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Abstract: Polymerase chain reaction (PCR) technique is one of the molecular methods in amplifying
DNA for the detection of malaria. However, the collection and transportation of samples and the
processing and dissemination of results via conventional PCR, especially when used for routine
clinical practice, can hamper the technique’s sensitivity and specificity. The rampancy of such
disease in the Philippines is aggravated by the limited supply of medical machinery and the poor
economic state of the country; thus, the need to innovate a device for the early detection of malaria
is necessary. With that, this study focuses on designing a microfluidic device that will mimic the
function of a conventional genus-specific PCR based on the 18S rRNA gene to detect malaria parasites
(Plasmodium falciparum) at low-grade parasitemia. The design was intended to be portable, accessible,
and economical, which none from past literature has dealt with specifically for malaria detection.
This in silico design is a first in the country specially crafted for such reasons. The proposed device
was developed and simulated using ANSYS software for Computational Fluid Dynamics (CFD)
analyses. The simulation shows that adding loops to the design increases its relative deviation but
minimally compared to having only a straight path design. This indicates that looping is acceptable
in designing a microfluidic device to minimize chip length. It was also found that increasing the
cross-sectional area of the fluid path decreases the efficiency of the design. Lastly, among the three
materials utilized, the chip made of polypropylene is the most efficient, with a relative deviation
of 0.94 compared to polycarbonate and polydimethylsiloxane, which have relative deviations of
2.78 and 1.92, respectively. Future researchers may mesh the 44-cycle microfluidic chip due to the
limitations of the software used in this study, and other materials, such as biocomposites, may be
assessed to broaden the application of the design.

Keywords: polymerase chain reaction (PCR); computational fluid dynamics (CFD); Plasmodium
falciparum; microfluidic chip design

1. Introduction

Malaria is a disease caused by Plasmodium parasites of different species, such as
Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, and Plasmodium ovale. Among
these species, Plasmodium falciparum and Plasmodium vivax are the most common, and
Plasmodium falciparum is the deadliest [1]. These parasites are transmitted to people through
the bites of infected mosquitoes, and malaria is prevalent in tropical and subtropical
countries [2]. In 2021, according to the World Health Organization, an estimated 247 million
malaria cases were recorded among the 84 malaria-endemic countries, with the African
region accounting for around 95% of the total cases globally [3]. Aside from that, 13.4 million
cases between 2019 and 2021 were aggravated by the ramifications of the COVID-19
pandemic [4]. Individuals from continuous transmission areas may, after several malaria
infections, develop the premonition state, which is characterized by an immune response
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that can control the parasitemia but is unlikely to purge all the circulating parasites [5]. As
a result, those individuals can stay asymptomatic and act as a parasitic reservoir since such
infected blood can now infect mosquito vectors. With that, these may reintroduce malaria
into other regions [6].

The foundation of PCR is the enzymatic amplification of specific DNA sequences. It
uses the capacity to synthesize DNA strands of the heat-resistant Taq DNA polymerase [7].
The specific DNA region of the malaria parasite is amplified exponentially, producing
millions of copies that are readily detectable. Targeted DNA sections within the parasite’s
genome are used in PCR to identify malaria parasites. To identify different strains, these
areas must be retained across different Plasmodium species [8]. Short DNA sequences
called primers are created to selectively attach to the DNA of the parasite and flank the
target region [9]. So, to detect malaria with high sensitivity and specificity, primer design is
essential. The designed nucleotides, Taq polymerase enzyme, and the extracted DNA are
combined. Denaturation, annealing, and extension cycles are repeatedly performed during
thermal cycling [10]. Exponential amplification occurs as a result of each cycle doubling
the size of the targeted DNA region. Several techniques can be used to determine whether
malaria parasite DNA is present following PCR amplification [11]. Gel electrophoresis is
a popular technique that uses an electric field to separate the amplified DNA fragments
according to size [12]. DNA-staining dyes can be used to see the resultant bands. As an
alternative, real-time PCR can be done to analyze DNA amplification quantitatively in
real-time [13]. The fluorescence signal for each cycle is evaluated using fluorescent probes
or DNA-binding dyes. The amount of DNA amplification coincides with the fluorescence
level. PCR has many benefits for finding malaria parasites. It is sensitive and can find even
a single parasite DNA molecule in a sample [14].

Additionally, it offers great specificity, reducing false-positive outcomes. PCR can
identify drug-resistant strains and distinguish between several Plasmodium species [6].
However, PCR is difficult to use when resources are limited because it calls for specialized
lab equipment and skilled technicians [15].

This concept of miniaturizing PCR aims to speed up the process of conventional PCR
by reducing the overall sample volume and consumption of reagents, lessening the cost
of fabrication, and developing a field-based real-time PCR platform that is capable of
completely conducting analyses from raw samples into promising results that will ensure
a better method of diagnosing malaria. With the growing interest in developing in-field
diagnostic devices that could be used by non-technical personnel involved, this study
would surely provide the necessary preliminary data for innovating a device that can
aid in the prevalence of malaria in the world. Because of that, a real-time PCR-based mi-
crofluidics platform that integrates and miniaturizes DNA purification, amplification, and
detection is being introduced for in-field detection. This study aims to design and simulate
a microfluidic PCR chip device that can specifically detect Plasmodium falciparum DNA
fragment amplification using the software ANSYS software Computational Fluid Dynamics
(CFD). The design is based on the real-time PCR amplification setting for conventional
genus-specific PCR targeted on the 18S rRNA gene to detect malaria parasites (Plasmodium
falciparum). The fluid property used in the simulation is based on the solvent property
of water (see S3). Different materials, polypropylene, polycarbonate, and polydimethyl-
siloxane, were evaluated, and certain design considerations, such as the effects of looping
and increasing the cross-sectional area, were analyzed. After simulating various models
and conducting the necessary tests, this intends to determine from the results the most
appropriate design that will help in pre-selecting the materials and planning the optimum
parameters needed to consider before fabricating the microfluidic PCR chip device for
actual use.

A similar goal was aimed by Zhao et al.; that is, they identified, assessed, and evaluated
various microfluidic-based approaches in detecting foodborne pathogens. The designs
were also intended to be miniaturized, portable, and low-cost. Some of the areas that were
tackled in the study are the possible polymeric materials to use for the device, the sample
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preparation in microfluidics, the application of the device to different technologies such as
biosensors and PCRs, and the opportunities and challenges along with this innovation [16].
Another study by Wang et al. dealt with microfluidics-based strategies for diagnosing
infectious diseases. It was also backed up by the same reason brought by the limitations of
traditional methods in diagnoses. LOCC, LOAD, µPADs, and LFA microfluidic platforms
were evaluated, and the application of digital nucleic acid assay for molecular diagnostics
was highlighted [17].

Furthermore, a design and proof-of-concept study about magnetophoretic manipula-
tion and separation of magnetic and non-magnetic particles in a ferro-microfluidic device
was done, which results support the possibility of using magnetic excitation microfluidic
system designs in analyzing cell separation [18]. To further realize the results obtained
from the previous study, Hewlin et al. analyzed red blood cells and E. coli potential cell
separation and sorting using the travelling wave ferro-magnetic microfluidic device. The
dynamics of magnetic and non-magnetic entities with material magnetic susceptibility in a
transient magnetic field was the focus of phase 2 of the investigation. From the results, the
authors confirmed the potential efficiency of using the device in microparticles and cellular
manipulation and sorting [19]. Through the utilization of CFD analysis and experimental
cell culture growth based on the Huh7 cell line, the flow behavior and filling properties of
two microfluidic liver-on-a-chip devices were examined and compared in another study by
Bakuova et al. The two chips were subjected to computer evaluations, which revealed that
the elliptical chamber chip that has been proposed in the work has better flow and filling
characteristics than the circular chamber chip that has been previously described [20]. Some
of these studies are evidence of the potential use of microfluidics in medical diagnoses and
disease recognition. However, none has dwelled explicitly on the use of microfluidics PCR
chips in the detection of malaria, which is the primary goal of this study.

Malaria is commonly diagnosed by microscopic examination using Giemsa-stained
TBS, which is known as the gold standard method for malaria diagnosis, but this technique
is not the best choice for low-level parasitemia and mixed infections [21,22]. However, in
some endemic areas, asymptomatic infections are not usually detectable by microscopic
examination. This limitation impacts malaria control and screening of blood samples [23].
Therefore, there is a need for a rapid and accurate diagnosis for effective treatment and
control of malaria. It is necessary to develop diagnostic techniques with high sensitivity
and specificity for detecting malaria in environments with relatively low parasite rates
and among asymptomatic individuals of such disease [24]. Polymerase chain reaction
(PCR) assay is found to be one of the most sensitive and specific methods in the detection
of malaria parasites. A study was conducted to optimize a faster and cheaper real-time
genus-specific PCR based on the 18S rRNA gene to detect malaria parasites at low grade
parasitemia leading to a threshold sensitivity of 0.2 parasites per 1 µL [25]. However, the
time interval concerning the collection and transportation of samples and the process-
ing and dissemination of results limit the usefulness of PCR in routine clinical practice.
Besides that, in most areas with malaria transmission in the Philippines, factors such as
limited financial resources, persistent subclinical parasitemia, and inadequate laboratory
infrastructures in the poor, remote rural areas impede PCR as a diagnostic method [26,27].
These factors are the reason for the need to create a microfluidic device that is portable,
economical, and accessible but still functional like the conventional PCR is. With that,
this study focuses on designing a microfluidic device that will mimic the function of a
conventional genus-specific PCR based on the 18S rRNA gene to detect malaria parasites
(Plasmodium falciparum) at low grade parasitemia.

2. Materials and Methods

The design was based on the DNA amplification procedure for conventional genus-
specific PCR, whose target is the 18S rRNA gene in detecting malaria parasites (Plasmodium
falciparum) at low grade parasitemia. The design requires 25 µL of PCR mix and 5 µL
of DNA sample. The total volume of 30 µL then proceeds the annealing, extension, and
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denaturation processes specified at various temperatures to determine which conditions
the device would be most efficient to use (see S1 and S2).

Moreover, three polymers were tested to determine which material best suited the
design for fabricating the microfluidic PCR chip. Table 1 lists the thermal properties of the
polymeric materials utilized in the design.

Table 1. The types of polymeric material with their corresponding thermal properties are used in
designing the microfluidic PCR chip.

Material Property Unit PP a [28] PC b [29] PDMS c [30]

Melting Point K 432.15 428.15 408.15

Thermal Conductivity W
m·K 0.8 0.24 0.15

Specific Heat kJ
kg·K 1.8 1.2 1.46

Density kg
m3 920 1200 970

a Polypropylene; b Polycarbonate; c Polydimethysiloxane.

The first part of the simulation was intended to determine the effects of looping on the
temperature of the fluid inside the device. Aside from that, this also aimed to assess the
influence of looping on the efficiency of the design by calculating their respective relative
deviation and average square of difference based on a set temperature of 58 ◦C. Three
variations were tested: a design with no loops, one loop, and two loops of the same linear
path lengths were drawn. The dimensions of these are shown in Table 2.

Table 2. The dimensions of the three designs utilized in the simulation.

Total Length Calculation

Design Radius (mm) Circumference
(mm) Length (mm) Total Length

(mm)

No Loops a - - 30 30

One Loop 0.25 1.570796327 14 30

Two Loops 0.25 1.570796327 27 30
a The design is characterized as having only a straight path line.

The proposed microfluidic PCR chip was modeled using ANSYS 14.5 CFD with
the following dimensions: the microfluidic chip with a length of 73 mm and width of
45.5 mm, denaturation with a length of 15 mm and width of 45.5 mm, annealing with a
length of 15 mm and width of 45.5 mm, extension with a length of 10 mm and width of
45.5 mm, and the spaces with a length of 2 mm. The number of elements used was 512,000
because of license limitations. The mesh quality was kept greater than 0.10 to ensure
quality for model simulations. The boundary conditions were adapted from Yang et al.,
wherein the Falkenhagen theory was used to evaluate the viscosity of the PCR mixture (see
Supplementary) [31].

The other parameters considered in designing the microfluidic PCR chip are listed
in Table 3. Moreover, Figure 1 shows the 44-cycle microfluidic PCR chip and the 2-cycle
microfluidic PCR chip utilized in testing the design.



Computation 2023, 11, 190 5 of 16

Table 3. Other parameters considered in the design of the microfluidic PCR chip.

Region Residence
Time (s) Length (µm) Passes Volume Volumetric

Flowrate Speed (µm/s)

Annealing (58 ◦C) 15 15,000 1.5 2.94 × 109 1.96 × 108 1500

Extension (72 ◦C) 20 10,000 3 3.92 × 109 1.96 × 108 1500

Denaturation (95 ◦C) 10 15,000 1 1.96 × 109 1.96 × 108 1500

Spaces 5.3 8000 1.05 × 109 1.96 × 108 1500

Total 153 75,500 3 9.87 × 109
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Figure 1. Using ANSYS Computational Fluid Dynamics (CFD), the microfluidic PCR chip was
modeled to evaluate which design would be best utilized in fabricating the device for actual use. The
number of cycles must be specified since this also alters the functionality of the microfluidic PCR
chip in detecting malaria. A visual comparison is shown: (a) 44-cycle microfluidic PCR chip design;
(b) 2-cycle microfluidic PCR chip design.

Different polymeric materials, such as polypropylene, polycarbonate, and polydimethyl-
siloxane were used as the microfluidic PCR chip material in the simulation, and the most
efficient material was evaluated using relative deviation and average square of difference.
After assessing which material was the best choice, the diameter and length of the design
were changed to determine the effect of varying the cross-sectional area of the fluid path to
the fluid temperature. The first design has a diameter of 300 µm, a length of 200 µm, and a
cross-sectional area of 130,686 µm2. Meanwhile, the second design has a diameter of 500 µm,
length of 300 µm, and cross-sectional area of 346,350 µm2.

3. Results and Discussion

Designing and analyzing microfluidic PCR chips require a wide range of capabilities,
which ANSYS provides. This enables engineers to evaluate various design factors and
maximize chip performance by simulating complex fluid movement, heat transfer, and
chemical reactions inside the device [32]. The software is appropriate for modelling bi-
ological reactions and fluid dynamics in microscale environments since it has advanced
capacities like multiphase flow modeling, species transport, and surface reactions [33].
By using ANSYS, engineers may look at and improve on important elements, including
channel shape, valve actuation, mixing effectiveness, and temperature management. They
may check potential design problems and enhance chip performance before production
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owing to the software’s precise information on fluid velocity profiles, pressure distributions,
residence duration, and temperature gradients [34,35]. Issues occurring while operating a
chip can be found and mitigated using CFD. The potential for air bubbles, sedimentation,
uneven heating, and uneven flow distribution, which can all have a detrimental impact
on PCR performance and yield incorrect data, is part of this. The improved chip designs
produced using CFD simulations result in higher sensitivity, decreased reaction time, and
improved amplification efficiency, eventually improving the accuracy and reliability of
molecular biology investigations on microfluidic PCR chips [36].

Using the data in Table 3, three designs were modeled, with one having no loops, one
having only a loop, and one having two loops as seen in Figure 2. The copper plate for all
three was set at a temperature of 58 ◦C, and the designs were simulated using CFD. As
shown in Table 4, as the number of loops increased, the relative deviation also increased,
which indicates that the efficiency of the design decreased; however, the decrease is not
that significant. The simulation shows that a fluid temperature maintained within 58 ◦C,
the relative deviation for the design with no loops is 0.65, with one loop is 0.80, and with
two loops is 0.88. This decreasing trend is indicative of decreasing efficiency but only to a
minimal extent. Therefore, looping can be used in designing the microfluidic PCR chip to
reduce the chip length and increase the residence time of the sample inside the device.
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Table 4. The effect of looping on the efficiency of the design is based on the calculation of relative
deviation and ASD.

Design Relative Deviation ASD a

No Loop 0.65 1.12
One Loop 0.80 1.39
Two Loops 0.88 1.52

a Average square of difference
(
∆T2/n

)
.

The efficiency of reactant mixing is improved by looping in the design of microfluidic
PCR chips, which boosts amplification performance [7,37]. Looping enables the controlled
transport and dispersion of target DNA, primers, and enzymes by providing circular flow
channels within the chip. The looping structures induce vortices and turbulence that speed
up the reaction rate by promoting reactant collision and contact [38]. Additionally, looping
lessens the effects of diffusion and permits the complete mixing of the reactants, even
in small volumes. This enhances the reaction’s homogeneity and lessens the possibility
of non-specific amplification. To improve mixing efficiency within the microfluidic PCR
chip, looping design solutions, such as serpentine channels or spiral topologies, efficiently
harness the advantages of fluidic looping [39,40]. The regulation of temperature cycling, a
crucial component of PCR, can be enhanced by adding more loops. The flow of chemicals
can be guided by the loops through several temperature ranges, enabling quick and precise
changes between denaturation, annealing, and extension temperatures. By doing so,
thermal lag is avoided, and temperature fluctuations in the reaction mixture are reduced,
essential for maintaining the integrity of DNA strands and achieving the best possible
primer annealing. The loops make it possible for PCR amplification to be more reliable
and effective by efficiently managing heat transmission [41,42]. Also, a better level of
reaction consistency may result from a certain number of loops. Even slight changes in
reagent concentrations, temperature profiles, or mixing effectiveness during microfluidic
PCR can have a significant impact on the results of the reaction. The microfluidic system
may self-correct and achieve redundancy with more loops. Other loops can make up for a
minor interruption or fluctuation in one loop, ensuring that the total reaction doesn’t get off
course. This self-stabilizing characteristic improves the PCR process’s reproducibility and
dependability, which is significant in research and diagnostic applications where precision
is essential [42].

For the simulation of the proposed microfluidic PCR chip, the designs drawn using
ANSYS are shown in Figure 3. The five copper plates seen in Figure 3b were set at
temperatures 58 ◦C, 72 ◦C, 95 ◦C, 72 ◦C, and 58 ◦C for the first simulation, temperatures
60 ◦C, 74 ◦C, 97 ◦C, 74 ◦C, and 60 ◦C for the second simulation, and temperatures 63 ◦C,
77 ◦C, 100 ◦C, 77 ◦C, and 63 ◦C for the third simulation for each material (the order of
temperatures corresponds to the order of plates seen in the figure).

Thermal cycling involves heating and cooling the reaction mixture at particular temper-
atures for DNA amplification, an essential procedure in microfluidic PCR chips. Thermal
cycle efficiency can be significantly improved by using looping design concepts. The chip
design can enhance the surface area accessible for heat transfer by including loops and
complicated routes [43]. As a result, the fluid and the chip material surrounding it may
exchange heat more effectively, improving the temperature homogeneity of the reaction
mixture [44]. For reliable and constant amplification results, efficient heat dissipation
and minimal temperature changes are made possible by the looping structures. The vast
range of simulation tools provided by ANSYS CFD is essential for creating microfluidic
PCR chips with the best possible thermal cycling [45]. The software enables engineers to
evaluate and optimize numerous design parameters by simulating heat transfer, fluid flow,
and temperature distribution within the chip. Engineers can examine the effects of chip
geometry, channel dimensions, and materials on temperature distribution during thermal
cycling with simulations [46]. The software helps identify potential hotspots or temperature
changes that could impact the PCR process by providing insights into variables, including
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convective heat transfer, conductive heat dissipation, and radiative heat exchange [47]. By
offering a virtual environment to investigate and improve different thermal cycle factors,
CFD considerably cuts down on the time and expense of experimental trial and error [48].
Because it can mimic various temperature profiles, cycling rates, and thermal profiles, chip
designs may be evaluated and optimized quickly.
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Additionally, it provides in-depth representations of temperature distributions, en-
abling users to see potential temperature changes or places with inadequate temperature
control [49]. To maintain uniform temperature distribution and reduce temperature swings
during thermal cycling, designers can optimize chip shape, channel layout, and thermal
management strategies by understanding the heat transfer processes within the chip [50].
The evaluation of chip performance under various operating conditions is made easier
with CFD. To assess the durability and reliability of the microfluidic PCR chip design, it
can simulate changes in sample volume, flow rates, and ambient temperature [51]. The
detection of possible problems and the tuning of thermal cycle parameters for improved
performance are made easier with this information.

The final design is illustrated in Figure 4, showing a 44-cycle microfluidic PCR
chip design.
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In microfluidic PCR chips, the cycle number is crucial for maximizing amplification
effectiveness. The possibility of DNA amplification is increased by increasing the number of
cycles, especially for low-copy targets [52]. The concentration of the target DNA molecules
rises exponentially as the number of cycles is increased, enhancing sensitivity and detection
limits [53]. However, to prevent non-specific amplification, which might produce false-
positive results, the cycle number must be properly noted. When unwanted DNA fragments
are amplified with the target DNA, this is known as non-specific amplification [54]. By
making sure that the target sequence is specifically amplified, optimizing the cycle number
improves the accuracy of the PCR chip.

Furthermore, the entire reaction time needed for DNA amplification in microfluidic
PCR chips is directly influenced by the number of cycles [55]. The overall reaction time
increases as the cycle number rises, which might be an important factor for applications
that require lower reaction time. By maximizing thermal cycling efficiency, decreasing
heat transfer delays, and increasing temperature uniformity, microfluidic PCR chip designs
should seek to speed up reaction times [56]. Using the computational fluid dynamics
program ANSYS CFD, thermal cycling in microfluidic PCR chips may be simulated and
optimized, allowing the right cycle number to produce the required amplification in the
least time [57]. The power usage, as well as the heating and cooling requirements of the
PCR chip, are influenced by the cycle number. Higher cycle numbers could necessitate
more energy and stricter temperature control, impacting chip design factors, including
power supply, thermal management, and overall system complexity. It is crucial to carefully
consider the desired DNA concentration, amplification sensitivity, time restrictions, and
other performance requirements when determining the ideal cycle number for a given
application [58,59]. A balance between amplification efficiency, specificity, reaction time,
and chip performance can be achieved by taking these parameters into account.

However, during the meshing procedure on the ANSYS, the software cannot mesh the
design due to its limitation since the program is only accessible for educational use. Instead
of meshing the whole design, only a 2-cycle microfluidic PCR chip design was meshed and
simulated as representative of the 44-cycle microfluidic PCR chip design.

Furthermore, different polymeric materials were tested to determine which is the best
choice to be used for designing the microfluidic chip. Polypropylene demonstrates several
significant benefits that make it suitable for microfluidic PCR chip design. Polypropylene
is chemically inert, making it extremely resistant to various chemicals and solvents used
in PCR operations [60]. This characteristic guarantees that polypropylene does not affect
the amplification reaction, resulting in precise and trustworthy results. Polypropylene is
also biocompatible, which reduces the chance of sample contamination and offers an ideal
setting for PCR reactions. Comparing polypropylene to other materials like glass or silicon,
it is more affordable. Microfluidic PCR chips may be produced in large quantities owing
to their affordable manufacturing costs, increasing their availability to researchers and
healthcare workers [61].

Additionally, polypropylene is simple to shape, making it possible to create intricate
patterns with exact geometries and microfluidic elements. Furthermore, a crucial factor for
PCR applications is heat stability. Repeated heating and cooling cycles are necessary for
microfluidic PCR chips to achieve DNA denaturation, annealing, and extension. With a
melting point of roughly 160–170 ◦C and a glass transition temperature of roughly −10 ◦C,
polypropylene has good thermal stability [62]. With the aid of these characteristics, the
microfluidic PCR chip can resist the temperature cycling necessary for PCR without deform-
ing or losing structural integrity. Due to the poor thermal conductivity of polypropylene,
there is less heat transmission between the various areas of the microfluidic chip, which
allows for effective temperature control and less sample contamination [63]. By maintaining
well-defined heat zones for each reaction step, this characteristic guarantees that the PCR
process is accurate and specific.

Real-time observation and analysis of PCR reactions are made possible by the optical
transparency of polycarbonate. This characteristic allows researchers to monitor and mea-
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sure the amplification procedure, leading to precise and accurate results. Polycarbonate has
exceptional chemical resistance, making it work with various PCR reagents and lowering
the possibility of sample contamination [64]. The microfluidic PCR chip is long-lasting due
to its resistance to chemical deterioration, making it a good material for recurrent use. Also,
polycarbonate is non-toxic and biocompatible, limiting disruption of biological material
and maintaining the integrity of DNA amplification [65]. These qualities also make poly-
carbonate a suitable material for microfluidic PCR chip applications since they are essential
for preserving the precision and dependability of PCR results. Because polycarbonate has
a low thermal conductivity, there is less heat transfer between the various parts of the
microfluidic chip. This characteristic makes it easier to effectively control the temperature
within designated reaction zones, reducing the risk of cross-contamination and preserving
the precision and specificity of the PCR procedure [66]. The temperature cycling of the
microfluidic PCR chip is more consistent due to the low coefficient of thermal expansion
of polycarbonate. Enhancing the reliability of PCR results and minimizing fluctuations
in DNA amplification efficiency are temperature profiles that are constant across the chip.
The microfluidic PCR chip design can also benefit from the hydrophobic properties of
the polymer [67]. It does not require further surface alterations or coatings because of its
inherent hydrophobicity, which enables precise control of fluid flow. This characteristic
lowers the possibility of sample evaporation during the PCR process and improves the
compatibility of polycarbonate microfluidic PCR chips with PCR chemicals [68].

Due to its great flexibility and elastomeric properties, polydimethylsiloxane (PDMS)
makes it simple to fabricate intricate microfluidic devices. It is simple to mold or pattern
to make complex features and structures, which makes it easier to incorporate several
functionalities into a single chip [64,69]. The adaptability and use of microfluidic PCR chips
are increased by the flexibility of PDMS, which also makes it possible to connect tubing
and other components in a simple manner. In comparison to other materials like glass or
silicon, PDMS is also a more affordable choice. Microfluidic PCR chips can be produced
in large quantities thanks to their affordable manufacturing costs, which increases their
accessibility for researchers and medical experts [70]. Precision temperature control within
designated reaction zones is made possible by the poor thermal conductivity of PDMS,
which reduces heat transmission between various areas of the microfluidic chip. This
characteristic improves the precision and specificity of the PCR process and lowers the
possibility of sample contamination. Due to its low coefficient of thermal expansion, PDMS
also provides good thermal cycling performance [71]. With this feature, the microfluidic
PCR chip is guaranteed to have constant temperature profiles, which minimizes changes in
DNA amplification efficiency and enhances the repeatability of results.

Additionally, PDMS demonstrates hydrophobic characteristics that can be used to
regulate fluid flow inside the microfluidic device [72]. The hydrophobic properties of PDMS
make it easier for well-defined channels and droplets to develop, providing fine-grained
control over the transport of samples and reagents [73]. This characteristic lowers the
possibility of sample evaporation during the PCR process and improves the compatibility
of PDMS microfluidic PCR chips with various PCR reagents.

Using the data at different nodes generated from the various simulations, the relative
deviation and average square of difference (ASD) were calculated as shown in Table 5.
The results show that polypropylene set at a copper plate temperature of 58 ◦C for anneal-
ing, 72 ◦C for extension, and 95 ◦C for denaturation has the lowest relative deviation of
0.94 and lowest average square of difference (∆T2/n) of 3.21. This suggests that polypropy-
lene under this set condition, is the most efficient material for fabricating the microfluidic
PCR chip.
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Table 5. The effect of the different polymeric materials under various temperatures on the efficiency
of the design is based on the calculation of relative deviation and ASD.

58 ◦C, 72 ◦C, 95 ◦C 60 ◦C, 74 ◦C, 97 ◦C 63 ◦C, 77 ◦C, 100 ◦C

Material Relative Deviation ASD d Relative Deviation ASD d Relative Deviation ASD d

PP a 0.94 3.21 2.84 5.82 6.90 25.00

PC b 1.92 8.61 3.15 10.00 6.92 26.70

PDMS c 2.78 14.00 3.47 14.00 6.93 29.00
a Polypropylene; b Polycarbonate; c Polydimethysiloxane; d Average square of difference

(
∆T2/n

)
.

The relative deviation was intended to measure the precision or the consistency of
results that can be generated from the designed microfluidic PCR chip. It measures the
variance between subsequent readings of the same measurement or replication of the DNA
amplification procedure [74]. An extremely high degree of precision and reproducibility
is implied by a low relative deviation, which shows little variation in the amplification
results. Achieving a minimal relative variation in the design of microfluidic PCR chips
is essential for precise and dependable DNA amplification. It indicates that there is less
chance of false-positive or false-negative results because of the ability of the PCR chip to
enable consistent and repeatable results [75]. In applications like diagnostics or research
trials, where consistency and reproducibility are crucial, a low relative deviation assures
that the chip generates accurate data.

Conversely, the average square of difference was intended to measure the accuracy or
efficiency of the proposed design. It measures the difference between the actual outcomes of
the amplification and the desired or anticipated values. The chip design produces accurate
amplification results with little departure from the expected values, as indicated by a
low average square of difference. To achieve precise DNA amplification while designing
microfluidic PCR chips, a low average square of difference must be attained [76]. A low
value denotes effective reaction parameter control by the chip design, including control of
temperature, reagent concentrations, and fluid flow, leading to accurate and dependable
amplification [77]. The likelihood of experimental mistakes, erroneous results, or the
necessity for additional testing is reduced by a precise chip design.

Consequently, after figuring out that polypropylene is the best option, the microfluidic
PCR chip with this design set under the optimum temperatures of 58 ◦C, 72 ◦C, and 95 ◦C
was subjected to further testing by changing the parameters while unchanging the inlet
velocity of the models. Table 6 shows the relative deviation and average square of difference
(ASD) calculated from the two designs.

Table 6. The effect of changing the parameters of the polypropylene microfluidic PCR chip under the
temperatures of 58 ◦C (annealing), 72 ◦C (extension), and 95 ◦C (denaturation) on the efficiency of
the design based on the calculation of relative deviation and ASD.

Parameter Design 1 Design 2

Diameter 300 500
Length 200 300
Relative Deviation 0.94 2.31
ASD a 3.21 5.96

a Average square of difference
(
∆T2/n

)
.

The data shows that increasing the diameter and length of the fluid path affects the
fluid temperature. Increasing the cross-sectional area using the same inlet velocity of the
fluid flowing through the chip also increases relative deviation and ASD, indicating a
decrease in efficiency of reaching the set temperature at different zones. Thus, the design
using a smaller cross-sectional area is most suitable because of its comparatively lower
relative deviation, and ASD predisposes it to be favored more in fabricating the device.
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Since one of the aims of this study is to reduce the cost of the device for public
access, limiting material utilization was necessary to compensate for this. Miniaturizing
the conventional PCR by fabricating a more portable and relatively smaller device would
surely affect its efficiency in detecting Malaria, especially in the amplification process [78].
The proposed microfluidic PCR chip is designed to detect malaria even with a small sample
volume while, at the same time, not compromising the specificity of the test. The threshold
cycle of the conventional PCR amplification of P. falciparum DNA fragments is 36, with a
threshold sensitivity of 0.2 parasites per 1 µL [79]. However, the proposed microfluidic
PCR chip was designed for 44 cycles because it is also intended to detect small samples,
which must be amplified more than samples of greater volume. The amount of time it
takes for the microfluidic PCR chip to amplify the sample for a given number of cycles was
evaluated (see S3). In 44 cycles, which the device was specifically designed for, it consumes
around 112.23 min to complete.

4. Conclusions

The simulation shows that looping can affect the temperature of the fluid to a minimal
extent and, therefore, can be considered in designing a microfluidic PCR chip to decrease
the chip length. Based on the simulation, the best material for designing the microfluidic
PCR chip is polypropylene with a relative deviation of 0.94 from the set temperatures
of 58 ◦C (annealing), 72 ◦C (extension), and 95 ◦C (denaturation). It was also proven
that increasing the cross-sectional area of the fluid path can affect the temperature of the
fluid; thus, it is recommended to use a smaller cross-sectional area to ensure that the set
temperatures in different zones are reached. With the objectives this simulative study
aims to answer, the results generated from this intend to serve as a preliminary screening
towards an optimized design of a microfluidic-based PCR device for P. falciparum DNA
fragment amplification.

As mentioned earlier, only a 2-cycle microfluidic chip design was meshed due to the
limitation of the software. Future researchers might want to look at this and try to mesh
the 44-cycle microfluidic chip used in this study. Other parameters may be tested as well
for their effect on the efficiency of the device in detecting malaria, and other materials may
be assessed to broaden the application of this design.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/computation11100190/s1, S1: Optimized Real-Time PCR Procedure
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