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Abstract: Electromembrane processes underlie the functioning of electrodialysis devices and nano-
and microfluidic devices, the scope of which is steadily expanding. One of the main aspects that
determine the effectiveness of membrane systems is the choice of the optimal electrical mode. The
solution of this problem, along with experimental studies, requires tools for the theoretical analysis of
ion-transport processes in various electrical modes. The system of Nernst–Planck–Poisson and Navier–
Stokes (NPP–NS) equations is widely used to describe the overlimiting mass transfer associated
with the development of electroconvection. This paper proposes a new approach to describe the
electrical mode in a membrane system using the displacement current equation. The equation for
the displacement current makes it possible to simulate the galvanodynamic mode, in which the
electric field is determined by the given current density. On the basis of the system of Nernst–Planck,
displacement current and Navier–Stokes (NPD–NS) equations, a model of the electroconvective
overlimiting mass transfer in the diffusion layer at the surface of the ion-exchange membrane in
the DC current mode was constructed. Mathematical models based on the NPP–NS and NPD–NS
equations, formulated to describe the same physical situation of mass transfer in the membrane
system, differ in the peculiarities of numerical solution. At overlimiting currents, the required
accuracy of the numerical solution is achieved in the approach based on the NPP–NS equations with
a smaller time step than the NPD–NS equation approach. The accuracy of calculating the current
density at the boundaries parallel to the membrane surface is higher for the model based on the
NPD–NS equations compared to the model based on the NPP–NS equations.

Keywords: ion-exchange membrane; electroconvection; galvanodynamic mode; Nernst–Planck–Poisson
and Navier–Stokes equations; displacement current

1. Introduction

Electromembrane processes underlie the functioning of electrodialysis devices and
nano- and microfluidic devices, the scope of which is steadily expanding [1–4]. The key
principle of the operation of these systems is the selective transport of ion-exchange mem-
branes, that is, high permeability for counterions and obstruction of the movement of
co-ions [5]. The current–voltage characteristic (CVC) of a system with an ion-exchange
membrane has a non-linear shape, mainly due to the phenomena of concentration polariza-
tion, current-induced convection and water dissociation [6,7]. The following modes are
typically distinguished on the CVC of the membrane system (Figure 1) [8–13]:

• Underlimiting current: at low current densities, the concentration of ions in the near-
membrane region is quite high, and the CVC is in a linear shape in this region. The
selective transfer of counterions in the membrane during the flow of the electric
current through the ion-exchange membrane reduces the concentration of ions on one
side of the membrane and increases on the other (the phenomenon of concentration
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polarization). As the current density increases, almost complete depletion of ions in
the region near the membrane surface and the transition of the system to the limiting
state are observed [14,15].

• Limiting current: almost complete depletion of ions near the membrane surface is
reflected by the current saturation, and the CVC in this area has the form of a plateau
with a slight slope [16,17].

• Overlimiting current: a secondary increase in current indicates an increase in the
conductivity of the depleted region. For the diluted electrolyte solutions considered
in this work, the main mechanism that destroys the depleted region and provides an
overlimiting mass transfer is electroconvection, which is confirmed by many theoreti-
cal [18–21] and experimental [8–13] studies. Electroconvection is the entrainment of
liquid molecules by ions that form the space charge at the ion-selective surface under
the action of the electric force [22]. During the passage of the overlimiting current,
when a macroscopic space charge region (SCR) is formed at the solution/membrane
interface, the intensity of electroconvection increases [23].

Computation 2023, 11, x FOR PEER REVIEW 2 of 24 
 

 

• Underlimiting current: at low current densities, the concentration of ions in the near-

membrane region is quite high, and the CVC is in a linear shape in this region. The 

selective transfer of counterions in the membrane during the flow of the electric cur-

rent through the ion-exchange membrane reduces the concentration of ions on one 

side of the membrane and increases on the other (the phenomenon of concentration 

polarization). As the current density increases, almost complete depletion of ions in 

the region near the membrane surface and the transition of the system to the limiting 

state are observed [14,15]. 

• Limiting current: almost complete depletion of ions near the membrane surface is 

reflected by the current saturation, and the CVC in this area has the form of a plateau 

with a slight slope [16,17]. 

• Overlimiting current: a secondary increase in current indicates an increase in the con-

ductivity of the depleted region. For the diluted electrolyte solutions considered in 

this work, the main mechanism that destroys the depleted region and provides an 

overlimiting mass transfer is electroconvection, which is confirmed by many theoret-

ical [18–21] and experimental [8–13] studies. Electroconvection is the entrainment of 

liquid molecules by ions that form the space charge at the ion-selective surface under 

the action of the electric force [22]. During the passage of the overlimiting current, 

when a macroscopic space charge region (SCR) is formed at the solution/membrane 

interface, the intensity of electroconvection increases [23]. 

 

Figure 1. Schematic typical CVC of a system with an ion-exchange membrane. The dashed lines show 

the changes in the CVC modes: underlimiting, limiting current (ilim) plateau, overlimiting and over-

limiting with chaotic current oscillations (grey color schematically shows the range of oscillations). 

Thus, one of the main aspects that determine the effectiveness of the use of membrane 

systems is the choice of the optimal electrical mode. The solution for this problem, along 

with experimental studies, requires tools for the theoretical analysis of ion-transport pro-

cesses in various electrical modes. 

To model mass transfer processes in electromembrane systems, the system of Nernst–

Planck–Poisson and Navier–Stokes (NPP–NS) equations is widely used, which provides a 

comprehensive description of the problem [22,24–26]. The Nernst–Planck equations de-

scribe the transport of ions in an electrolyte solution through diffusion, migration and con-

vection. The Nernst–Planck equation was derived for dilute solutions and requires the dif-

fusion coefficient and ion mobility to be specified, which are assumed to be constant. A de-

tailed review of other limitations of the Nernst–Planck equations can be found in [27]. The 

Poisson equation describes the distribution of the electric field, taking into account the vio-

lation of the electrical neutrality of the solution and the formation of SCR near the membrane 

surface due to its permselectivity [23,28]. The flow velocity of the electrolyte solution is de-

termined by the Navier–Stokes equation in the assumption of the constant density and vis-

cosity of the liquid. The Navier–Stokes equations take into account the action of pressure 

changes, viscous forces and a force acting on a fluid element [29]. 

Numerical modeling of overlimiting mass transfer based on the NPP–NS equations 

made it possible to obtain detailed information on the development of electroconvection 
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Thus, one of the main aspects that determine the effectiveness of the use of mem-
brane systems is the choice of the optimal electrical mode. The solution for this problem,
along with experimental studies, requires tools for the theoretical analysis of ion-transport
processes in various electrical modes.

To model mass transfer processes in electromembrane systems, the system of Nernst–
Planck–Poisson and Navier–Stokes (NPP–NS) equations is widely used, which provides
a comprehensive description of the problem [22,24–26]. The Nernst–Planck equations
describe the transport of ions in an electrolyte solution through diffusion, migration and
convection. The Nernst–Planck equation was derived for dilute solutions and requires the
diffusion coefficient and ion mobility to be specified, which are assumed to be constant. A
detailed review of other limitations of the Nernst–Planck equations can be found in [27].
The Poisson equation describes the distribution of the electric field, taking into account
the violation of the electrical neutrality of the solution and the formation of SCR near the
membrane surface due to its permselectivity [23,28]. The flow velocity of the electrolyte
solution is determined by the Navier–Stokes equation in the assumption of the constant
density and viscosity of the liquid. The Navier–Stokes equations take into account the
action of pressure changes, viscous forces and a force acting on a fluid element [29].

Numerical modeling of overlimiting mass transfer based on the NPP–NS equations
made it possible to obtain detailed information on the development of electroconvection in
systems with ion-exchange membranes: the influence of forced flow on the height [21,30],
speed [31] and state [32–34] of the electroconvective vortex; the calculation of the CVC of
the flow-through electrodialysis membrane cells, taking into account overlimiting mass
transfer caused by electroconvection [20]; the influence of the potential drop on the mode
of electrokinetic instability [35]; statistical analysis of electroconvective flow [36]; the
calculation of the trajectory of particles that visualize the dynamics of electroconvective
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flow [37]; development of electroconvection during pulsed electric field electrodialysis [38];
the study of the coupling between buoyancy forces and electroconvective instability [39];
and many others results.

The electrical mode in membrane systems can be determined either by setting the current
density (galvanodynamic mode) or by setting the potential drop (potentiodynamic mode).
When modeling the potentiodynamic mode, to solve the Poisson equation, the potential drop
is set at the boundaries of the region under consideration (parallel to the membrane surface),
which are assumed to be equipotential [18–21,30–42]. When modeling the galvanodynamic
mode, one of these boundaries is assumed to be equipotential (usually a zero potential is fixed
on it), and on the other, a boundary condition is set that relates the normal derivative (to the
membrane surface) of the potential and the given current density [28,43–50].

J. Manzanares et al. [28], in order to numerically simulate ion transport in a system
including an ion-exchange membrane and two adjacent diffusion layers, built a 1D model
using a system of NPP equations with a boundary condition connecting the mixed deriva-
tive of the electric potential and the specified current density. This relation was obtained by
expressing the displacement current term from the equation for the total current. Based on
the solution of the NPP equations using this boundary condition, studies of the evolution of
the structure of diffusion layers adjacent to the ion-exchange membrane [28], the impedance
of the membrane system [43], and other problems for the galvanodynamic mode were
successfully carried out.

In [44], a similar boundary condition was proposed for modeling the galvanodynamic
mode, also obtained from the equation for the total current, but the spatial derivative of the
potential was expressed from the conduction current term. This boundary condition directly
connects the normal derivative of the potential and the specified current density. Using
a 1D mathematical model based on the NPP equations and this boundary condition, the
ion concentrations, potential, space charge density and chronopotentiogram of the depleted
diffusion layer at the surface of the ion-exchange membrane were calculated, taking into
account the formation of an extended SCR at overlimiting DC currents [44]. In [49], the model
of ion transport in a 1D section of a desalination channel formed between anion- (AEM) and
cation-exchange (CEM) membranes is formulated and implemented on the basis of the NPP
equations and the galvanodynamic boundary condition. This model made it possible to study
the dynamics of the extended SCRs formed at the AEM and CEM under the action of the
DC current [49]. Due to the simplicity of the implementation of this form of galvanodynamic
boundary condition, 2D models were built on its basis in the form of a boundary value
problem for the NPP–NS system of equations, which made it possible to theoretically study
the chronopotentiograms of homogeneous [45,47] and heterogeneous [46] membranes, taking
into account the development of electroconvection, as well as to study the structure of the
electroconvective flow developing near the surfaces AEM and CEM in the electrodialysis
desalting channel under the action of overlimiting DC currents [50].

Y. Green in [48] performed 1D modeling of ion transport in the diffusion layer at the
membrane surface using the NPP equations and galvanodynamic boundary condition. The
boundary condition applied in this work is similar to the boundary condition from [44]
but is formulated for a symmetric binary electrolyte solution with identical diffusion
coefficients. In [48], the galvanodynamic boundary condition is set at the boundary of the
diffusion layer with the bulk of the solution; therefore, the terms of the boundary condition
associated with ion concentration gradients are discarded (they are negligible when the
diffusion coefficients are equal).

In this case, the error in calculating the gradients of the concentration and potential
fields at the boundary at which the condition that determines the current density is specified
significantly affects the accuracy of calculating the distribution of the electric field.

In the Poisson equation, a small parameter stands at the highest spatial derivative
and determines the appearance of the boundary layer at the solution/membrane interface,
which is characterized by a large electric potential gradient. The thickness of the boundary
layer is of the order of the Debye length [18], which is several orders of magnitude smaller
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than the typical size of electromembrane systems. The multiscale nature of the problem of
ion transport in electromembrane systems determines its significant numerical complexity.
Therefore, the solution of the transport problem in the boundary layer is expensive and
requires proper mesh refinement.

Another approach to modeling the galvanodynamic mode in problems of ion transport
in membrane systems is to determine the electric field strength based on the equation for the
total current, that is, the Nernst–Planck equations are solved together with the equation for
the displacement current (NPD). Replacing the Poisson equation with the equation for the
displacement current was first performed by Cohen and Cooley [51] in order to calculate the
problem of ion transport at a given current density in a completely mechanically permeable
membrane, without describing its other physical properties. Later, Brumleve and Buck [52]
calculated the frequency characteristics of the impedance of a permselective membrane at a
DC underlimiting current based on the system NPD equations. Urtenov M.Kh. et al. [53–55]
used the equation for the electric field strength in the decomposition of the non-stationary
system of NPP equations; the decomposition system of equations is convenient for deriving
various simplified models and applying asymptotic methods [54,55].

In recent work [56], based on the mathematical model in the form of the boundary
value problem for the system of NPD equations, concentration profiles and electric field
strengths were calculated in a depleted diffusion layer near the surface of an ion-exchange
membrane, as well as in the cross-section of a desalination channel under the action of
an overlimiting DC current. It was shown that this approach allows one to describe the
formation of the extended SCR, as well as the approach based on the NPP equations.
The equation for the displacement current contains only the time derivative and does
not require the determination of boundary conditions [51,52,56]. In the equation for the
displacement current, the small parameter stands at the time derivative of the electric field
strengths. For this reason, numerical calculations based on the NPD equations differ from
those based on the NPP equations by a longer calculation time and less error for the same
values of the parameters [56]. In [51,52,56], 1D cases of model geometry are considered; the
flow of an electrolyte solution is either not considered or is assumed to be laminar.

The aim of this work is to develop a 2D mathematical model of mass transfer based
on the Nernst–Planck, displacement current and Navier–Stokes (NPD–NS) equations,
which take into account the development of the electroconvective flow under the action of
overlimiting currents. Also, the work is devoted to the study of the possibility of calculating
with high accuracy the characteristics of mass transfer using this model.

The paper is organized as follows. The Methods section describes the mathematical
formulation of the 2D model of electroconvective overlimiting mass transfer in the depleted
diffusion layer near the surface of the ion-exchange membrane based on the NPD–NS
system of equations, and it provides an implementation of the model. The Results and
Discussion section presents the results of a series of calculations of mass transfer charac-
teristics for the underlimiting, limiting and overlimiting current densities based on the
NPD–NS models; validation of the NPD–NS model is performed by comparing the mod-
eling results with the results of the model known in the literature based on the NPP–NS
equations; estimates of the error and calculation time for the NPD–NS and NPP–NS models
are given. The conclusion contains the conclusions and prospects for the development of
the proposed approach.

2. Methods
2.1. Modeling Assumptions

The main subject of this study is the methods of mathematical description of overlimiting
mass transfer, taking into account the formation of SCR and the development of electroconvec-
tion in the electrolyte layer near the membrane surface under the action of an overlimiting DC
current; therefore, we consider a depleted diffusion layer that is formed near the CEM surface
in an electrodialysis desalination channel. The membrane is assumed to be homogeneous
with a smooth surface and a uniform distribution of the concentration of fixed charges. The
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ion-selective properties of the membrane, to which the diffusion layer adjoins, are specified
by the boundary conditions. The transfer of water across the membrane is not taken into
account. Assume that the channel is short enough so that the diffusion layer thickness is
small compared to the intermembrane distance and approximately constant in the tangential
direction [27]. The density, temperature and dielectric constant of the solution are assumed to
be constant; chemical reactions are not considered.

2.2. Model Formulation

Figure 2 shows the geometry of the considered diffusion layer with thickness δ and
length L. The electrical mode is determined by the current density i(t).
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Figure 2. Geometry of the model of mass transfer in a depleted diffusion layer near the surface of a
cation-exchange membrane (CEM). Electroconvective vortices and concentration profiles (cations, c1,
and anions, c2) are schematically shown. A current of density i flows in the system.

The system of NPP–NS equations for a binary electrolyte solution is written as fol-
lows [18,20]:

∂
→
V

∂t
+ (
→
V∇)

→
V = − 1

ρ0
∇P + ν∇2

→
V − 1

ρ0
F(z1c1 + z2c2)∇ϕ, (1)

div
→
V = 0, (2)

→
j n = − F

RT
znDncn∇ϕ− Dn∇cn + cn

→
V, n = 1, 2, (3)

∂cn

∂t
= −div

→
j n, n = 1, 2, (4)

ε0εr∇2ϕ = −F(z1c1 + z2c2), (5)

where
→
V is the solution flow rate; P is the pressure; ρ0 is the density of the solution; ν is

the kinematic viscosity;
→
j n, cn, Dn, zn are the flow, the molar concentration, the diffusion

coefficient and the charge number of the n-ion, respectively; ϕ is the electric potential;
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ε0 is the electrical constant; εr is the relative permittivity of the electrolyte solution; F is
Faraday’s constant; R is the gas constant; and T is the absolute temperature. In the system

of Equations (1)–(5),
→
V, P,

→
j 1,

→
j 2, c1, c2, ϕ are functions of coordinates x, y and time t.

Equation (1) is the Navier–Stokes equation, which describes the fluid flow velocity, tak-

ing into account the action of the electric field force
→
f = −F(z1c1 + z2c2)∇ϕ; Equation (2)

is the continuity equation for the incompressible fluid. The Nernst–Planck equations,
Equation (3), and material balance, Equation (4), describe the transfer of ions. The Poisson
Equation (5) is necessary for calculating the electric field.

The density of the total current is described by Equation (6) [51–53]:

→
i tot =

→
i F +

→
i d, (6)

where the term
→
i F = F(z1

→
j 1 + z2

→
j 2) determines the density of the Faraday current (or

conduction current), and
→
i d = −ε0εr∂(∇ϕ)/∂t is the density of the displacement current

(or charging current) associated with the change in the space charge.
Differentiating the Poisson Equation (5) with respect to time and substituting the

material balance, Equation (4), gives div
→
i F + div

→
i d = 0, that is div

→
i tot = 0. Therefore,

to calculate the density distribution of the total current density in the 2D diffusion layer,
an electric current stream function can be introduced analogous to the flat flow of the

incompressible liquid (for which the conditions Vz = 0, div
→
V = 0 are satisfied [57]):

itot x =
∂η

∂y
;itot y = −∂η

∂x
, (7)

where η is the electric current stream function [45,46,55,58,59]. Differentiating the components
of the current density itot x and itot y by the coordinates y and x, respectively, and determining
their difference gives the equation for the rotor of the total current density vector:

∇2η = − F2

RT

((
z2

1D1
∂c1
∂y + z2

2D2
∂c2
∂y

)
∂ϕ
∂x −

(
z2

1D1
∂c1
∂x + z2

2D2
∂c2
∂x

)
∂ϕ
∂y

)
+

+F
((

z1
∂c1
∂y + z2

∂c2
∂y

)
Vx −

(
z1

∂c1
∂x + z2

∂c2
∂x

)
Vy

)
+ F(z1c1 + z2c2)

(
∂Vx
∂y −

∂Vy
∂x

) . (8)

For the galvanodynamic mode in the 2D case, the normal component of the total
current density at the boundaries x = 0 and x = δ is a function of the tangential coordinate
y, but its average value must be equal to the given current density i(t) [58]:

1
L

L∫
0

itot x(0, y, t)dy =
1
L

L∫
0

itot x(δ, y, t)dy = i(t). (9)

Fulfillment of the conditions of the galvanodynamic mode, Equation (9), is provided
by setting the following boundary conditions for the electric current stream function [58]:

∂η

∂x
(0, y, t) = 0,

∂η

∂x
(δ, y, t) = 0, η(x, 0, t) = 0, η(x, L, t) = i(t)L. (10)

The calculation of the current density using the equation for the electric current stream
function, Equation (8), allows one to derive the equations of the electric field strength. Thus,
Equation (7) can be written in the following form:

F(z1 j1 x + z2 j1 x) + ε0εr
∂Ex

∂t
=

∂η

∂y
, (11)

F(z1 j1 y + z2 j1 y) + ε0εr
∂Ey

∂t
= −∂η

∂x
, (12)
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or
ε0εr

∂Ex

∂t
=

∂η

∂y
− F(z1 j1 x + z2 j1 x), (13)

ε0εr
∂Ey

∂t
= −∂η

∂x
− F(z1 j1 y + z2 j1 y). (14)

The substitution of Nernst–Planck Equation (3) into material balance, Equation (4),
and the displacement current, Equations (13) and (14), gives a closed system of equations
with respect to the components of velocity, Vx, Vy; pressure, p; ion concentrations, c1, c2;
and electric field strength Ex, Ey:

∂
→
V

∂t
+ (
→
V∇)

→
V = − 1

ρ0
∇P + ν∇2

→
V +

1
ρ0

F(z1c1 + z2c2)
→
E , (15)

div
→
V = 0, (16)

∂cn

∂t
= −div

(
F

RT
znDncn

→
E − Dn∇cn + cn

→
V
)

, n = 1, 2, (17)

ε0εr
∂Ex

∂t
=

∂η

∂y
− F2

RT

(
z2

1D1c1 + z2
2D2c2

)
Ex + Fz1D1

∂c1

∂x
+ Fz2D2

∂c2

∂x
− F(z1c1 + z2c2)Vx, (18)

ε0εr
∂Ey

∂t
= −∂η

∂x
− F2

RT

(
z2

1D1c1 + z2
2D2c2

)
Ey + Fz1D1

∂c1

∂y
+ Fz2D2

∂c2

∂y
− F(z1c1 + z2c2)Vy, (19)

∇2η = F2

RT

((
z2

1D1
∂c1
∂y + z2

2D2
∂c2
∂y

)
Ex −

(
z2

1D1
∂c1
∂x + z2

2D2
∂c2
∂x

)
Ey

)
+

+F
((

z1
∂c1
∂y + z2

∂c2
∂y

)
Vx −

(
z1

∂c1
∂x + z2

∂c2
∂x

)
Vy

)
+ F(z1c1 + z2c2)

(
∂Vx
∂y −

∂Vy
∂x

) . (20)

Thus, the system of Equations (15)–(20) is the system of NPD–NS equations for the
binary electrolyte solution.

To solve the system of NPD–NS equations, initial boundary conditions for Equa-
tions (15)–(17) and (20) are required; equations for the electric field strength components
(18) and (19) include only time derivative and require only initial conditions.

The boundary conditions for the flow velocity assume the no-slip condition at the
solution/membrane interface and zero normal velocity at the other boundaries:

→
V(δ, y, t) = 0,

(→
V ·→n

)
(0, y, t) = 0,

(→
V ·→n

)
(x, 0, t) = 0,

(→
V ·→n

)
(L, y, t) = 0. (21)

At the solution/membrane interface, the counterion concentration, c1, is set as a
constant value Nc times greater than the initial solution concentration, c0, Equation (22),
and continuous flow of co-ions, Equation (23), [23]; at the outer boundary of the diffusion
layer, the concentrations of ions of both signs are equal to c0, Equation (24); at the lower
and upper boundaries, the tangential diffusion components of the ion fluxes are equal
to zero, Equation (25), which, together with the assumption of zero tangential migratory
components of the fluxes, provides a zero normal current through the boundaries:

c1(δ, y, t) = Ncc0, (22)(
−D2

∂c2

∂x
+

F
RT

z2D2c2Ex

)
(δ, y, t) =

T2C
Fz2

ixF(δ, y, t), (23)

cn(0, y, t) = c0 , n = 1, 2, (24)
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∂cn

∂y
(x, 0, t) = 0,

∂cn

∂y
(x, L, t) = 0, n = 1, 2, (25)

where T2C is the effective transport number of anion in the CEM, that is, the fraction of the
Faraday current carried by ions of this type [60]. Due to the fact that the Faraday current is
realized by ions of both types, the relations T1C + T2C = 1 are fulfilled.

Assume that at the initial time t = 0 at all points of the region under consideration the
solution is at rest; the condition of electrical neutrality is satisfied, and the concentrations
of cations and anions are equal to the initial concentration of the electrolyte, c0; the electric
field strength is zero:

→
V(x, y, 0) = 0, cn(x, y, 0) = c0,

→
E(x, y, 0) = 0. (26)

In order to validate the model based on the NPD–NS equations, its results are com-
pared with the results of modeling using the NPP–NS equations [45]. When modeling a
galvanodynamic mode using the system of NPP–NS equations, the boundary conditions
(10) and (21)–(26) must be supplemented by the conditions for the electric potential:

ϕ(0, y, t) = 0, ∂ϕ
∂x (δ, y, t) = − RT

F2

(
∂η
∂y +Fz1D1

∂c1
∂x +Fz2D2

∂c2
∂x

z2
1D1c1+z2

2D2c2

)
(δ, y, t),

∂ϕ
∂y (x, 0, t) = 0, ∂ϕ

∂y (x, L, t) = 0.

(27)

Condition (27) assumes that the outer boundary of the diffusion layer is equipotential;
at the solution/membrane interface, the condition is established according to which the
derivative of the potential normal to the membrane surface is determined as the function of
the electric current density [45]; at the upper and lower boundaries, as noted above, there
is a zero normal migration flux of ions.

2.3. System Parameters

Calculations are performed for NaCl electrolyte solution with concentration c0 =
0.001 mol/m3; temperature T = 298 K; electrolyte solution density ρ0 = 1002 kg/m3;
viscosity ν = 0.89 · 10−6m2/s; diffusion coefficients D1 = 1.33 · 10−9m2/s and D1 =
2.05 · 10−9m2/s; cation transport number in the CEM T1C = 0.972 and in solution t1 = 0.393;
ion charge numbers z1 = 1, z2 = −1. The diffusion layer thickness is estimated by the
formula δ = (H/1.47)(LD/H2V0)

1/3 [61] for the following parameters of membrane
system: intermembrane distance H = 0.5 · 10−3m; channel length L = 10−3m; and
average solution velocity V0 = 0.5 · 10−3m/s. To simplify the numerical solution, the
ratio of the cation concentration at x = δ to c0 (used in the boundary condition (22))
was taken to be Nc = 1. This value is less than in real systems [23]; however, it is
shown in [62,63] that for Nc ≥ 1, the value of Nc does not significantly affect the so-
lution of the problem in the extended SCR. The constant current density was set as
i/ilim = 0.5, 1, 1.5, 2, where ilim is the limiting current density determined by the
Leveque formula ilim = FDc0/H(T1C − t1)

(
1.47

(
H2V0/LD

)1/3 − 0.2
)

[61] and where
D = D1D2(z1 − z2)/(D1z1 − D2z2) is the electrolyte diffusion coefficient.

As noted above, the computational complexity of the problem under considera-
tion is associated with large gradients of ion concentrations and potential at the solu-
tion/membrane interface. The complexity of the calculations increases with decreasing
thickness of the region of large gradients, the order of which is estimated by the Debye
length LD =

√
ε0εrRT/(2c0F2) [18]. Therefore, to reduce the computational complexity of

the problem and the calculation time, the concentration value was chosen at several orders
of magnitude less than in real systems.
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Detailed studies of the influence of the dimensionless Debye number (that is, the
concentration of the electrolyte in the solution) were carried out in the literature [40,45,62].
With increasing electrolyte concentration in the solution, the size of the SCR in the depleted
solution at the membrane surface decreases, but the charge density and the tangential
component of the bulk electric force increase [62]. These two factors have opposite effects on
the development of electroconvection in the depleted solution near the membrane surface.
The results of numerical calculations show that the dominant factor is the reduction in
the size of the SCR: with increasing concentration, the intensity of overlimiting transfer,
measured by the ratio i/ilim, decreases at a fixed potential drop [62]. Therefore, although
the structure of chronopotentiograms does not change with increasing concentration, a
higher concentration corresponds to a larger average value of the potential drop in the
quasi-stationary state [45]. The work of P. Shi [40] shows that reducing the thickness of a
thin Debye layer enhances small-scale vortices and promotes its onset, which is attributable
to the increase in the driving force to the layer of extended SCR.

2.4. Estimation of Calculation Error

The accuracy of the numerical solution of boundary value problems of mass transfer
models in the DC current mode (both based on the NPP–NS and based on the NPD–NS)
can be assessed from the error in fulfilling the condition of equality of the average current
density at x = 0 and x = δ to the given value of the current density i, Equation (9).
Therefore, the calculation error was determined by the following values for x = 0 and
x = δ:

r0 = max
t∈[0,t′ ]

100%
i

∣∣∣∣∣∣i− 1
L

L∫
0

itot x(0, y, t)dy

∣∣∣∣∣∣
, rδ = max

t∈[0,t′ ]

100%
i

∣∣∣∣∣∣i− 1
L

L∫
0

itot x(δ, y, t)dy

∣∣∣∣∣∣
, (28)

where t′ is the time of stopping the calculations; in the considered calculations, this is the
time of establishing a stationary (or quasi-stationary) state.

2.5. Model Implementation

The boundary value problems of the considered mathematical models were solved
by the finite element method using the commercial package Comsol Multiphysics 6.1
(COMSOL AB, Stockholm, Sweden). All calculations were performed using an Intel(R)
Core(TM) i9-10900K CPU (10 cores @ 3.70GHz), 64 GB of RAM.

The Navier–Stokes equation and continuity equation for the incompressible fluid,
Equations (15) and (16), are implemented using the “Laminar Flow” module; the equations
for the ion concentration (17) and the electric current stream function (20) are built on
the basis of the “General Form PDE” modules; and the equations for the electric field
strength components (18) and (19) involve the “Domain ODEs and DAEs” modules. Spatial
discretization of the fields of concentration, electric field strength and electric current
stream function uses quadratic Lagrange interpolation functions. The discretization of the
“Laminar Flow” module is “P2 + P1”, which means the use of second-order elements for
the velocity components and linear elements for the pressure field [64]. Time-dependent
computations are implemented using the segregated node with an implicit BDF (backward
differentiation formula) time step-selection method [64]. Each segregated iteration involves
performing three separate steps: the first step is to calculate the concentration and electric
stream function; at the second step, the velocity and pressure are calculated; and the third
step calculates the electric field strength. The built-in solver determines the time step so
that the requirement for the relative tolerance is met (is set to 10−3). In addition, when
solving the boundary value problems of the models, a limit was set on the maximum time
step so that the error in calculating the current density at the boundaries was less than
1%. The implementation of the boundary value problem based on the NPP–NS equations
is similar to that described for the NPD–NS equations, with the difference being that the
equation for the electric field strength is replaced by the Poisson equation for the potential.
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Large gradients of ion concentrations and electric field strength near the solution/
membrane interface (Figure 2) cause significant computational complexity of the problem
under consideration. Therefore, in order to simplify the numerical solution of the problem,
a non-uniform computational mesh was constructed, in which 25 boundary layers with a
stretching factor of 1.23, the first layer thickness of 0.0005 µm, and 30 layers of the same
thickness of 0.05 µm are defined near the boundary. For the computational mesh in the
rest of the area, the “Mapped” option is used, and the maximum element size constraint
is set to 1.5 µm (Figure 3). In general, the grid consists of 92,713 domain elements and
2279 boundary elements. The described structure of the computational mesh is determined
by the following procedure: calculations are performed for a certain computational mesh
(consisting of k1 elements) and the chronopotentiogram ∆ϕk1(t) is calculated for the current
density i/ilim = 2 in the time interval from 0 to the establishment of a stationary state (t′).
Then, the mesh is refined (k2 elements), the calculations are performed again, and the values
of ∆ϕk2(t) are calculated. The maximum relative error of the calculation of the potential
drop is determined by the following formula: γ1 = max

t∈[0,t′ ]
(|∆ϕk1 − ∆ϕk2|/∆ϕk2) · 100%.

The procedure was repeated until the condition γki
≤ 5% was met.
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3. Results and Discussion
3.1. Model Validation
3.1.1. Comparison of Chronopotentiograms Calculated on the Basis of NPP–NS and
NPD–NS Approaches

Based on the NPP–NS and NPD–NS approaches, the characteristics of mass transfer
in the diffusion layer are calculated for the underlimiting (0.5ilim), limiting (ilim), and
overlimiting (1.5ilim, 2ilim) current densities. The chronopotentiogram (ChP) of the system
was calculated based on the values of the potential drop averaged over the channel length,
that is, for the NPP–NS model:

∆ϕ(t) =
1
L

∫ L

0
ϕ(δ, y, t)dy, (29)

and for the NPD–NS model:

∆ϕ(t) = − 1
δL

∫ L

0

∫ δ
0

Ex(x, y, t)dxdy. (30)
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The ChPs calculated based on both approaches at the same values of the given current
density coincide quite well (Figure 4a). At the current density equal to 0.5ilim and ilim, the
difference in the potential drop over the entire considered time interval (from 0 to 9 s) does
not exceed 2% (the maximum difference is 1.6% and 1.4%, respectively). At overlimiting
values of 1.5ilim and 2ilim, the difference does not exceed 5% in the same time period, except
for the moments of time of a sharp decrease in the potential drop at t = 2.1 s and t = 1.2 s,
respectively. This difference is due to the fact that a rapid decrease in the potential drop in
the two approaches occurs with a small time difference of 0.02 s.
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Figure 4. (a) Chronopotentiograms; (b) enlargement fragment of (a); (c) average value of the flow
velocity of the electrolyte solution; (d) dependencies of the average current density on time; (e) con-
centration profiles; (f) charge density distribution in the section y = 0.5 L of the diffusion layer in
the steady state at t = 9 s. Calculation results based on the NPP–NS (blue lines) and NPD–NS (black
lines) approaches at current densities of i = 0.5 ilim, ilim, 1.5 ilim, and 2 ilim. The red dotted lines are
the calculation results for the constant potential drop mode. The dashed line in Figure 4a denotes the
transition time for the current density 1.5 ilim, τ1.5ilim

.

Consider the structure of the calculated ChPs and estimate the intensity of the devel-
oping electroconvection for each of the indicated values of the current density. To quantify
the intensity of electroconvection, the average value of the electrolyte solution flow velocity
(normalized by the value V0) was calculated (Figure 4c):

Vav =
1

V0δL

δ∫
0

L∫
0

√
V2

x + V2
y dxdy. (31)

For all ChPs at t < 10−4s, a sharp increase in the potential drop from zero to a value
determined by the initial ohmic resistance of the solution is observed [44]. Further, at a
current density of 0.5ilim and ilim, a monotonic increase in the potential drop is observed,
which is associated with electrodiffusion desalination of the solution near the membrane
surface (Figure 4e). At t > 9 s, stationary states are established. At the current density
of 0.5ilim in the steady state, the potential drop is ∆ϕ0.5ilim ≈ 0.042 V and the average
velocity is Vav0.5ilim ≈ 2 · 10−7, that is, there is no electroconvective flow (Figure 5a). At
the current density of ilim, the solution at the membrane surface is depleted almost to
zero (Figure 4e) and the potential drop increases to ∆ϕilim ≈ 0.382 V. A space charge
begins to form (Figure 4f), but it is very close to the solution/membrane interface, on
which the no-slip condition is accepted, so the electroconvective flow is negligibly small:
Vavilim ≈ 5 · 10−6 (Figure 5b). Since there is no forced flow in the system under consideration
and at the current density of 0.5ilim and ilim, the electroconvective flow is negligible, and
the distribution of the ion concentration in the cross-section (Figure 4e,f) is typical for the
entire length of the diffusion layer (Figure 5a,b).
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ilim (a), i lim (b), 1.5 ilim (c), 2 ilim (d).

At the overlimiting current density (1.5ilim, 2ilim), the ChP structure becomes more
complicated, and effects associated with the development of electroconvection are observed.

In the calculation for the current density equal to 1.5ilim at the time moment τ1.5ilim =
1.12 c, the tangent to the concentration profiles in the electroneutral region near the mem-
brane surface passes through 0 at x = δ. After this point in time, the formation of the
extended SCR begins, and a rapid increase in the potential drop is noted on the ChPs
(Figure 4a). As a result, in the time interval from 2.02 s to 2.08 s, a rapid increase in the
average velocity Vav from 0 to 0.28 is observed, which is associated with the appearance
of electroconvective vortices. The vortices mix the depleted solution near the membrane
surface with the more concentrated solution in the volume of the diffusion layer (Figure 5c).
The movement of the fresh solution to the membrane surface causes a decrease in the
potential drop. As a result, the ChPs show a slowdown in the growth of the potential drop
at t = 2.02 s and a rapid decrease by 0.43 V in the time interval from 2.05 s to 2.27 s. This
decrease in the potential drop causes a decrease in the average velocity Vav by 0.04 at time
from 2.14 s to 2.3 s. This is followed by an almost simultaneous weak increase, a slight
decrease, and a transition to a stationary state of the potential drop and average velocity.
The flow structure in the steady state is shown in Figure 5c.
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In the calculation for the current density of 2ilim, the desalination of the solution
proceeds faster, so the appearance of the electroconvective flow occurs earlier (at t ≈ 1.15 s,
Figure 6a) at a larger potential drop. As with a current density of 1.5ilim, in this case, a
rapid increase in the average flow velocity causes a decrease in the potential drop (≈0.56 V,
at t ≈ 1.18 s), which causes a slowdown in the growth of the average velocity. But then, at
a current of 2ilim, there is a significant increase in the average flow velocity and potential
drop at times between 1.33 s and 2.07 s. In this time range, the size and velocity of the
electroconvective vortices increases (Figure 6b,c), then at the moments of 2.17 s, 2.31 s, and
4.5 s, neighboring vortices merge into one larger one (Figure 6d–f), which is expressed by a
decrease in the potential drop (Figure 4a).
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In experimental measurements of the ChPs of the CEM [65,66], the moment of time
preceding the rapid growth of the potential drop is defined as the transition time. For an
analytical estimate of the transition time, Equation (32) is used:

τS =
πD

4

(
c0Fz1

T1C − t1

)2 1
i2

. (32)

Equation (32) was obtained by Sand on the basis of a theoretical analysis of an infinite
diffusion layer [67].

The transition time values calculated by the proposed model for current density equal
to 1.5ilim and 2ilim differ from Sand’s analytical estimate by less than 5%.

Thus, on the ChPs, calculated for the overlimiting currents, the following sections are
distinguished:

• the initial fast ohmic growth of the potential drop;
• the section of monotonic growth of the potential drop caused by electrodiffusion

desalination of the solution. The growth rate of the potential drop increases rapidly
after the depletion of the concentration at the solution/membrane interface;

• the transitional section associated with the development of electroconvection;
• the stationary section characterized by both a constant potential drop and a constant

average velocity of the electroconvective flow.

This structure of the calculated ChPs qualitatively coincides with those observed in
experimental [6,65,66,68,69] and theoretical [45,46] studies. However, the shape of the
transitional part corresponding to the development of an electroconvective flow differs
from that observed in experiments. It should be noted, however, that this section of
ChPs differs significantly for different ion-exchange membranes and current mode also in
experimental measurements [6,65,66,69]. For example, in the experiment measuring the
ChPs of CEM (Neosepta CMX) and a 10 mM CuSO4 electrolyte by de Valenca et al. [65]
at the time of electroconvection development on the ChP, a decrease in the potential drop
of a small value (about 0.1 V) is recorded; in the experimental study of AEM (MA-40-13
membrane specially treated by NPO “Vladipor”) and a 5 mM NaCl solution performed by
Belova et al. [6], this value is up to 0.5 V. This makes it possible to explain the difference in
the transitional section of the ChPs by an essential connection between the development of
electroconvection and the properties of the membrane (surface inhomogeneity, electrical
inhomogeneity, and others).

3.1.2. Comparison of Mass Transfer Characteristics Calculated for Galvanostatic and
Potentiostatic Modes

Comparison of the modeling results for the galvanostatic mode (at the constant current
density) based on the NPD–NS equations and for the potentiostatic mode (at the constant
potential drop) based on the NPP–NS equations showed a good agreement between the
ion-transport characteristics after the establishment of the stationary state (Figure 4c,d). In the
potentiostatic mode, the Poisson equation was solved with the following boundary conditions:

ϕ(0, y, t) = 0, ϕ(δ, y, t) = ∆ϕ, (33)

where ∆ϕ is the value of the potential drop in the stationary state, obtained in the calculation
for the galvanostatic mode at the current density i/ilim = 0.5, 1, 1.5, 2. Figure 4d shows
the dependences of the average current density on time, calculated for the potentiostatic
mode using the formula iav pot = 1

δL
∫ δ

0

∫ L
0 ixdxdy. The average current density for the

potentiostatic mode, iav pot, differs from the corresponding value of the current density,
i/ilim = 0.5, 1, 1.5, 2, by less than 1% (see Table 1).
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Table 1. Current density and potential drop after the stationary state establishment in the galvanos-
tatic and potentiostatic modes.

i/ilim ∆ϕ, V iav pot/ilim

0.5 0.042 0.500
1 0.382 1.000

1.5 0.640 1.509
2 0.794 1.995

The values of the average velocity, Vav, after the stationary state establishment, calcu-
lated in the galvanostatic and potentiostatic modes, also agree well (the difference is less
than 3%) (Figure 4c). Note that in the potentiostatic mode, the electroconvective flow devel-
ops earlier than in the galvanostatic mode, since the potential drop and current density are
higher in the initial period in this mode (Figure 4a,d).

3.2. Assessment of the Computational Complexity of the Model

To assess the computational complexity of the proposed model based on the NPD–NS
equations, the calculation time of the time period equal to 0.1 s after the establishment
of the stationary state, tcalc, was fixed. Also, the calculation time, tcalc, was fixed for the
model based on the NPP–NS equations. Calculations based on NPD–NS and NPP–NS were
performed on the same computational mesh (described in Section 2.5), and the accuracy of
discretization in time was controlled using a parameter that limits the maximum time step.
The iterative calculations of the corresponding boundary value problems were performed
for the values of the maximum time step decreasing (in the series of values 0.01 s, 0.005 s,
0.002 s, 0.001 s, 0.0005 s, and 0.0002 s) until the error r0 and rδ is less than 1%.

In the approach of modeling ion transport in the galvanodynamic mode based on
the NPP–NS equations, the boundary condition on the derivative of the potential (which
determines the given current density) can also be specified at the outer boundary of the
diffusion layer, that is:

∂ϕ

∂x
(0, y, t) = −RT

F2

 ∂η
∂y + Fz1D1

∂c1
∂x + Fz2D2

∂c2
∂x

z2
1D1c1 + z2

2D2c2

(0, y, t), ϕ(δ, y, t) = 0. (34)

When the conditions of zero tangential components of the current density, Equation
(10), are accepted at boundaries x = 0 and x = δ, these boundaries become equipotential.
Therefore, the position of the boundary condition on the derivative of the potential (the
variant of the boundary conditions (27) or conditions (34)) does not affect the solution
of the NPP–NS equations, but it may affect the computational complexity of obtaining a
numerical solution. Compare the calculation time, tcalc, for the model based on NPD–NS
and two variants based on the NPP–NS system, when the galvanodynamic boundary
condition is specified at the outer boundary of the diffusion layer (Equation (34), denoted
briefly as NPPL–NS) and at the solution/membrane interface (Equation (27), NPPR–NS).

For calculations based on the NSN–PPδ approach, the required accuracy for all
considered current density values (i = 0.5ilim, ilim, 1.5ilim, 2ilim) was obtained with the
same maximum time step equal to 0.001 s (see Tables 2 and 3). Therefore, for calculations
for the considered values of the current density on the same computational mesh, the
calculation time, tcalc, and the amount of required memory approximately coincide
(average 15.8 GB).
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Table 2. Maximum time step and calculation time for the NPPR–NS, NPPL–NS, and NPD–NS approaches.

i/ilim
Maximum Time Step, s Calculation Time, tcalc, s

NPPR–NS NPPL–NS NPD–NS NPPR–NS NPPL–NS NPD–NS

0.5 0.001 0.002 0.001 517 451 490
1 0.001 0.002 0.0002 516 460 1589

1.5 0.001 0.002 0.0002 504 424 1543
2 0.001 0.002 0.0002 495 435 1650

Table 3. Calculation errors r0 and rδ for the NPPR–NS, NPPL–NS, and NPD–NS approaches (with
the limitation on the maximum time step, according to Table 2).

i/ilim
r0, % rδ, %

NPPR–NS NPPL–NS NPD–NS NPPR–NS NPPL–NS NPD–NS

0.5 0.385 · 10−1 0.140 0.361 · 10−5 0.126 0.140 0.486 · 10−1

1 0.391 · 10−1 0.295 0.353 · 10−4 0.132 0.282 0.727 · 10−5

1.5 0.142 0.440 0.160 · 10−3 0.760 0.413 0.103 · 10−2

2 0.193 0.581 0.351 · 10−3 0.465 0.535 0.596 · 10−2

At the solution/membrane interface, x = δ, the gradients of the ion concentration and
potential fields are higher than at the outer boundary of the diffusion layer, x = 0. For
this reason, in the calculation using the NPPL–NS approach (when the galvanodynamic
boundary condition is set at the boundary x = 0), the required calculation errors (see
Table 3) were achieved at a larger value of the maximum time step equal to 0.002 s. The
calculation time based on the NPPL–NS approach is less (by 13% on average) than that
based on the NPPR–NS approach, and the required memory differs little—16.2 GB.

For calculations based on the NPD–NS equations, the maximum time step, providing
the error of less than 1%, at the underlimiting current density (0.5ilim) coincides with the
value of this parameter for calculations based on NPPR–NS. Therefore, the calculation
time of these approaches at the current density equal to 0.5ilim is comparable (Table 2).
At the limiting (ilim) and overlimiting (1.5ilim and 2ilim) current densities, the value of the
maximum time step for the NPD–NS approach is five times less than for the underlimiting
one. As a result, the calculation time for the NPD–NS approach for the current density
equal to ilim, 1.5ilim, and 2ilim exceeds, on average, three times the calculation time based
on the NPPR–NS approach. The amount of memory used in the solution based on the
NPD–NS approach is approximately 12.8 GB.

Thus, the numerical solution based on the NPD–NS approach is more demanding on
the accuracy of discretization in time compared to the solution of the NPP–NS equations
with the other parameters being the same.

In order to evaluate the relationship between the error of the considered modeling
approaches and the quality of the computational mesh, it is necessary to exclude the
influence of the time discretization accuracy. For this purpose, calculations were performed
for the approaches of NPPR–NS, NPPL–NS, and NPD–NS with the same and rather small
value of the time step. Table 4 shows the errors of calculations, r0 and rδ, based on the NPPR–
NS, NPPL–NS, and NPD–NS approaches for the same system parameters, computational
mesh, and the maximum time step equal to 0.0002 s. In calculations based on the NPPR–NS
approach, the decrease in the maximum time step led to the decrease in the calculation
error r0 by at least two times and rδ by at least 21 times. In calculations based on the
NPPL–NS approach, a decrease in the time step affects the calculation error r0 and rδ is
not significant. For all considered approaches, it is characteristic that the higher current
density corresponds to the large error in the calculation of r0 and rδ (Table 4). For each
value of the current density, the calculation error of the NPD–NS approach is less than the
calculation error of the NPPR–NS approach, which, in turn, is smaller than for calculations
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based on the NPPL–NS approach. Thus, the calculation error of the approaches increases in
the series NPD–NS, NPPR–NS, and NPPL–NS.

Table 4. Calculation errors r0 and rδ for the NPPR–NS, NPPL–NS, and NPD–NS approaches (with
the limitation on the maximum time step equal to 0.0002 s).

i/ilim
r0, % rδ, %

NPPR–NS NPPL–NS NPD–NS NPPR–NS NPPL–NS NPD–NS

0.5 0.683 · 10−2 0.140 0.272 · 10−9 0.210 · 10−2 0.140 0.842 · 10−4

1 0.180 · 10−1 0.295 0.353 · 10−4 0.150 · 10−2 0.280 0.727 · 10−5

1.5 0.313 · 10−1 0.433 0.160 · 10−3 0.213 · 10−1 0.407 0.103 · 10−2

2 0.500 · 10−1 0.580 0.351 · 10−3 0.223 · 10−1 0.535 0.596 · 10−2

4. Conclusions

A 2D mathematical model of mass transfer in the depleted diffusion layer near the
surface of the ion-exchange membrane in the galvanodynamic mode is constructed based
on the NPD–NS equations. The model is able to describe the process of mass transfer in a
binary electrolyte solution in a wide range of the current density values, including both
underlimiting and overlimiting modes. For the overlimiting current densities, the model
takes into account the violation of the electrical neutrality of the solution, the formation of
the extended SCR, and the development of electroconvection.

Comparison of the modeling results using the proposed model based on the NPD–NS
equations and the previously published model based on the NPP–NS equations for the
same current density and system parameters showed the following:

(1) Good quantitative coincidence of ChPs in all characteristic sections, including the
initial sharp ohmic growth, monotonic slow electrodiffusion growth, the transition
region of the development of electroconvection and the establishment of a station-
ary state;

(2) Good agreement between the characteristics of mass transfer after the establishment
of the stationary state, calculated for the galvanostatic and potentiostatic modes.

The Poisson equation for the electric potential and the equation for the electric field
strength based on the expression for the displacement current have a common physical basis.
The differences in the equations manifest themselves when constructing mathematical
models of mass transfer.

When modeling mass transfer in the galvanodynamic mode based on the NPP–NS
equations, it is necessary to specify one of the boundaries parallel to the membrane sur-
face as equipotential. Then, the galvanodynamic boundary condition can be specified at
another of these boundaries. The NPD–NS-equations-based mass transfer modeling does
not require the introduction into the problem statement assumptions about the potential
distribution at the boundaries of the region under consideration. At the same time, both
of these approaches require calculation of the current density distribution. To solve this
problem, the electric current stream function method is used. The boundary conditions for
the electric current stream function at the boundaries parallel to the membrane surface are
formulated using the assumption of a zero tangential current component. Therefore, in the
calculations based on the NPD–NS equations, the tangential component of the electric field
strength is negligible (the range of variation of Ey is approximately five orders of magnitude
smaller than the range of variation in Ex), which is equivalent to specifying an equipotential
boundary. Therefore, models based on the NPP–NS and NPD–NS equations in the above
formulations describe the single physical situation but differ in the numerical solution
procedures. At overlimiting currents, the required accuracy of the numerical solution is
achieved in the approach based on the NPP–NS equations with a smaller time step than
the NPD–NS equation approach. The accuracy of calculating the current density at the
boundaries parallel to the membrane surface is higher for the model based on the NPD–NS
equations compared to the model based on the NPP–NS equations. Future research will
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be devoted to constructing a mathematical model of mass transfer in a membrane system
without using the assumption that the tangential component of the current density is zero.

The proposed mathematical model can be easily extended in future works for elec-
trolyte solutions with an arbitrary number of ions. The next step is to take into account
the forced flow of the electrolyte solution and consider the processes in the electrodialysis
channel of desalination. In addition, the proposed NPD–NS approach, modified for the
case without setting a zero tangential current density at the system boundaries, will provide
new information on the effect of geometric and electrical inhomogeneity of the membrane
surface on mass transfer processes.
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//rscf.ru/en/project/23-29-00534/ (accessed on 17 August 2023).
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Abbreviations

1D one dimensional
2D two dimensional
AEM anion-exchange membrane
CEM cation-exchange membrane
ChP chronopotentiogram
CVC current–voltage characteristic
NPD Nernst–Planck and displacement current system of equations
NPD–NS Nernst–Planck, displacement current and Navier–Stokes system of equations
NPP Nernst–Planck–Poisson system of equations
NPP–NS Nernst–Planck–Poisson and Navier–Stokes system of equations
SCR space charge region
Symbols
c0 concentration of electrolyte, mol/m3

cn molar concentration of ion n, mol/m3

D diffusion coefficient of electrolyte, m2/s
Dn diffusion coefficient of ion n, m2/s
E electric strength, V/m
F Faraday constant, C/mol
H intermembrane distance, m
i current density, A/m2

ilim limiting current density, A/m2

jn flux density of ion n, mol/(m2·s)
L length of the channel, m
Nc ratio of the concentration of cations to the initial concentration of the solution
P pressure, Pa
R universal gas constant, J/(mol·K)
r0 calculation error at x = 0
rδ calculation error at x= δ

T absolute temperature, K
t time, s
tn transport number of ion n in electrolyte solution
TnC transport number of ion n in cation-exchange membrane
→
V velocity of the solution, m/s
x normal to membrane coordinate, m
y tangential coordinate, m
zn charge number of ion n
Greek symbols
γ maximum relative error of the calculation of the potential drop
δ depleted diffusion layer thickness, m

https://rscf.ru/en/project/23-29-00534/
https://rscf.ru/en/project/23-29-00534/
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ε0 electric constant, F/m
εr relative permittivity of the electrolyte solution
η electric current stream function, A/m
ν kinematic viscosity, m2/s
ρ0 solution density, kg/m3

ϕ electric potential, V
Subscripts
1 cation
2 anion
av average
lim limiting
pot potentiostatic mode
tot total
R right
L left

References
1. Kim, S.J.; Song, Y.-A.; Han, J. Nanofluidic concentration devices for biomolecules utilizing ion concentration polarization: Theory,

fabrication, and applications. Chem. Soc. Rev. 2010, 39, 912–922. [CrossRef]
2. Elimelech, M.; Phillip, W.A. The Future of Seawater Desalination: Energy, Technology, and the Environment. Science 2011, 333,

712–717. [CrossRef] [PubMed]
3. Gurreri, L.; Tamburini, A.; Cipollina, A.; Micale, G. Electrodialysis Applications in Wastewater Treatment for Environmen-tal

Protection and Resources Recovery: A Systematic Review on Progress and Perspectives. Membranes 2020, 10, 146. [CrossRef]
4. Strathmann, H. Ion-Exchange Membrane Processes in Water Treatment. Sustain. Sci. Eng. 2010, 2, 141–199. [CrossRef]
5. Wilson, J.R. Demineralization by Electrodialysis; Butterworths Scientific Publications: London, UK, 1960.
6. Belova, E.I.; Lopatkova, G.Y.; Pismenskaya, N.D.; Nikonenko, V.V.; Larchet, C.; Pourcelly, G. Effect of anion-exchange membrane

surface properties on mechanisms of overlimiting mass transfer. J. Phys. Chem. B 2006, 110, 13458–13469. [CrossRef]
7. Nikonenko, V.V.; Kovalenko, A.V.; Urtenov, M.K.; Pismenskaya, N.D.; Han, J.; Sistat, P.; Pourcelly, G. Desalination at overlimiting

currents: State-of-the-art and perspectives. Desalination 2014, 342, 85–106. [CrossRef]
8. Maletzki, F.; Rosler, H.W.; Staude, E. Ion transfer across electrodialysis membranes in the overlimiting current range: Stationary

voltage current characteristics and current noise power spectra under different conditions of free convection. J. Membr. Sci. 1992,
71, 105–116. [CrossRef]

9. Zabolotsky, V.I.; Nikonenko, V.V.; Pismenskaya, N.D.; Laktionov, E.V.; Urtenov, M.K.; Strathmann, H.; Wessling, M.; Koops, G.H.
Coupled transport phenomena in overlimiting current electrodialysis. Sep. Purif. Technol. 1998, 14, 255–267. [CrossRef]

10. Rubinshtein, I.; Zaltzman, B.; Pretz, J.; Linder, C. Experimental Verification of the Electroosmotic Mechanism of Overlimiting
Conductance Through a Cation Exchange Electrodialysis Membrane. Russ. J. Electrochem. 2002, 38, 853–863. [CrossRef]

11. Pismenskaya, N.D.; Nikonenko, V.V.; Belova, E.I.; Lopatkova, G.Y.; Sistat, P.; Pourcelly, G.; Larshet, C. Coupled convection
of solution near the surface of ion-exchange membranes in intensive current regimes. Russ. J. Electrochem. 2007, 43, 307–327.
[CrossRef]

12. Rubinstein, S.M.; Manukyan, G.; Staicu, A.; Rubinstein, I.; Zaltzman, B.; Lammertink, R.G.H. Direct Observation of a Nonequilib-
rium Electro-Osmotic Instability. Phys. Rev. Lett. 2008, 101, 236101. [CrossRef] [PubMed]

13. Kwak, R.; Guan, G.; Peng, W.K.; Han, J. Microscale electrodialysis: Concentration profiling and vortex visualization. Desalination
2013, 308, 138–146. [CrossRef]

14. Shaposhnik, V.A.; Vasileva, V.I.; Praslov, D.B. Concentration Fields of Solutions under Electrodialysis with Ion-Exchange
Membranes. J. Membr. Sci. 1995, 101, 23–30. [CrossRef]

15. Shaposhnik, V.A.; Vasil’eva, V.I.; Grigorchuk, O.V. The interferometric investigations of electromembrane processes. Adv. Colloid
Interf. Sci. 2008, 139, 74–82. [CrossRef]

16. Frilette, V.J. Electrogravitational Transport at Synthetic Ion Exchange Membrane Surfaces. J. Phys. Chem. 1957, 61, 168–174.
[CrossRef]

17. Balster, J.; Yildirim, M.H.; Stamatialis, D.F.; Ibanez, R.; Lammertink, R.G.H.; Jordan, V.; Wessling, M. Morphology and mi-
crotopology of cation-exchange polymers and the origin of the overlimiting current. J. Phys. Chem. B 2007, 111, 2152–2165.
[CrossRef]

18. Rubinstein, I.; Zaltzman, B. Electro-osmotically induced convection at a permselective membrane. Phys. Rev. E 2000, 62, 2238–2251.
[CrossRef]

19. Demekhin, E.A.; Shelistov, V.S.; Polyanskikh, S.V. Linear and nonlinear evolution and diffusion layer selection in electrokinetic
instability. Phys. Rev. E 2011, 84, 036318. [CrossRef]

20. Urtenov, M.K.; Uzdenova, A.M.; Kovalenko, A.V.; Nikonenko, V.V.; Pismenskaya, N.D.; Vasil’eva, V.I.; Sistat, P.; Pourcelly, G.
Basic mathematical model of overlimiting transfer enhanced by electroconvection in flow-through electrodialysis membrane cells.
J. Membr. Sci. 2013, 447, 190–202. [CrossRef]

https://doi.org/10.1039/b822556g
https://doi.org/10.1126/science.1200488
https://www.ncbi.nlm.nih.gov/pubmed/21817042
https://doi.org/10.3390/membranes10070146
https://doi.org/10.1016/S1871-2711(09)00206-2
https://doi.org/10.1021/jp062433f
https://doi.org/10.1016/j.desal.2014.01.008
https://doi.org/10.1016/0376-7388(92)85010-G
https://doi.org/10.1016/S1383-5866(98)00080-X
https://doi.org/10.1023/A:1016861711744
https://doi.org/10.1134/S102319350703010X
https://doi.org/10.1103/PhysRevLett.101.236101
https://www.ncbi.nlm.nih.gov/pubmed/19113567
https://doi.org/10.1016/j.desal.2012.07.017
https://doi.org/10.1016/0376-7388(94)00270-9
https://doi.org/10.1016/j.cis.2008.01.008
https://doi.org/10.1021/j150548a010
https://doi.org/10.1021/jp068474t
https://doi.org/10.1103/PhysRevE.62.2238
https://doi.org/10.1103/PhysRevE.84.036318
https://doi.org/10.1016/j.memsci.2013.07.033


Computation 2023, 11, 205 21 of 22

21. Kwak, R.; Pham, V.S.; Lim, K.M.; Han, J. Shear Flow of an Electrically Charged Fluid by Ion Concentration Polarization: Scaling
Laws for Electroconvective Vortices. Phys. Rev. Lett. 2013, 110, 114501. [CrossRef]

22. Nikonenko, V.V.; Mareev, S.A.; Pis’menskaya, N.D.; Uzdenova, A.M.; Kovalenko, A.V.; Urtenov, M.K.; Pourcelly, G. Effect
of Electroconvection and Its Use in Intensifying the Mass Transfer in Electrodialysis (Review). Russ. J. Electrochem. 2017, 53,
1122–1144. [CrossRef]

23. Rubinstein, I.; Shtilman, L. Voltage against current curves of cation exchange membranes. J. Chem. Soc. Faraday Trans. 1979, 75,
231–246. [CrossRef]

24. Zabolotsky, V.I.; Nikonenko, V.V. Ion Transport in Membranes; (In Russian). Nauka: Moscow, Russia, 1996.
25. Newman, J.; Balsara, N.P. Electrochemical Systems, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2021.
26. Mani, A.; Wang, K.M. Electroconvection Near Electrochemical Interfaces: Experiments, Modeling, and Computation. Annu. Rev.

Fluid Mech. 2020, 52, 509–529. [CrossRef]
27. Yaroslavtsev, A.B.; Nikonenko, V.V.; Zabolotsky, V.I. Ion transfer in ion-exchange and membrane materials. Russ. Chem. Rev. 2003,

72, 393–421. [CrossRef]
28. Manzanares, J.A.; Murphy, W.D.; Mafe, S.; Reiss, H. Numerical Simulation of the Nonequilibrium Diffuse Double Layer in

Ion-Exchange Membranes. J. Phys. Chem. 1993, 97, 8524–8530. [CrossRef]
29. Levich, V.G. Physicochemical Hydrodynamics; Prentice Hall: New York, NY, USA, 1962.
30. Liu, W.; Zhou, Y.; Shi, P. Shear electroconvective instability in electrodialysis channel under extreme depletion and its scaling

laws. Phys. Rev. E 2020, 101, 043105. [CrossRef]
31. Liu, W.; Zhou, Y.; Shi, P. Scaling relations in shear electroconvective vortices. Phys. Fluids 2020, 32, 072009. [CrossRef]
32. Liu, W.; Zhou, Y.; Shi, P. Critical selection of shear sheltering in electroconvective flow from chaotic to steady state. J. Fluid Mech.

2022, 946, A3. [CrossRef]
33. Kwak, R.; Pham, V.; Han, J. Sheltering the perturbed vortical layer of electroconvection under shear flow. J. Fluid Mech. 2017, 813,

799–823. [CrossRef]
34. Liu, W.; Zhou, Y.; Shi, P. Sheltering electroconvective instability in a weak electrolyte. Phys. Fluids 2021, 33, 072011. [CrossRef]
35. Demekhin, E.A.; Nikitin, N.V.; Shelistov, V.S. Direct Numerical Simulation of Electrokinetic Instability and Transition to Chaotic

Motion. Phys. Fluids 2013, 25, 122001. [CrossRef]
36. Druzgalski, C.; Mani, A. Statistical analysis of electroconvection near an ion-selective membrane in the fully chaotic regime. Phys.

Rev. Fluids 2016, 1, 073601. [CrossRef]
37. Magnico, P. Electro-Kinetic Instability in a Laminar Boundary Layer Next to an Ion Exchange Membrane. Int. J. Mol. Sci. 2019, 20,

2393. [CrossRef] [PubMed]
38. Uzdenova, A.M.; Kovalenko, A.V.; Urtenov, M.K.; Nikonenko, V.V. Effect of electroconvection during pulsed electric field

electrodialysis: Numerical experiments. Electrochem. Commun. 2015, 51, 1–5. [CrossRef]
39. Karatay, E.; Andersen, M.B.; Wessling, M.; Mani, A. On the coupling between buoyancy forces and electroconvective instability

near ion-selective surfaces. Phys. Rev. Lett. 2016, 116, 194501. [CrossRef]
40. Shi, P. Direct numerical simulation of electroconvection with thin Debye layer matching canonical experiments. Phys. Fluids 2021,

33, 032015. [CrossRef]
41. Kovalenko, A.V.; Nikonenko, V.V.; Chubyr, N.O.; Urtenov, M.K. Mathematical modeling of electrodialysis of a dilute solution

with accounting for water dissociation-recombination reactions. Desalination 2023, 550, 116398. [CrossRef]
42. Leon, T.; Lopez, J.; Torres, R.; Grau, J.; Jofre, L.; Cortina, J.-L. Describing ion transport and water splitting in an electrodialysis

stack with bipolar membranes by a 2-D model: Experimental validation. J. Membr. Sci. 2022, 660, 120835. [CrossRef]
43. Moya, A.A. Electrochemical impedance of ion-exchange systems with weakly charged membranes. Ionics 2013, 19, 1271–1283.

[CrossRef]
44. Uzdenova, A.M.; Kovalenko, A.V.; Urtenov, M.K.; Nikonenko, V.V. 1D Mathematical Modelling of Non-Stationary Ion Transfer in

the Diffusion Layer Adjacent to an Ion-Exchange Membrane in Galvanostatic Mode. Membranes 2018, 8, 84. [CrossRef]
45. Uzdenova, A. 2D mathematical modelling of overlimiting transfer enhanced by electroconvection in flow-through electrodialysis

membrane cells in galvanodynamic mode. Membranes 2019, 9, 39. [CrossRef]
46. Mareev, S.A.; Nebavskiy, A.V.; Nichka, V.S.; Urtenov, M.K.; Nikonenko, V.V. The nature of two transition times on chronopoten-

tiograms of heterogeneous ion exchange membranes: 2D modelling. J. Membr. Sci. 2019, 575, 179–190. [CrossRef]
47. Uzdenova, A.; Urtenov, M. Potentiodynamic and Galvanodynamic Regimes of Mass Transfer in Flow-Through Electrodialysis

Membrane Systems: Numerical Simulation of Electroconvection and Current-Voltage Curve. Membranes 2020, 10, 49. [CrossRef]
[PubMed]

48. Green, Y. Approximate time-dependent current-voltage relations for currents exceeding the diffusion limit. Phys. Rev. E 2020, 101,
043113. [CrossRef] [PubMed]

49. Uzdenova, A.; Urtenov, M. Mathematical Modeling of the Phenomenon of Space-Charge Breakdown in the Galvanostatic Mode
in the Section of the Electromembrane Desalination Channel. Membranes 2021, 11, 873. [CrossRef]

50. Uzdenova, A.; Kovalenko, A.; Urtenov, M. Theoretical Analysis of Electroconvection in the Electrodialysis Desalination Channel
under the Action of Direct Current. Membranes 2022, 12, 1125. [CrossRef] [PubMed]

51. Cohen, H.; Cooley, J.W. The Numerical Solution of the Time-Dependent Nernst–Planck Equations. Biophys. J. 1965, 5, 145.
[CrossRef]

https://doi.org/10.1103/PhysRevLett.110.114501
https://doi.org/10.1134/S1023193517090099
https://doi.org/10.1039/f29797500231
https://doi.org/10.1146/annurev-fluid-010719-060358
https://doi.org/10.1070/RC2003v072n05ABEH000797
https://doi.org/10.1021/j100134a023
https://doi.org/10.1103/PhysRevE.101.043105
https://doi.org/10.1063/5.0015117
https://doi.org/10.1017/jfm.2022.557
https://doi.org/10.1017/jfm.2016.870
https://doi.org/10.1063/5.0057590
https://doi.org/10.1063/1.4843095
https://doi.org/10.1103/PhysRevFluids.1.073601
https://doi.org/10.3390/ijms20102393
https://www.ncbi.nlm.nih.gov/pubmed/31091791
https://doi.org/10.1016/j.elecom.2014.11.021
https://doi.org/10.1103/PhysRevLett.116.194501
https://doi.org/10.1063/5.0043900
https://doi.org/10.1016/j.desal.2023.116398
https://doi.org/10.1016/j.memsci.2022.120835
https://doi.org/10.1007/s11581-013-0850-0
https://doi.org/10.3390/membranes8030084
https://doi.org/10.3390/membranes9030039
https://doi.org/10.1016/j.memsci.2018.12.087
https://doi.org/10.3390/membranes10030049
https://www.ncbi.nlm.nih.gov/pubmed/32245124
https://doi.org/10.1103/PhysRevE.101.043113
https://www.ncbi.nlm.nih.gov/pubmed/32422742
https://doi.org/10.3390/membranes11110873
https://doi.org/10.3390/membranes12111125
https://www.ncbi.nlm.nih.gov/pubmed/36363680
https://doi.org/10.1016/S0006-3495(65)86707-8


Computation 2023, 11, 205 22 of 22

52. Brumleve, T.R.; Buck, R.P. Numerical solution of the Nernst–Planck and Poisson equation system with applications to membrane
electrochemistry and solid state physics. J. Electroanal. Chem. 1978, 90, 1–31. [CrossRef]

53. Urtenov, M.A.K. Boundary Value Problems for Systems of Nernst–Planck-Poisson Equations (Factorization, Decomposition, Models,
Numerical Analysis); Universervis: Krasnodar, Russia, 1998. (In Russian)

54. Lavrentyev, A.V.; Pismensky, A.V.; Urtenov, M.K. Mathematical Modeling of Transport in Electromembrane Systems Taking into Account
Convective Flows; KubSTU: Krasnodar, Russia, 2006. (In Russian)

55. Kovalenko, A.V.; Khromykh, A.A.; Urtenov, M.K. Decomposition of a two-dimensional system of equations Nernst–Planck–
Poisson for ternary electrolyte. Bull. Russ. Acad. Sci. 2014, 458, 526. [CrossRef]

56. Uzdenova, A.M. Ion Transport in Electromembrane Systems under the Passage of Direct Current: 1D Modelling Approaches.
Membranes 2023, 13, 421. [CrossRef]

57. Roache, P.J. Computational Fluid Dynamics; Hermosa Publishers: Albuquerque, NM, USA, 1976.
58. Pismensky, A.V.; Urtenov, M.K.; Nikonenko, V.V.; Sistat, P.; Pismenskaya, N.D.; Kovalenko, A.V. Model and Experimental Studies

of Gravitational Convection in an Electromembrane Cell. Russ. J. Electrochem. 2012, 48, 756–766. [CrossRef]
59. Mareev, S.A.; Nichka, V.S.; Butylskii, D.Y.; Urtenov, M.K.; Pismenskaya, N.D.; Apel, P.Y.; Nikonenko, V.V. Chronopotentiometric

Response of Electrically Heterogeneous Permselective Surface: 3D Modeling of Transition Time and Experiment. J. Phys. Chem. C
2016, 120, 13113–13119. [CrossRef]

60. Larchet, C.; Nouri, S.; Auclair, B.; Dammak, L.; Nikonenko, V. Application of chronopotentiometry to determine the thickness
of diffusion layer adjacent to an ion-exchange membrane under natural convection. Adv. Colloid Interface Sci. 2008, 139, 45–61.
[CrossRef]

61. Nikonenko, V.V.; Vasil’eva, V.I.; Akberova, E.M.; Uzdenova, A.M.; Urtenov, M.K.; Kovalenko, A.V.; Pismenskaya, N.D.; Mareev,
S.A.; Pourcelly, G. Competition between diffusion and electroconvection at an ion-selective surface in intensive current regimes.
Adv. Colloid Interface Sci. 2016, 235, 233–246. [CrossRef]

62. Uzdenova, A.M.; Kovalenko, A.V.; Urtenov, M.K.; Nikonenko, V.V. Theoretical analysis of the effect of ion concentration in
solution bulk and at membrane surface on the mass transfer at overlimiting currents. Russ. J. Electrochem. 2017, 53, 1254–1265.
[CrossRef]

63. Urtenov, M.A.K.; Kirillova, E.V.; Seidova, N.M.; Nikonenko, V.V. Decoupling of the Nernst–Planck and Poisson equations,
Application to a membrane system at overlimiting currents. J. Phys. Chem. B 2007, 11151, 14208–14222. [CrossRef] [PubMed]

64. Comsol Multiphysics Reference Manual. Available online: https://doc.comsol.com/6.1/doc/com.comsol.help.comsol/
COMSOL_ReferenceManual.pdf (accessed on 10 June 2023).

65. de Valenca, J.C.; Wagterveld, R.M.; Lammertink, R.G.H.; Tsai, P.A. Dynamics of microvortices induced by ion concentration
polarization. Phys. Rev. E 2015, 92, 031003. [CrossRef]

66. Valenca, J.; Jogi, M.; Wagterveld, R.M.; Karatay, E.; Wood, J.A.; Lammertink, R.G.H. Confined electroconvective vortices at
structured ion exchange membranes. Langmuir 2018, 34, 2455–2463. [CrossRef] [PubMed]

67. Krol, J.J.; Wessling, M.; Strathmann, H. Chronopotentiometry and overlimiting ion transport through monopolar ion exchange
membranes. J. Membr. Sci. 1999, 162, 155–164. [CrossRef]

68. Titorova, V.D.; Mareev, S.A.; Gorobchenko, A.D.; Gil, V.V.; Nikonenko, V.V.; Sabbatovskii, K.G.; Pismenskaya, N.D. Effect of
current-induced coion transfer on the shape of chronopotentiograms of cation-exchange membranes. J. Membr. Sci. 2021, 624,
119036. [CrossRef]

69. Barros, K.S.; Martí-Calatayud, M.C.; Scarazzato, T.; Bernardes, A.M.; Espinosa, D.C.R.; Pérez-Herranz, V. Investigation of ion-
exchange membranes by means of chronopotentiometry: A comprehensive review on this highly informative and multipurpose
technique. Adv. Colloid Interface Sci. 2021, 293, 102439. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/S0022-0728(78)80137-5
https://doi.org/10.7868/S0869565214290064
https://doi.org/10.3390/membranes13040421
https://doi.org/10.1134/S1023193512070075
https://doi.org/10.1021/acs.jpcc.6b03629
https://doi.org/10.1016/j.cis.2008.01.007
https://doi.org/10.1016/j.cis.2016.06.014
https://doi.org/10.1134/S1023193517110179
https://doi.org/10.1021/jp073103d
https://www.ncbi.nlm.nih.gov/pubmed/18052144
https://doc.comsol.com/6.1/doc/com.comsol.help.comsol/COMSOL_ReferenceManual.pdf
https://doc.comsol.com/6.1/doc/com.comsol.help.comsol/COMSOL_ReferenceManual.pdf
https://doi.org/10.1103/PhysRevE.92.031003
https://doi.org/10.1021/acs.langmuir.7b04135
https://www.ncbi.nlm.nih.gov/pubmed/29345950
https://doi.org/10.1016/S0376-7388(99)00134-9
https://doi.org/10.1016/j.memsci.2020.119036
https://doi.org/10.1016/j.cis.2021.102439
https://www.ncbi.nlm.nih.gov/pubmed/34058435

	Introduction 
	Methods 
	Modeling Assumptions 
	Model Formulation 
	System Parameters 
	Estimation of Calculation Error 
	Model Implementation 

	Results and Discussion 
	Model Validation 
	Comparison of Chronopotentiograms Calculated on the Basis of NPP–NS and NPD–NS Approaches 
	Comparison of Mass Transfer Characteristics Calculated for Galvanostatic and Potentiostatic Modes 

	Assessment of the Computational Complexity of the Model 

	Conclusions 
	References

