units
Etpv The total emission of greenhouse gases from photovoltaic units
Etwind The total emission of greenhouse gases from wind turbines
f1(X), f2(X), f3(X), f4(X) Total electricity generation cost, bus voltage deviation, power loss,

and emission functions (objective functions)
F1(X),F2(X), F3(X),F4(X) Minimized total electricity generation cost, bus voltage deviation,

power loss, and emission functions
Fcost Fuel cost [$/kWh]
fp (X), fq(X) pth and qth objective functions
f max
x , f min

x Upper and lower limits of fx(X)
fx(X) The xth objective function
H A constant between 0 and 1
Im Actual current mth branch of the distribution system
jrr Jumping rate
KWn

DG The capacity of the nth DG
L Number of objective functions in multi-objective problems
LF Load factor
LT Lifetime [year]
α Any value for which the normal distribution function is required
α1 Minimum of membership function of ith feasible solution
α2 Minimum of membership function of the new feasible solution
αn,βn,γn,γn,ξn Emission characteristics coefficient of nth DG
∆t Time step [year]
µ Membership function
Nbus Maximum number of buses
N f c Number of fuel cell units
Nlt The lifetime of DG units
Nnb Number of distribution system branches
Npv Number of photovoltaic units
Nwind Number of wind units
O&Mcost Operation and maintenance cost of DG units
p Active power [kW]
Pf c The power generated by the fuel cell unit
Pload Total load power
Pn The electrical output of the nth generator
Ppv The power generated by the photovoltaic unit
Psub Value of injected active power to the distribution system
Pwind The power generated by the wind turbine
Qsub Price of injected active power to the distribution system
Rm Resistance mth branch of the distribution system
var2 Variance

Vm The magnitude of the voltage at mth bus
Vmax,Vmin Upper and lower voltage limits
Vnom The nominal voltage of the mth bus of the distribution system
Vr Voltage magnitude of the mth bus of the distribution system
X Vector of location and power for DG units
Xnew New learner (new member of the population)
Xold Old learner (an old member of the population)
Xdi f f

r the contrast between the teacher’s learning Level and the mean
of the class at any iteration

XNew
r+1 New teacher’s learning level in iteration r + 1
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XOld
r Teacher’s learning level in iteration r

Xr Matrix of location (discrete numbers) and size (continuous
numbers) of DG units

Xx Learner x (feasible solution x)
Xz Learner z (feasible solution z)
Xsa,v

K SA vector (with K vector component for vth member of population)
Xv

K Feasible solution vector (with K vector component for vth
member of population)

Xnew
K New generated members of the population

Xnew
K+1 Equal to Xnew

K or Xv
K based on the mentioned conditions

Z Any real number between [a,b]
z∗ Opposite number
zqo

d Quasi opposite point

Appendix A. Optimization Techniques

(a) Pareto concept for a multi-objective approach: The optimization algorithm may
face a set of optimal trade-offs between the different objective functions. Therefore, in
multi-objective optimization issues, the idea of optimality is supplanted with Pareto op-
timality [51,52]. A Pareto optimal solution is a solution that any other solution could not
dominate. A vector of decision variables X*εF is Pareto optimal if there does not exist
another XεF such that:

F = [ f1(X) f2(X) . . . fo(X)] (A1)

fp (X) ≤ fp (X∗) f or all p = 1, 2, . . . , o (A2)

fq(X) < fq(X∗) f or at least one q 6= p (A3)

where o is the number of objective functions, and X is a feasible solution. In the minimization
problem, solution X dominates the solution X* if both conditions of Equations (A2) and (A3).

(b) The Best compromise solution method: The decision-maker needs to select the
best compromise solution among the Pareto sets after having the Pareto-optimal set of
non-dominated results. Therefore, we suggest a fuzzy concept to normalize the objective
functions. A membership function represents the ith objective function (µ f

x(X)) define
as [6]:

µ
f
x(X) =


f max
x − fx(X)

f max
x − f min

x
f or f min

x ≤ fx(X) ≤ f max
x

0 f or fx(X) ≥ f max
x

1 f or fx(X) ≤ f min
x

(A4)

The membership function comprises lower and upper restrictions, as shown in
Figure A1. It is a strictly monotonically decreasing and continuous function [9]. The
lower and upper limits (i.e., f min

x and f max
x ) of each objective function are established to

produce a membership function µ
f
x(X) for each objective function (i.e., fx(X)).
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Appendix B. Original TLBO Algorithm

This algorithm is based on a teaching-learning concept aiming to increase the learner’s
knowledge. The population members of this optimization algorithm are learners of a class.
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This algorithm obtains the global solutions without any specific control parameters by
generating generation numbers and population size [29]. To achieve the original TLBO
algorithm’s primary function, assume two different classes with two dissimilar teachers
(i.e., T1 and T2) and the same cleverness level learners.

We show the distribution of students’ scores in Figure A2a, in which M1 and M2 are
the mean scores of class-1 and class-2. Class-2 has gained better results than class-1.
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This algorithm assumes that the best solution, fitness value, design variables, and
optimization population are teachers, learners’ scores, different class subjects, and students’
groups. We have modeled the obtained students’ ratings of class-A with MA in Figure A2b.
We select the best student as the teacher (i.e., TA in Figure A2b).

The teacher’s effort is to increase the class mean from MA to a new mean (i.e., MB in
Figure A2b), which means improving learners’ knowledge. After this step, a new teacher
with more excellent knowledge than the learners require for the class (i.e., TB in class-B,
who is a knowledgeable population learner).

The learners’ score distribution is calculated as follows:

f (α) =
1

var
√

2π
e
−(α−mean)2

2var2 (A5)

The algorithm has two learning modes: the teacher and learner phases.
Teacher phase: This phase is part of the algorithm related to the learners’ learning

from the teacher. In this phase, the teacher attempts to increase the class’s mean result
towards his/her insight level. We consider Nr and Ir as the class’s mean results and teacher
of the iteration number r [51]. Also, we upgrade the solution by the contrast between the
teacher’s insight level (i.e., Ir) and the mean result of the class (i.e., Nr) at any iteration that
can be shown as follows:

Xdi f f
r = rand() ∗ (Ir − Rs ∗ Nr) (A6)

Rs represents the teaching factor for changing the class’s mean result. The R_s mag-
nitude is either 1 or 2, which is obtained randomly with equal probability based on the
suggestion of Ref. [32]. After conducting several experiments on many benchmark func-
tions, the authors of Ref. [32] concluded that the algorithm performs better if the R_s value
is selected as either 1 or 2. For the same reason, the rand() is suggested to be considered a
random number in the range ([0, 1]).

We modify the existing solution as follows:

XNew
r+1 = XOld

r + Xdi f f
r (A7)

Learner phase: This phase increases the learner’s knowledge through class interactions.
Randomly, the learners cooperate during class activities [52].
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We can design the mathematical model by choosing two students Xx and Xz, randomly
where x 6= z. We took the objective functions into account by Xx and Xz and compared
them to solve the single-objective problem. Xnew can be obtained as follows:{

Xnew = Xold + rand() ∗ (Xx − Xz) f (Xx) < f (Xz)
Xnew = Xold + rand() ∗ (Xz − Xx) otherwise

(A8)

Appendix C. Test System Specification

This paper considers a standard test system that is shown in Figure A3. It is an
11-kV radial distribution system having 70 nodes, 69 branches, two substations, and four
feeders [36]. The system data is shown in Table A1.
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Table A1. Test system Data.

Branch
Number

Sending
Bus

Receiving
Bus R (Ω) X (Ω) p (kW) Q (kVAr)

1 1 2 1.097 1.074 100.0 90.0
2 2 3 1.463 1.432 60.0 40.0
3 3 4 0.731 0.716 150.0 130.0
4 4 5 0.366 0.358 75.0 50.0
5 5 6 1.828 1.790 15.0 9.0
6 6 7 1.097 1.074 18.0 14.0
7 7 8 0.731 0.716 13.0 10.0
8 8 9 0.731 0.716 16.0 11.0
9 4 10 1.080 0.734 20.0 10.0

10 10 11 1.620 1.101 16.0 9.0
11 11 12 1.080 0.734 50.0 40.0
12 12 13 1.350 0.917 105.0 90.0
13 13 14 0.810 0.550 25.0 15.0
14 14 15 1.944 1.321 40.0 25.0
15 7 68 1.080 0.734 100.0 60.0
16 68 69 1.620 1.101 40.0 30.0
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Table A1. Cont.

Branch
Number

Sending
Bus

Receiving
Bus R (Ω) X (Ω) p (kW) Q (kVAr)

17 1 16 1.097 1.074 60.0 30.0
18 16 17 0.366 0.358 40.0 25.0
19 17 18 1.463 1.432 15.0 9.0
20 18 19 0.914 0.895 13.0 7.0
21 19 20 0.804 0.787 30.0 20.0
22 20 21 1.133 1.110 90.0 50.0
23 21 22 0.475 0.465 50.0 30.0
24 17 23 2.214 1.505 60.0 40.0
25 23 24 1.620 1.110 100.0 80.0
26 24 25 1.080 0.734 80.0 65.0
27 25 26 0.540 0.367 100.0 60.0
28 26 27 0.540 0.367 100.0 55.0
29 27 28 1.080 0.734 120.0 70.0
30 28 29 1.080 0.734 105.0 70.0
31 70 30 0.366 0.358 80.0 50.0
32 30 31 0.731 0.716 60.0 40.0
33 31 32 0.731 0.716 13.0 8.0
34 32 33 0.804 0.787 16.0 9.0
35 33 34 1.170 1.145 50.0 30.0
36 34 35 0.768 0.752 40.0 28.0
37 35 36 0.731 0.716 60.0 40.0
38 36 37 1.097 1.074 40.0 30.0
39 37 38 1.463 1.432 30.0 25.0
40 32 39 1.080 0.734 150.0 100.0
41 39 40 0.540 0.367 60.0 35.0
42 40 41 1.080 0.734 120.0 70.0
43 41 42 1.836 1.248 90.0 60.0
44 42 43 1.296 0.881 18.0 10.0
45 40 44 1.188 0.807 16.0 10.0
46 44 45 0.540 0.367 100.0 50.0
47 42 46 1.080 0.734 60.0 40.0
48 35 47 0.540 0.367 90.0 70.0
49 47 48 1.080 0.734 85.0 55.0
50 48 49 1.080 0.734 100.0 70.0
51 49 50 1.080 0.734 140.0 90.0
52 70 51 0.366 0.358 60.0 40.0
53 51 52 1.463 1.432 20.0 11.0
54 52 53 1.463 1.432 40.0 30.0
55 53 54 0.914 0.895 36.0 24.0
56 54 55 1.097 1.074 30.0 20.0
57 55 56 1.097 1.074 43.0 30.0
58 52 57 0.270 0.183 80.0 50.0
59 57 58 0.270 0.183 240.0 120.0
60 58 59 0.810 0.550 125.0 110.0
61 59 60 1.296 0.881 25.0 10.0
62 55 61 1.188 0.807 10.0 5.0
63 61 62 1.188 0.807 150.0 130.0
64 62 63 0.810 0.550 50.0 30.0
65 63 64 1.620 1.0101 30.0 20.0
66 62 65 1.080 0.734 130.0 120.0
67 65 66 0.540 0.367 150.0 130.0
68 66 67 1.080 0.734 25.0 15.0
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