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Abstract: In this paper, we introduce a novel approach employing two-dimensional uniform and
non-uniform Haar wavelet collocation methods to effectively solve the generalized Burgers–Huxley
and Burgers–Fisher equations. The demonstrated method exhibits an impressive quartic convergence
rate. Several test problems are presented to exemplify the accuracy and efficiency of this proposed
approach. Our results exhibit exceptional accuracy even with a minimal number of spatial divisions.
Additionally, we conduct a comparative analysis of our results with existing methods.
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1. Introduction

Nonlinear partial differential equations (PDEs) play a fundamental role in describing
various phenomena in science and engineering. However, due to their inherent complexity,
finding analytical solutions to these equations is often impractical or even impossible.
As a result, researchers have developed numerous numerical techniques to approximate
solutions for such PDEs. These methods encompass a wide range of approaches, including
the homotopy analysis method [1], iterative differential quadrature method [2], variational
iteration method [3], spectral collocation method [4–6], meshless method of lines [7], and
polynomial differential quadrature method [8]. Among the PDEs that have received
significant attention in the literature are the generalized Burgers–Huxley (B–H) equation
and the Burgers–Fisher (B–F) equation.

In this article, we consider the following B–H equation in the generalized form with
the initial condition (IC) and boundary conditions (BCs):

wt + αwδwx − wxx = βw
(

1− wδ
)(

wδ − γ
)

, x ∈ [0, 1], t ∈ [0, 1], (1)

IC: w(x, 0) = g(x) =
(γ

2
+

γ

2
tanh(δcγx)

) 1
δ , (2)

BCs: w(0, t) = φ(t) =
(γ

2
+

γ

2
tanh

[
− δcγ

( γα

1 + δ
− 2c(1 + δ− γ)

)
t
]) 1

δ , (3)

w(1, t) = ξ(t) =
(γ

2
+

γ

2
tanh

[
δcγ
(

1−
( γα

1 + δ
− 2c(1 + δ− γ)

)
t
)]) 1

δ . (4)

Equation (1) has the exact solution w̃(x, t) and was derived by Wang et al. [9]. It is given as

w̃(x, t) =
(γ

2
+

γ

2
tanh

[
δcγ
(

x−
( γα

1 + δ
− 2c(1 + δ− γ)

)
t
)]) 1

δ ,
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where c =
−α+
√

α2+4β(1+δ)
4(1+δ)

and α, β, γ, δ are parameters such that β ≥ 0, δ > 0, and
γ ∈ (0, 1). Here, the subscripts t and x represent differentiation with respect to time and
space, respectively.

In this article, we consider another equation, known as the B–F equation, in the
generalized form, subject to the initial and boundary conditions

wt + αwδwx − wxx = βw
(

1− wδ
)

, x ∈ [0, 1], t ∈ [0, 1], (5)

IC: w(x, 0) = g(x) =
(1

2
+

1
2

tanh(
−δρ

2
x)
) 1

δ , (6)

BCs: w(0, t) = φ(t) =
(1

2
+

1
2

tanh
[ δρ

2

(
ρ +

β

ρ

)
t
]) 1

δ , (7)

w(1, t) = ξ(t) =
(1

2
+

1
2

tanh
[−δρ

2

(
1−

(
ρ +

β

ρ

)
t
)]) 1

δ , (8)

with the exact solution w̃(x, t),

w̃(x, t) =
(1

2
+

1
2

tanh
[−δρ

2

(
x−

(
ρ +

β

ρ

)
t
)]) 1

δ ,

where ρ = α
δ+1 .

Ismail et al. [10] were probably the first to provide a numerical solution for the B–H equa-
tion using the Adomian decomposition method (ADM). Subsequently, Hashim et al. [11] con-
ducted a convergence analysis of the ADM for solving the B–H equation. Batiha et al. [12]
employed the variational iteration method (VIM) to solve the generalized B–H equation.
Other methods used to solve the B–H equation include the splitting method [13], the com-
pact operator method [14], the homotopy perturbation method [15], and the cubic splines
approximation method [16–18]. Additionally, Díaz [19] described a modified exponential
finite-difference method for solving the B–H equation.

The B–H equation is an extension of the widely used Huxley and Burgers equations.
VIM [20], the HPM technique [21], and the ADM scheme [22] have all been used to solve the
generalized Huxley equation for the special case when α = 0. For this case, the Equation (1)
becomes the generalized Huxley equation. Additionally, Equation (1) reduces to the Huxley
equation for α = 0 and δ = 1, which has applications in modeling wall motion in liquid
crystals and nerve pulse propagation in nerve fibers [9].

Equation (5) is known as the generalized Burgers equation when β = 0. Ismail et al. [10]
obtained the numerical solution to the B–F equation using the ADM technique. Moghimi
and Hejazi [23] subsequently described the VIM method for solving generalized Burgers–
Fisher and Burgers equations. The cubic B-splines collocation method was used by Mittal
and Tripathi [16] to solve the generalized B–F problem.

Mickens [24–27] introduced concepts for solving numerous ordinary differential equa-
tions (ODEs) and PDEs, which have become well-known as exact finite difference (EFD)
and non-standard finite difference (NSFD) schemes. Recently, various forms of Burgers
equations [28–32] have been solved by NSFD.

The Haar wavelet is an effective and popular tool for addressing a wide range of prac-
tical issues. Its applications in diverse fields have been investigated by several researchers.
Due to its distinctive qualities of orthogonality, compact support, and symmetry, Haar
wavelets have grown in prominence. They are particularly good at solving differential equa-
tions because of these characteristics. The Haar wavelet approach has gained popularity in
numerical techniques because of its ease of use and effectiveness, particularly when dealing
with nonlinearities and singularities. For a comprehensive understanding of the theory
and applications of Haar wavelets, several references can be consulted, including [33–52]
and references therein. Jiwari [36] used the uniform Haar wavelet method along with the
quasilinearization strategy to solve the Burgers equation numerically. The uniform Haar
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wavelet was suggested by Celik et al. [53] to study various applications of the generalized
B–H equation. Shukla and Kumar [54] used a combination of the uniform Haar wavelet
analysis and the Crank–Nicolson finite difference approach to numerically solve the B–H
problem. Recently, Verma et al. [55] developed a numerical technique based on the uniform
Haar wavelet and non-standard finite difference scheme for solving a class of extended
Burgers equations. A higher-order non-uniform Haar wavelet approach was also suggested
by Ratas et al. [56] for solving nonlinear PDEs. Recently, the two-dimensional Haar wavelet
method (2DHWM) [57] was developed as an enhancement of the Haar wavelet method
(HWM). The 2DHWM has demonstrated improved accuracy and convergence compared
to the standard HWM [58]. For a comprehensive review of 2DHWM and its applications,
one may refer to [51,59–61].

In this article, our attention is directed towards the exploration of the generalized
B–H and B–F equations. To address these equations effectively, we introduce a pair of
methodologies: the two-dimensional uniform Haar wavelet collocation method (UHWCM)
and the two-dimensional non-uniform Haar wavelet collocation method (NUHWCM),
both of which are seamlessly integrated with the Newton–Raphson technique. Through
our investigation, we establish and substantiate the remarkable quartic convergence rate
inherent in each of these methods. We obtain numerical solutions for the generalized
B–H and B–F equations, present absolute errors, and compare the results with existing
methods. Furthermore, we report the computational time (in seconds). The proposed
methods and numerical results are novel, providing accurate solutions with a minimal
number of spatial divisions. The outcomes outlined in this paper are novel and have not
been previously documented in existing literature. To the best of our knowledge, the
techniques introduced in this study have not been employed for addressing the generalized
B–H and B–F equations in prior research. We employed Mathematica 11.3 for computing
the numerical results.

This article is organized as follows: Section 2 introduces the uniform and non-uniform
Haar wavelets. Section 3 details the proposed method combining Haar wavelets and
the Newton–Raphson method. Section 4 presents numerical illustrations to validate the
method. The findings are summarized in Section 5 of the article’s conclusion.

2. Preliminaries

Here, we define uniform and non-uniform Haar wavelets in detail and discuss some
of their key properties. This will enable a complete understanding of Haar wavelets and
their characteristics.

2.1. Uniform Haar Wavelet

Lepik and Hein took into account the interval [0, 1] in their analysis in 2014 [62].
Additionally, they divided this interval into 2M sub-intervals with equal ∆t = 1

2M step size.
The Haar wavelet’s mother wavelet function Hi(t) is defined as follows for i > 1:

Hi(t) =


1, y1(i) ≤ t < y2(i),
−1, y2(i) ≤ t < y3(i),
0, otherwise,

(9)

such that the values y1(i), y2(i), and y3(i) are given by

y1(i) = 2k
(

M
m

)
∆t, y2(i) = (2k + 1)

(
M
m

)
∆t, y3(i) = 2(k + 1)

(
M
m

)
∆t, (10)
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where the parameters i, m, M, j, k, and J are defined as:

i = m + k + 1,

m = 2j, M = 2J ,

j = 0, 1, · · · , J,

k = 0, 1, · · · , m− 1,

J = Maximum level of resolution.

For i = 1, the Haar function H1(t) is defined as:

H1(t) =

{
1, 0 ≤ t ≤ 1,
0, otherwise.

(11)

The integral of the Haar function, Pν,i(t), is defined as follows for i > 1:

Pν,i(t) =


0, t < y1(i),
1
ν! [t− y1(i)]ν, y1(i) ≤ t ≤ y2(i),
1
ν!{[t− y1(i)]ν − 2[t− y2(i)]ν}, y2(i) ≤ t ≤ y3(i),
1
ν!{[t− y1(i)]ν − 2[t− y2(i)]ν + [t− y3(i)]ν}, t > y3(i).

(12)

For i = 1, we have y1 = 0, y2 = y3 = 1, and the expression for Pν,1(t) becomes

Pν,1(t) =
tν

ν!
. (13)

Collocation Points: We define the collocation points as follows:

tcl = 0.5(t̃cl−1 + t̃cl), cl = 1, · · · , 2M, (14)

where
Grid Points (t̃cl) = cl∆t, cl = 0, 1, · · · , 2M.

For computation, we introduce the matrices H, P1, P2, · · · , which are the order of
2M× 2M and defined by the following rules:

H(i, cl) = Hi(tcl), Pν(i, cl) = Pν,i(tcl), ν = 1, 2, · · · .

2.2. Non-Uniform Haar Wavelet

In their study, Ratas et al. [56] partitioned the interval [0,1] into 2M sub-intervals of
varying step sizes using the following method:

ωg(r) =
qr − 1

q2M − 1
, r = 0, 1, 2, · · · , 2M, ωg(r + 1) > ωg(r)∀r, ωg(0) = 0, ωg(2M) = 1, (15)

where q represents an arbitrary constant with q < 1. The Haar wavelet’s mother wavelet
function H̃i(t) is defined as follows for i > 1:

H̃i(t) =


1, y1(i) ≤ t < y2(i),
−Ci, y2(i) ≤ t < y3(i),
0, otherwise,

(16)

such that the values of y1(i), y2(i), and y3(i) are defined as:

y1(i) = ωg
(

2k
(

M
m

))
, y2(i) = ωg

(
(2k + 1)

(
M
m

))
, y3(i) = ωg

(
2(k + 1)

(
M
m

))
,
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where,

i = m + k + 1,

m = 2j, M = 2J ,

j = 0, 1, · · · , J,

k = 0, 1, · · · , m− 1,

J = Maximum level of resolution,

Ci =
y2(i)− y1(i)
y3(i)− y2(i)

.

For i = 1, the Haar function H̃1(t) is defined as:

H̃1(t) =

{
1, 0 ≤ t ≤ 1,
0, otherwise.

(17)

The integral of the Haar function, P̃ν,i(t), is defined as follows for i > 1:

P̃ν,i(t) =


0, 0 ≤ t < y1(i),
1
ν! [t− y1(i)]ν, y1(i) ≤ t < y2(i),
1
ν!{[t− y1(i)]ν − (1 + Ci)[t− y2(i)]ν}, y2(i) ≤ t < y3(i),
1
ν!{[t− y1(i)]ν − (1 + Ci)[t− y2(i)]ν + Ci[t− y3(i)]ν}, y3(i) ≤ t ≤ 1.

(18)

For i = 1, we have y1 = 0, y2 = y3 = 1, and

P̃ν,1(t) =
tν

ν!
. (19)

Collocation Points: To determine the collocation points tr, the following definition is
introduced as follows:

tr = 0.5(ωg(r) + ωg(r + 1)), r = 0, · · · , 2M− 1. (20)

3. Novel Approach and Convergence Analysis

In this section, we formulate the solution technique for the proposed problem by
employing both the uniform Haar wavelet collocation method (UHWCM) and non-uniform
Haar wavelet collocation method (NUHWCM). Furthermore, we verify the stability of
these newly introduced techniques.

3.1. Derivation: UHWCM

For the sake of simplicity, let us assume that the interval [0, 1] represents the computa-
tional domain for both x and t. We divide both intervals into 2M sub-intervals with equal
step sizes and assume that the solution is expressed in the following form:

wxxt(x, t) =
2M

∑
i=1

2M

∑
l=1

ailHi(x)Hl(t), (21)

where ail are the wavelet coefficients. Now, integrating Equation (21) from 0 to t, we obtain

wxx(x, t) =
2M

∑
i=1

2M

∑
l=1

ailHi(x)P1,l(t) + wxx(x, 0), (22)
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where Pν,l(t) represents the integral of the Haar function of order ν. By applying the initial
condition w(x, 0) = g(x) in Equation (22), we have:

wxx(x, t) =
2M

∑
i=1

2M

∑
l=1

ailHi(x)P1,l(t) + gxx(x). (23)

Now, we perform integration on Equation (23) from 0 to x twice, and we obtain:

wx(x, t) =
2M

∑
i=1

2M

∑
l=1

ailP1,i(x)P1,l(t) + gx(x)− gx(0) + wx(0, t), (24)

w(x, t) =
2M

∑
i=1

2M

∑
l=1

ailP2,i(x)P1,l(t) + g(x)− g(0)− xgx(0) + xwx(0, t) + w(0, t). (25)

Applying boundary conditions w(0, t) = φ(t), w(1, t) = ξ(t) on the Equation (25), we obtain:

wx(0, t) = ξ(t)− φ(t) + gx(0) + g(0)− g(1)−
2M

∑
i=1

2M

∑
l=1

ailP2,i(1)P1,l(t). (26)

We substitute the obtained value from Equation (26) into Equations (24) and (25) and obtain:

wx(x, t) =
2M

∑
i=1

2M

∑
l=1

ail [P1,i(x)P1,l(t)−P2,i(1)P1,l(t)] + gx(x) + ξ(t)− φ(t) + g(0)− g(1), (27)

w(x, t) =
2M

∑
i=1

2M

∑
l=1

ail [P2,i(x)P1,l(t)− xP2,i(1)P1,l(t)] + g(x)− g(0)+

x[ξ(t)− φ(t) + g(0)− g(1)] + φ(t). (28)

Differentiating Equation (28) with respect to t, we obtain:

wt(x, t) =
2M

∑
i=1

2M

∑
l=1

ail [P2,i(x)Hl(t)− xP2,i(1)Hl(t)] + x[ξt(t)− φt(t)] + φt(t). (29)

Now, we discretize the obtained results using the method of collocation defined in Equation (14).
After that, we substitute the values of wxx(xcl , tcl), wx(xcl , tcl), w(xcl , tcl), wt(xcl , tcl) from
Equations (21) and (27)–(29) into the proposed problem (1) or (5) and obtain the following
system of nonlinear equations:

θ1(a1,1, a1,2, · · · , a2M,2M) = 0,

θ2(a1,1, a1,2, · · · , a2M,2M) = 0,

θ3(a1,1, a1,2, · · · , a2M,2M) = 0,
...

θ(2M)2(a1,1, a1,2, · · · , a2M,2M) = 0.

We solve the above system of nonlinear equations by the Newton–Raphson method and ob-
tain the wavelet coefficients. We substitute obtained wavelet coefficients into Equation (28)
and obtain the required numerical solution.

3.2. Convergence: UHWCM

Theorem 1. Assuming that the function wxxt(x, t) satisfies the Lipschitz condition on the interval
[0, 1]× [0, 1], denoted by the existence of a positive constant µ such that for any (x1, t), (x2, t) ∈
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[0, 1]× [0, 1], the following inequality holds: |wxxt(x1, t)− wxxt(x2, t)| ≤ µ|x1 − x2|. Under
these conditions, we can derive an error bound for ||EJ(x, t)||2 as follows:

||EJ(x, t)||2 ≤
µ

112

(
1
2J

)4
,

where EJ(x, t) = |w(x, t)− wJ(x, t)|. Here, wJ(x, t) represents the approximate solution obtained
using the UHWCM method. Furthermore, the UHWCM method exhibits convergence, meaning
that EJ(x, t) approaches zero as J tends to infinity. The convergence is of order 4, indicated by the

fact that ||EJ(x, t)||2 = O
(

1
2J

)4
.

Proof. In order to distinguish between an exact solution and an approximate solution, we
can represent the approximate solution obtained through the utilization of the UHWCM
method in the following manner:

wJ(x, t) =
2M

∑
i=1

2M

∑
l=1

ail [P2,i(x)P1,l(t)− xP2,i(1)P1,l(t)]

+ g(x)− g(0) + x[ξ(t)− φ(t) + g(0)− g(1)] + φ(t).

Then, error at the Jth level of resolution is defined as:

|EJ(x, t)| = |w(x, t)− wJ(x, t)|

=

∣∣∣∣∣2M

∑
i=1

2M

∑
l=1

ail [P2,i(x)P1,l(t)− xP2,i(1)P1,l(t)]

∣∣∣∣∣.
Now, expanding the L2 norm of the error function, we obtain:

||EJ(x, t)||22 =
∫ 1

0

∫ 1

0

(
2M

∑
i=1

2M

∑
l=1

ail [P2,i(x)P1,l(t)− xP2,i(1)P1,l(t)]

)2

dxdt

=
∫ 1

0

∫ 1

0

(
∞

∑
j=J+1

2j−1

∑
k=0

∞

∑
u=J+1

2u−1

∑
v=0

a2j+k+1,2u+v+1[P2,2j+k+1(x)−

xP2,2j+k+1(1)]P1,2u+v+1(t)
)2

dxdt.

After simplifying above expression, we obtain:

||EJ(x, t)||22 =
∞

∑
j=J+1

2j−1

∑
k=0

∞

∑
u=J+1

2u−1

∑
v=0

∞

∑
j′=J+1

2j′−1

∑
k′=0

∞

∑
u′=J+1

2u′−1

∑
v′=0

a2j+k+1,2u+v+1a2j′+k′+1,2u′+v′+1∫ 1

0

∫ 1

0
[P2,2j+k+1(x)− xP2,2j+k+1(1)][P2,2j′+k′+1(x)− xP2,2j′+k′+1(1)] (30)

P1,2u+v+1(t)P1,2u′+v′+1(t)dxdt.

To evaluate ail , we use the following expression:

ail =
∫ 1

0

∫ 1

0
wxxt(x, t)Hi(x)Hl(t)dxdt = 〈Hi(x), 〈wxxt(x, t), Hl(t)〉〉, (31)

where 〈., .〉 denotes the inner product. Using the definition of the uniform Haar wavelet (9),
we have:
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〈wxxt(x, t), Hl(t)〉 =
∫ 1

0
wxxt(x, t)Hl(t)dt =

∫ y2(l)

y1(l)
wxxt(x, t)dt−

∫ y3(l)

y2(l)
wxxt(x, t)dt.

Applying the mean value theorem for integrals, there exist Λ1 ∈ [y1(l), y2(l)] and Λ2 ∈
[y2(l), y3(l)] such that:

〈wxxt(x, t), Hl(t)〉 = (y2(l)− y1(l))wxxt(x, Λ1)− (y3(l)− y2(l))wxxt(x, Λ2).

From Equation (10), we have y2(l)− y1(l) = y3(l)− y2(l) = 1
2u+1 . Therefore, the above

expression simplifies to:

〈wxxt(x, t), Hl(t)〉 =
1

2u+1 [wxxt(x, Λ1)− wxxt(x, Λ2)]. (32)

By substituting Equation (32) into Equation (31) and utilizing Equation (9), we can derive
the following expression:

ail = 〈Hi(x),
1

2u+1 [wxxt(x, Λ1)− wxxt(x, Λ2)]〉

=
1

2u+1

[∫ y2(i)

y1(i)
[wxxt(x, Λ1)− wxxt(x, Λ2)]dx−

∫ y3(i)

y2(i)
[wxxt(x, Λ1)− wxxt(x, Λ2)]dx

]
.

Once again, applying the mean value theorem for integrals, there exist η1 and η2 within the
interval [y1(i), y2(i)], as well as η3 and η4 within the interval [y2(i), y3(i)], such that:

ail =
1

2u+1 [(y2(i)− y1(i))[wxxt(η1, Λ1)− wxxt(η2, Λ1)]−

(y3(i)− y2(i))[wxxt(η3, Λ1)− wxxt(η4, Λ1)]].

Using Equation (10), we know that y2(i)− y1(i) = y3(i)− y2(i) = 1
2j+1 . Simplifying the

expression above, we obtain:

ail =
1

2u+j+2 [wxxt(η1, Λ1)− wxxt(η3, Λ1) + wxxt(η4, Λ1)− wxxt(η2, Λ1)]. (33)

Since wxxt(x, t) is Lipschitz in [0, 1]× [0, 1]:

|ail | =
1

2u+j+2 |wxxt(η1, Λ1)− wxxt(η3, Λ1) + wxxt(η4, Λ1)− wxxt(η2, Λ1)|

≤ 1
2u+j+2 (|wxxt(η3, Λ1)− wxxt(η1, Λ1)|+ |wxxt(η4, Λ1)− wxxt(η2, Λ1)|)

≤ 1
2u+j+2 (µ1|η3 − η1|+ µ2|η4 − η2|)

≤ 1
2u+j+2 (µ1|y3(i)− y1(i)|+ µ2|y3(i)− y1(i)|)

≤ µ

2u+2j+2 ; where µ = max(µ1, µ2).

Thus, we have obtained the bound for coefficients ail ,

|ail | ≤
µ

2u+2j+2 . (34)
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Since P2,i(x) = 0 for all x in the interval [0, y1(i)], we can observe that P2,i(x) monotoni-
cally increases in the interval [y1(i), y2(i)]. Therefore, P2,i(x) reaches its maximum value
at x = y2(i). By the definition of P2,i(x), we have:

P2,i(x) ≤ (y2(i)− y1(i))2

2

=
1
2

(
1

2j+1

)2
; x ∈ [y1(i), y2(i)].

In the interval x ∈ [y2(i), y3(i)], P2,i(x) is monotonically increasing if x ≤ y3(i). We can

obtain this condition by using the definition of P2,i(x) and dP2,i(x)
dx ≥ 0. Therefore, P2,i(x)

reaches its upper bound at x = y3(i), which is given as:

P2,i(x) ≤
(

1
2j+1

)2
; x ∈ [y2(i), y3(i)].

For x ∈ [y3(i), 1], we can conclude that:

P2,i(x) ≤
(

1
2j+1

)2
.

Hence, the upper bound of P2,i(x) in the interval [0, 1] is given by:

P2,i(x) ≤
(

1
2j+1

)2
. (35)

Similarly, we can establish an upper bound for P1,l(t) in the interval [0, 1] as follows:

P1,l(t) ≤
1

2u+1 . (36)

Now, inserting Equation (34) into (30), we obtain:

||EJ(x, t)||22 ≤µ2
∞

∑
j=J+1

2j−1

∑
k=0

∞

∑
u=J+1

2u−1

∑
v=0

∞

∑
j′=J+1

2j′−1

∑
k′=0

∞

∑
u′=J+1

2u′−1

∑
v′=0

1
2u+2j+u′+2j′+4(∫ 1

0
P1,2u+v+1(t)P1,2u′+v′+1(t)dt

)
(37)(∫ 1

0
[P2,2j+k+1(x)− xP2,2j+k+1(1)][P2,2j′+k′+1(x)− xP2,2j′+k′+1(1)]dx

)
.

By Equation (36), we have:

P1,2u+v+1(t) ≤
1

2u+1 , P1,2u′+v′+1(t) ≤
1

2u′+1 , ∀t ∈ [0, 1]. (38)

Now, inserting Equation (38) into (37), we obtain:

||EJ(x, t)||22 ≤µ2
∞

∑
j=J+1

2j−1

∑
k=0

∞

∑
u=J+1

2u−1

∑
v=0

∞

∑
j′=J+1

2j′−1

∑
k′=0

∞

∑
u′=J+1

2u′−1

∑
v′=0

(
1

22u+2j+2u′+2j′+6

)
(∫ 1

0
[P2,2j+k+1(x)− xP2,2j+k+1(1)][P2,2j′+k′+1(x)− xP2,2j′+k′+1(1)]dx

)
. (39)

Also, by using Equation (35), we deduce the following inequalities:
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∣∣∣P2,2j+k+1(x)− xP2,2j+k+1(1)
∣∣∣ ≤ ∣∣∣P2,2j+k+1(x)

∣∣∣+ |x|∣∣∣P2,2j+k+1(1)
∣∣∣ ≤ 2

(
1

2j+1

)2
, (40)

∣∣∣P2,2j′+k′+1(x)− xP2,2j′+k′+1(1)
∣∣∣ ≤∣∣∣P2,2j′+k′+1(x)

∣∣∣+ |x|∣∣∣P2,2j′+k′+1(1)
∣∣∣

≤2
(

1
2j′+1

)2
. (41)

Inserting inequalities (40) and (41) into (39), we obtain:

||EJ(x, t)||22 ≤ µ2
∞

∑
j=J+1

2j−1

∑
k=0

∞

∑
u=J+1

2u−1

∑
v=0

∞

∑
j′=J+1

2j′−1

∑
k′=0

∞

∑
u′=J+1

2u′−1

∑
v′=0

(
1

22u+4j+2u′+4j′+8

)

= µ2
∞

∑
j=J+1

∞

∑
u=J+1

∞

∑
j′=J+1

∞

∑
u′=J+1

(
2j2j′2u2u′

22u+4j+2u′+4j′+8

)

=
µ2

28

∞

∑
j=J+1

∞

∑
u=J+1

∞

∑
j′=J+1

∞

∑
u′=J+1

(
1
2u

)(
1

2u′

)(
1

23j

)(
1

23j′

)

=
µ2

28

(
1

49
1

28J

)
.

Thus,

||EJ(x, t)||2 ≤
µ

112

(
1
2J

)4
.

Therefore, limJ→∞ EJ(x, t) = 0. Moreover, the convergence is of order 4, that is,

||EJ(x, t)||2 = O
(

1
2J

)4
.

This completes the proof.

3.3. Derivation: NUHWCM

Here, we consider the computational domain for x and t as [0, 1] each. To discretize
the intervals for x and t, we partition them into 2M sub-intervals of varying step sizes. This
discretization approach is achieved by employing Equation (15). Moreover, we consider
the solution to be sought in the following form:

wxxt(x, t) =
2M

∑
i=1

2M

∑
l=1

ailH̃i(x)H̃l(t), (42)

where ail are the wavelet coefficients. Now, integrating Equation (42) multiple times similar
to the method described in Section 3.1 and applying the initial and boundary conditions,
we arrive at the following equations:

wx(x, t) =
2M

∑
i=1

2M

∑
l=1

ail [P̃1,i(x)P̃1,l(t)− P̃2,i(1)P̃1,l(t)] + gx(x) + ξ(t)− φ(t) + g(0)− g(1), (43)
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w(x, t) =
2M

∑
i=1

2M

∑
l=1

ail [P̃2,i(x)P̃1,l(t)− xP̃2,i(1)P̃1,l(t)]

+ g(x)− g(0) + x[ξ(t)− φ(t) + g(0)− g(1)] + φ(t). (44)

Differentiating Equation (44) with respect to t, we obtain:

wt(x, t) =
2M

∑
i=1

2M

∑
l=1

ail [P̃2,i(x)H̃l(t)− xP̃2,i(1)H̃l(t)] + x[ξt(t)− φt(t)] + φt(t). (45)

Now, we discretize the obtained results by the use of the method of collocation defined
in Equation (20). After that, we substitute the value of wxx(xr, tr), wx(xr, tr), w(xr, tr),
wt(xr, tr) from Equations (42)–(45) into the proposed problem (1) or (5) and obtain the
following system of nonlinear equations:

ζ1(a1,1, a1,2, · · · , a2M,2M) = 0,

ζ2(a1,1, a1,2, · · · , a2M,2M) = 0,

ζ3(a1,1, a1,2, · · · , a2M,2M) = 0,
...

ζ(2M)2(a1,1, a1,2, · · · , a2M,2M) = 0.

We solve the above system of nonlinear equations by the Newton–Raphson method and ob-
tain the wavelet coefficients. We substitute obtained wavelet coefficients into Equation (44)
and obtain the required numerical solution.

3.4. Convergence: NUHWCM

Theorem 2. Assuming that the function wxxt(x, t) satisfies the Lipschitz condition on the interval
[0, 1]× [0, 1], denoted by the existence of a positive constant µ such that for any (x1, t), (x2, t) ∈
[0, 1]× [0, 1], the following inequality holds: |wxxt(x1, t)−wxxt(x2, t)| ≤ µ|x1− x2|. Under these
given conditions, particularly when q approaches 1, we can derive an error bound for ||EJ(x, t)||2
as follows:

||EJ(x, t)||2 ≤
µ

7

(
1
2J

)4
,

where EJ(x, t) = |w(x, t)− wJ(x, t)|. Here, wJ(x, t) represents the approximate solution obtained
using the NUHWCM method. Furthermore, the NUHWCM method exhibits convergence, meaning
that EJ(x, t) approaches zero as J approaches infinity. The convergence is of order 4, indicated by

the fact that ||EJ(x, t)||2 = O
(

1
2J

)4
.

Proof. In order to distinguish between an exact solution and an approximate solution, we
can represent the approximate solution obtained through the utilization of the NUHWCM
method in the following manner:

wJ(x, t) =
2M

∑
i=1

2M

∑
l=1

ail [P̃2,i(x)P̃1,l(t)− xP̃2,i(1)P̃1,l(t)]

+ g(x)− g(0) + x[ξ(t)− φ(t) + g(0)− g(1)] + φ(t).

Then, the error at the Jth level of resolution is defined as:

|EJ(x, t)| = |w(x, t)− wJ(x, t)|

=

∣∣∣∣∣2M

∑
i=1

2M

∑
l=1

ail [P̃2,i(x)P̃1,l(t)− xP̃2,i(1)P̃1,l(t)]

∣∣∣∣∣.
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Now, expanding the L2 norm of the error function, we obtain:

||EJ(x, t)||22 =
∫ 1

0

∫ 1

0

(
2M

∑
i=1

2M

∑
l=1

ail [P̃2,i(x)P̃1,l(t)− xP̃2,i(1)P̃1,l(t)]

)2

dxdt

=
∫ 1

0

∫ 1

0

(
∞

∑
j=J+1

2j−1

∑
k=0

∞

∑
u=J+1

2u−1

∑
v=0

a2j+k+1,2u+v+1[P̃2,2j+k+1(x)−

xP̃2,2j+k+1(1)]P̃1,2u+v+1(t)
)2

dxdt.

After simplifying above expression, we obtain:

||EJ(x, t)||22 =
∞

∑
j=J+1

2j−1

∑
k=0

∞

∑
u=J+1

2u−1

∑
v=0

∞

∑
j′=J+1

2j′−1

∑
k′=0

∞

∑
u′=J+1

2u′−1

∑
v′=0

a2j+k+1,2u+v+1a2j′+k′+1,2u′+v′+1∫ 1

0

∫ 1

0
[P̃2,2j+k+1(x)− xP̃2,2j+k+1(1)][P̃2,2j′+k′+1(x)− xP̃2,2j′+k′+1(1)] (46)

P̃1,2u+v+1(t)P̃1,2u′+v′+1(t)dxdt.

To evaluate ail , we use the following expression:

ail =
∫ 1

0

∫ 1

0
wxxt(x, t)H̃i(x)H̃l(t)dxdt = 〈H̃i(x), 〈wxxt(x, t), H̃l(t)〉〉, (47)

where 〈., .〉 denotes the inner product. Using the definition of the non-uniform Haar wavelet
(16), we have:

〈wxxt(x, t), H̃l(t)〉 =
∫ 1

0
wxxt(x, t)H̃l(t)dt =

∫ y2(l)

y1(l)
wxxt(x, t)dt− Cl

∫ y3(l)

y2(l)
wxxt(x, t)dt.

Applying the mean value theorem for integrals, there exist Λ1 ∈ [y1(l), y2(l)] and Λ2 ∈
[y2(l), y3(l)] such that:

〈wxxt(x, t), H̃l(t)〉 = (y2(l)− y1(l))wxxt(x, Λ1)− (y3(l)− y2(l))Clwxxt(x, Λ2).

By definition, we have Cl =
y2(l)−y1(l)
y3(l)−y2(l)

. Therefore, the above expression simplifies to:

〈wxxt(x, t), H̃l(t)〉 = (y2(l)− y1(l))[wxxt(x, Λ1)− wxxt(x, Λ2)]. (48)

By substituting Equation (48) into Equation (47) and utilizing Equation (16), we can derive
the following expression:

ail = 〈H̃i(x), (y2(l)− y1(l))[wxxt(x, Λ1)− wxxt(x, Λ2)〉

= (y2(l)− y1(l))
[∫ y2(i)

y1(i)
[wxxt(x, Λ1)− wxxt(x, Λ2)]dx−

Ci

∫ y3(i)

y2(i)
[wxxt(x, Λ1)− wxxt(x, Λ2)]dx

]
.

Again, by applying the mean value theorem for integrals, there exist η1 and η2 within the
interval [y1(i), y2(i)], as well as η3 and η4 within the interval [y2(i), y3(i)], such that:

ail =(y2(l)− y1(l))[(y2(i)− y1(i))[wxxt(η1, Λ1)− wxxt(η2, Λ2)]−
(y3(i)− y2(i))Ci[wxxt(η3, Λ1)− wxxt(η4, Λ2)]].
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From definition, we have Ci =
y2(i)−y1(i)
y3(i)−y2(i)

. Therefore, the above expression simplifies to:

ail =(y2(l)− y1(l))(y2(i)− y1(i))[wxxt(η1, Λ1)− wxxt(η3, Λ1)+ (49)

wxxt(η4, Λ2)− wxxt(η2, Λ2)].

Since wxxt(x, t) is Lipschitz in [0, 1]× [0, 1]:

|ail | = |y2(l)− y1(l)||y2(i)− y1(i)||wxxt(η1, Λ1)− wxxt(η3, Λ1)+

wxxt(η4, Λ1)− wxxt(η2, Λ1)|
≤ |y2(l)− y1(l)||y2(i)− y1(i)|(|wxxt(η3, Λ1)− wxxt(η1, Λ1)|+

|wxxt(η4, Λ1)− wxxt(η2, Λ1)|)
≤ |y2(l)− y1(l)||y2(i)− y1(i)|(µ1|η3 − η1|+ µ2|η4 − η2|)
≤ |y2(l)− y1(l)||y2(i)− y1(i)|(µ1|y3(i)− y1(i)|+ µ2|y3(i)− y1(i)|)
≤ µ|y2(l)− y1(l)||y2(i)− y1(i)||y3(i)− y1(i)|; where µ = max(µ1, µ2).

Also, we have the relation y2 − y1 ≤ y3 − y1. Thus, we obtain the following bound for
coefficients ail by using the values of y1, y2, and y3 from the definition:

|ail | ≤
µq(2

(J−j+2)k+2(J−u+1)v)(q2(J−j+1) − 1)2(q2(J−u+1) − 1)

(q2(J+1) − 1)3
. (50)

Now, we evaluate the bounds for P̃1,l(t) and P̃2,i(x). To start with P̃1,l(t), we use
definition (18):

P̃1,l(t) =


t− y1(l), y1(l) ≤ t < y2(l),
(y2(l)− y1(l))− Cl(t− y2(l)), y2(l) ≤ t < y3(l),
0, otherwise.

From the above equation, P̃1,l(t) = 0 ∀ t ∈ [0, y1(l)) ∪ [y3(l), 1]. P̃1,l(t) is monotonically
increasing in y1(l) ≤ t ≤ y2(l). Thus, P̃1,l(t) achieves its upper bound at t = y2(l).
Therefore, P̃1,l(t) ≤ (y2(l) − y1(l)) ≤ (y3(l) − y1(l)). Also, when y2(l) ≤ t ≤ y3(l),
P̃1,l(t) is monotonically decreasing, so the maximum value will be obtained at t = y2(l).
Thus, P̃1,l(t) ≤ (y2(l)− y1(l)) ≤ (y3(l)− y1(l)). Thus, we have obtained the upper bound
P̃1,l(t) in the interval [0, 1]:

P̃1,l(t) ≤
q2(J−u+1)v(q2(J−u+1) − 1)

q2(J+1) − 1
. (51)

Similarly, we can obtain the bound for P̃2,i(x). By definition (18):

P̃2,i(x) =


0, 0 ≤ x < y1(i),
1
2! [x− y1(i)]2, y1(i) ≤ x < y2(i),
1
2!
{

x− y1(i)]2 − (1 + Ci)[x− y2(i)]2
}

, y2(i) ≤ x < y3(i),
1
2!
{
[x− y1(i)]2 − (1 + Ci)[x− y2(i)]2 + Ci[x− y3(i)]2

}
, y3(i) ≤ x ≤ 1.

Now, the derivative of the above function is given as:

P̃2,i(x)
dx

=


x− y1(i), y1(i) ≤ x < y2(i),
Ci(y3(i)− x), y2(i) ≤ x < y3(i),
0, otherwise.
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From the above equation, we can say that P̃2,i(x) is monotonically increasing in the interval
y1(i) ≤ x < y2(i). Therefore, the upper bound can be achieved at x = y2(i). Thus, we

have P̃2,i(x) ≤ [y2(i)−y1(i)]2
2 ≤ [y3(i)−y1(i)]2

2 . In y2(i) ≤ x < y3(i), function P̃2,i(x) is

monotonically increasing if x ≤ y3(i). This condition can be obtained by using P̃2,i(x)
dx ≥ 0

in y2(i) ≤ x < y3(i). Hence, the maximum value of P̃2,i(x) can be obtained by substituting
x = y3(i) in the definition of P̃2,i(x) as follows:

P̃2,i(x) ≤ 1
2!

{
y3(i)− y1(i)]2 − (1 + Ci)[y3(i)− y2(i)]2

}
=

(y3(i)− y1(i))(y2(i)− y1(i))
2

≤ [y3(i)− y1(i)]2

2
; y2(i) ≤ x < y3(i).

In y3(i) ≤ x < 1, P̃2,i(x) is maximum when x = 1. Therefore, the upper bound will be:

P̃2,i(x) ≤ 1
2!

{
[1− y1(i)]2 − (1 + Ci)[1− y2(i)]2 + Ci[1− y3(i)]2

}
=

(y3(i)− y1(i))(y2(i)− y1(i))
2

≤ [y3(i)− y1(i)]2

2
; y3(i) ≤ x < 1.

Thus, we have obtained the upper bound P̃2,i(x) in the interval [0, 1]:

P̃2,i(x) ≤ q2(J−j+2)k(q2(J−j+1) − 1)2

2(q2(J+1) − 1)2
. (52)

Now, inserting Equation (50) into (46), we obtain:

||EJ(x, t)||22 ≤µ2
∞

∑
j=J+1

2j−1

∑
k=0

∞

∑
u=J+1

2u−1

∑
v=0

∞

∑
j′=J+1

2j′−1

∑
k′=0

∞

∑
u′=J+1

2u′−1

∑
v′=0

q(2
(J−j+2)k+2(J−u+1)v)

q(2
(J−j′+2)k′+2(J−u′+1)v′)

(
(q2(J−j+1) − 1)2(q2(J−u+1) − 1)

(q2(J+1) − 1)3

)
(53)(

(q2(J−j′+1) − 1)2(q2(J−u′+1) − 1)

(q2(J+1) − 1)3

)(∫ 1

0
P̃1,2u+v+1(t)P̃1,2u′+v′+1(t)dt

)
(∫ 1

0
[P̃2,2j+k+1(x)− xP̃2,2j+k+1(1)][P̃2,2j′+k′+1(x)− xP̃2,2j′+k′+1(1)]dx

)
.

By Equation (51), we have:

P̃1,l(t) ≤
q2(J−u+1)v(q2(J−u+1) − 1)

q2(J+1) − 1
, P̃1,l(t) ≤

q2(J−u′+1)v′(q2(J−u′+1) − 1)

q2(J+1) − 1
, ∀t ∈ [0, 1]. (54)

Now, inserting Equation (54) into (53), we obtain:
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||EJ(x, t)||22 ≤µ2
∞

∑
j=J+1

2j−1

∑
k=0

∞

∑
u=J+1

2u−1

∑
v=0

∞

∑
j′=J+1

2j′−1

∑
k′=0

∞

∑
u′=J+1

2u′−1

∑
v′=0

q(2
(J−j+2)k+2(J−u+2)v)

q(2
(J−j′+2)k′+2(J−u′+2)v′)

(
(q2(J−j+1) − 1)2(q2(J−u+1) − 1)2

(q2(J+1) − 1)4

)
(55)(

(q2(J−j′+1) − 1)2(q2(J−u′+1) − 1)2

(q2(J+1) − 1)4

)
(∫ 1

0
[P̃2,2j+k+1(x)− xP̃2,2j+k+1(1)][P̃2,2j′+k′+1(x)− xP̃2,2j′+k′+1(1)]dx

)
.

Also, by using Equation (52), we deduce the following inequalities:

∣∣∣P̃2,2j+k+1(x)− xP̃2,2j+k+1(1)
∣∣∣ ≤ q2(J−j+2)k(q2(J−j+1) − 1)2

(q2(J+1) − 1)2
, (56)

∣∣∣P̃2,2j′+k′+1(x)− xP̃2,2j′+k′+1(1)
∣∣∣ ≤ q2(J−j′+2)k′(q2(J−j′+1) − 1)2

(q2(J+1) − 1)2
. (57)

Inserting inequalities (56) and (57) into (55), we obtain:

||EJ(x, t)||22 ≤µ2
∞

∑
j=J+1

2j−1

∑
k=0

∞

∑
u=J+1

2u−1

∑
v=0

∞

∑
j′=J+1

2j′−1

∑
k′=0

∞

∑
u′=J+1

2u′−1

∑
v′=0

q(2
(J−j+3)k+2(J−u+2)v)

q(2
(J−j′+3)k′+2(J−u′+2)v′)

(
(q2(J−j+1) − 1)4(q2(J−u+1) − 1)2

(q2(J+1) − 1)6

)
(
(q2(J−j′+1) − 1)4(q2(J−u′+1) − 1)2

(q2(J+1) − 1)6

)
.

Since 0 < q < 1, as q approaches 1, the above expression simplifies as:

||EJ(x, t)||22 ≤ µ2
∞

∑
j=J+1

2j−1

∑
k=0

∞

∑
u=J+1

2u−1

∑
v=0

∞

∑
j′=J+1

2j′−1

∑
k′=0

∞

∑
u′=J+1

2u′−1

∑
v′=0

(
1

24j

)(
1

24j′

)(
1

22u

)(
1

22u′

)

= µ2
∞

∑
j=J+1

∞

∑
u=J+1

∞

∑
j′=J+1

∞

∑
u′=J+1

2j2j′2u2u′
(

1
24j

)(
1

24j′

)(
1

22u

)(
1

22u′

)

= µ2
∞

∑
j=J+1

∞

∑
u=J+1

∞

∑
j′=J+1

∞

∑
u′=J+1

(
1
2u

)(
1

2u′

)(
1

23j

)(
1

23j′

)

= µ2
(

1
49

1
28J

)
.

Thus, we obtain:

||EJ(x, t)||2 ≤
µ

7

(
1
2J

)4
.

Therefore, limJ→∞ EJ(x, t) = 0. Moreover, the convergence is of order 4, that is,

||EJ(x, t)||2 = O
(

1
2J

)4
.

This completes the proof.
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Remark 1. Lepik et al. [62] have considered linear PDEs and developed the solution technique by
using the two-dimensional uniform Haar wavelet method, and they obtained the linear system of
equations. To evaluate the wavelet coefficients, they proposed a transformation technique to reduce
the system from fourth-order to second-order matrices. After performing the transformation, they
again converted the coefficients into the original form to obtain the required numerical solution.

In this article, we consider nonlinear PDEs. We use the Newton–Raphson method to solve the
system of nonlinear equations after applying the two-dimensional uniform and non-uniform Haar
wavelet collocation method. We do not require any transformation technique to solve the nonlinear
system of equations, which reduces the computational time. The proposed method takes very few
iterations to obtain the required numerical solution. CPU time is also much less.

4. Numerical Illustration

In this section, we explore specific cases of the proposed problems by considering
different parameter values. To obtain the numerical solutions, we apply the methods
described in Section 3. In all the examples, we set q = 0.99 and use an initial guess
of [1, 1, . . . , 1] for the computation of numerical solutions. To show the accuracy of the
proposed method, we present the absolute error, which is defined as follows:

Absolute error = |w(x, t)− w̃(x, t)|,

where w̃(x, t) represents the exact solution.

Example 1. Consider the generalized Burgers–Huxley Equation (1) with the corresponding initial
condition (2), and boundary conditions (3) and (4) for the following parameter values: α = 1,
β = 1, δ = 1, and γ = 0.001. We employ both the UHWCM and the NUHWCM approaches
and record the absolute errors in Table 1. We compare our results with the other existing methods
in the table. It can be observed through the analysis of the table that our method provides highly
accurate results even with very few spatial divisions. When we make alterations to the parameters
δ and γ, the solutions remain almost the same (see Figure 1). However, as δ and γ increase, we
obtain very accurate results. Furthermore, with respect to the parameters α and β, we have omitted
the presentation of solution variations, as they consistently yield the same result across different
parameter settings. It is interesting to note that variations in the initial guess have no effect on the
final solution. This shows the robustness and stability of the proposed method.

Example 2. Let us consider Equation (1) with initial condition (2) and boundary conditions (3)
and (4). When α = 0, this becomes the generalized Huxley equation. For our computations, we
consider the other parameter values β = 1, δ = 1, and γ = 0.001. The absolute errors achieved
using the UHWCM and NUHWCM approaches, as well as those obtained using other methods,
are presented in Table 2. When compared to existing methods, our method clearly offers findings
that are significantly more accurate, even with very few spatial divisions, as shown in the table.
When varying the parameters δ and γ, the solutions demonstrate minimal variation, as illustrated
in Figure 2. Notably, as we increase δ and γ, we consistently obtain highly accurate results.
Furthermore, we have omitted the presentation of solution variations as ours consistently yields
the same result across different parameter settings of β. It is significant to observe that the final
solution holds true despite variations in the initial guess. It shows that our proposed method is
stable and accurate.

Example 3. Consider the generalized Burgers–Fisher Equation (5) and its corresponding initial
and boundary conditions (6), (7), and (8), respectively. We select three specific parameter values for
our calculations: α = 0.001, β = 0.001, and δ = 1. After that, we examine the outcomes of several
existing techniques with the absolute errors obtained from our proposed techniques, UHWCM and
NUHWCM. This comparative study is shown in Table 3. The table makes it evident that, especially
when only a few spatial divisions are used, our method yields the most accurate results. When we
vary the parameters α, β, and δ, the solutions exhibit minimal variation while maintaining a high
level of accuracy, as illustrated in Figure 3. It is noteworthy that the final solution consistency holds
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true even when the initial guess is changed. This highlights the stability and robustness that are
built into our method.

Table 1. Comparison of absolute errors in w(x, t) for α = 1, β = 1, δ = 1, and γ = 0.001.

x t

Proposed Method

HWCFD [54] VIM [12] ADM [11] ADM [10]UHWCM NUHWCM

J = 1 J = 2 J = 1 J = 2

0.1 0.05 4.02996 × 10−9 5.94152 × 10−9 3.99135 × 10−9 5.8416 × 10−9 5.09065400001 × 10−9 1.87405 × 10−8 1.87406 × 10−8 1.93715 × 10−7

0.1 0.1 8.05993 × 10−9 1.1883 × 10−8 7.9827 × 10−9 1.16832 × 10−8 3.94874100008 × 10−9 3.74813 × 10−8 3.74812 × 10−8 3.87434 × 10−7

0.1 1 1.59406 × 10−8 1.65469 × 10−8 1.59536 × 10−8 1.65483 × 10−8 1.66056969999 × 10−8 3.74812 × 10−7 3.74812 × 10−7 3.87501 × 10−6

0.5 0.05 1.02564 × 10−8 1.38108 × 10−8 1.01733 × 10−8 1.36407 × 10−8 9.99043449999 × 10−8 1.87405 × 10−8 1.87406 × 10−8 1.9373 × 10−7

0.5 0.1 2.05129 × 10−8 2.76215 × 10−8 2.03466 × 10−8 2.72815 × 10−8 1.06041257999 × 10−7 1.37481 × 10−8 3.74812 × 10−8 3.87464 × 10−7

0.5 1 4.75675 × 10−8 4.68696 × 10−8 4.75675 × 10−8 4.68694 × 10−8 2.16505682999 × 10−7 3.74813 × 10−7 3.74812 × 10−7 3.87531 × 10−6

0.9 0.05 4.03039 × 10−9 5.94204 × 10−9 3.99424 × 10−9 5.83573 × 10−9 2.04899342000 × 10−7 1.87405 × 10−8 1.87406 × 10−8 1.93745 × 10−7

0.9 0.1 8.06078 × 10−9 1.18841 × 10−8 7.98848 × 10−9 1.16715 × 10−8 2.16031254999 × 10−7 3.74813 × 10−8 3.74812 × 10−8 3.87494 × 10−7

0.9 1 1.5943 × 10−8 1.65492 × 10−8 1.59305 × 10−8 1.65496 × 10−8 4.16405665000 × 10−7 3.74813 × 10−7 × 10−7 3.74812 × 10−7 3.87561 × 10−6

CPU Time (In Sec.) 6.265 24.202 11.765 62.828
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Figure 1. Graphs of exact, UHWCM, and NUHWCM solutions for various values of δ and γ. (a) Exact
and UHWCM solutions with fixed parameters: α = 1, β = 1, γ = 0.00001, t = 0.8. (b) Exact and
UHWCM solutions with fixed parameters: α = 4, β = 1, δ = 3, t = 0.1. (c) Exact and NUHWCM
solutions with fixed parameters: α = 1, β = 1, γ = 0.00001, t = 0.8. (d) Exact and NUHWCM
solutions with fixed parameters: α = 4, β = 1, δ = 3, t = 0.1.
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Figure 2. Graph of exact, UHWCM, and NUHWCM solutions for various values of δ and γ. (a) Exact
and UHWCM solutions with fixed parameters: β = 1, γ = 0.00001, t = 0.8. (b) Exact and UHWCM
solutions with fixed parameters: β = 1, δ = 3, t = 0.1. (c) Exact and NUHWCM solutions with fixed
parameters: β = 1, γ = 0.00001, t = 0.8. (d) Exact and NUHWCM solutions with fixed parameters:
β = 1, δ = 3, t = 0.1.
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Figure 3. Graph of exact, UHWCM, and NUHWCM solutions for various values of α, β, and δ.
(a) Exact and UHWCM solutions with fixed parameters: δ = 1, β = 0.001, t = 0.1. (b) Exact and
UHWCM solutions with fixed parameters: δ = 1, α = 0.001, t = 0.1. (c) Exact and UHWCM
solutions with fixed parameters: β = 0.001, α = 0.001, t = 0.1. (d) Exact and NUHWCM solutions
with fixed parameters: δ = 1, β = 0.001, t = 0.1. (e) Exact and NUHWCM solutions with fixed
parameters: δ = 1, α = 0.001, t = 0.1. (f) Exact and NUHWCM solutions with fixed parameters:
β = 0.001, α = 0.001, t = 0.1.

Table 2. Comparison of absolute errors in w(x, t) for α = 0, β = 1, δ = 1, and γ = 0.001.

x t

Proposed Method

HWCFD [54] ADM [22] ADM [10]UHWCM NUHWCM

J = 1 J = 2 J = 1 J = 2

0.1 0.05 5.37357 × 10−9 7.92237 × 10−9 5.32208 × 10−9 7.78914 × 10−9 6.40665700005 × 10−9 2.49875 × 10−8 1.87465 × 10−7

0.1 0.1 1.07471 × 10−8 1.58447 × 10−8 1.06442 × 10−8 1.55783 × 10−8 8.69100700000 × 10−9 4.99750 × 10−8 3.74934 × 10−7

0.1 1 2.12557 × 10−8 2.20641 × 10−8 2.12731 × 10−8 2.20659 × 10−8 4.98093070000 × 10−8 4.9PO9750 × 10−7 3.75002 × 10−6

0.5 0.05 1.36753 × 10−8 1.84144 × 10−8 1.35644 × 10−8 1.81877 × 10−8 1.57823008000 × 10−7 2.49875 × 10−8 1.87486 × 10−7

0.5 0.1 2.73505 × 10−8 3.68287 × 10−8 2.71288 × 10−8 3.63753 × 10−8 1.70102357000 × 10−7 4.99750 × 10−8 3.74977 × 10−7

0.5 1 6.34233 × 10−8 6.24928 × 10−8 6.34234 × 10−8 6.24925 × 10−8 3.91130589000 × 10−7 4.99750 × 10−7 3.75044 × 10−6

0.9 0.05 5.37357 × 10−9 7.92237 × 10−9 5.32537 × 10−9 7.78062 × 10−9 3.09239355999 × 10−7 2.49875 × 10−8 1.87508 × 10−7

0.9 0.1 1.07471 × 10−8 1.58447 × 10−8 1.06507 × 10−8 1.55612 × 10−8 3.31513703000 × 10−7 4.99750 × 10−8 3.75019 × 10−7

0.9 1 2.12557 × 10−8 2.20641 × 10−8 2.12391 × 10−8 2.20646 × 10−8 7.32451854999 × 10−7 4.99750 × 10−7 3.75086 × 10−6

CPU Time (In Sec.) 3.14 20.453 12.548 58.845

Example 4. Let us consider Equation (5) with initial condition (6) and boundary conditions (7)
and (8). When β = 0, this becomes the generalized Burgers equation. For our computations, we
have opted for the parameter values α = 1, β = 0, and δ = 1. The absolute errors for the Burgers
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equation are computed using both the UHWCM and NUHWCM methods and compared with the
existing methods. The results are presented in Table 4. Upon a thorough review of the table, it
becomes evident that our method yields the most accurate results, especially when employing a
minimal number of spatial divisions. Upon varying the parameters α and δ, the solutions show
minimal variation and are very accurate, as illustrated in Figure 4. Worth noting is that the final
solution remains consistent even when we alter the initial guess, showcasing the stability and
robustness of our method.

Table 3. Comparison of absolute errors in w(x, t) for α = 0.001, β = 0.001, and δ = 1.

x t

Proposed Method

NSFD [31] CFDM [63] RPA [64] ADM [10]UHWCM NUHWCM

J = 1 J = 2 J = 1 J = 2

0.1 0.005 1.11022 × 10−16 1.11022 × 10−16 1.11022 × 10−16 1.11022 × 10−16 2.50063 × 10−8 4.38 × 10−7 9.75 × 10−6 9.68763 × 10−6

0.1 0.001 5.55112 × 10−17 5.55112 × 10−17 5.55112 × 10−17 5.55112 × 10−17 2.50063 × 10−8 1.01 × 10−7 1.75 × 10−6 1.93753 × 10−6

0.1 0.01 0 0 0 0 2.50064 × 10−8 7.53 × 10−7 1.90 × 10−5 1.93752 × 10−5

0.5 0.005 5.55112 × 10−17 5.55112 × 10−17 5.55112 × 10−17 5.55112 × 10−17 2.50063 × 10−8 5.21 × 10−7 9.75 × 10−6 9.68691 × 10−6

0.5 0.001 5.55112 × 10−17 5.55112 × 10−17 5.55112 × 10−17 5.55112 × 10−17 2.50063 × 10−8 1.01 × 10−7 1.75 × 10−6 1.93738 × 10−6

0.5 0.01 0 0 0 0 2.50065 × 10−8 1.04 × 10−7 1.90 × 10−5 1.93738 × 10−5

0.9 0.005 0 0 0 0 2.50063 × 10−8 4.38 × 10−7 9.75 × 10−6 9.68619 × 10−6

0.9 0.001 1.11022 × 10−16 1.11022 × 10−16 1.11022 × 10−16 1.11022 × 10−16 2.50063 × 10−8 1.01 × 10−7 1.75 × 10−6 1.93724 × 10−6

0.9 0.01 5.55112 × 10−17 5.55112 × 10−17 5.55112 × 10−17 5.55112 × 10−17 2.50064 × 10−8 7.53 × 10−7 1.90 × 10−5 1.93724 × 10−5

CPU Time (In Sec.) 3.939 13.924 7.328 27.407
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Figure 4. Graph of exact, UHWCM, and NUHWCM solutions for various values of α and δ. (a) Exact
and UHWCM solutions with fixed parameters: δ = 3, t = 0.1. (b) Exact and UHWCM solutions
with fixed parameters: α = 1, t = 0.1. (c) Exact and NUHWCM solutions with fixed parameters:
δ = 3, t = 0.1. (d) Exact and NUHWCM solutions with fixed parameters: α = 1, t = 0.1.
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Table 4. Comparison of absolute errors in w(x, t) for α = 1, β = 0, and δ = 3.

x t

Proposed Method

NSFD [31] RPA [64]UHWCM NUHWCM

J = 1 J = 2 J = 1 J = 2

0.1 0.0005 8.94873 × 10−10 5.48376 × 10−10 9.06105 × 10−10 5.7152 × 10−10 2.90 × 10−7 0.000444925

0.1 0.0001 1.7942 × 10−10 1.10121 × 10−10 1.81667 × 10−10 1.1475 × 10−10 7.94 × 10−8 0.000446088

0.1 0.001 1.78417 × 10−9 1.10121 × 10−10 1.80664 × 10−9 1.13747 × 10−9 5.39 × 10−7 0.000444222

0.5 0.0005 2.51474 × 10−9 1.27795 × 10−9 2.58877 × 10−9 1.33266 × 10−9 3.27 × 10−8 0.001854465

0.5 0.0001 5.03903 × 10−10 2.56544 × 10−10 5.18708 × 10−10 2.67486 × 10−10 2.85 × 10−8 0.001860448

0.5 0.001 5.01757 × 10−9 2.54398 × 10−9 5.16562 × 10−9 2.6534 × 10−9 3.82 × 10−8 0.001847737

0.9 0.0005 6.75557 × 10−10 3.46276 × 10−10 6.89016 × 10−10 3.58104 × 10−10 2.18 × 10−7 0.00092005

0.9 0.0001 1.35346 × 10−10 6.94895 × 10−11 1.38038 × 10−10 7.18552 × 10−11 2.14 × 10−8 0.000931582

0.9 0.001 1.34818 × 10−9 6.89623 × 10−10 1.3751 × 10−9 7.13279 × 10−10 4.49 × 10−7 0.000904635

CPU Time (In Sec.) 3.766 8.984 9.234 26.906

5. Conclusions

In our article, we introduce a novel approach, combining the two-dimensional uniform
and non-uniform Haar wavelet collocation method with the Newton–Raphson method.
This approach effectively solves various cases of the generalized Burgers–Huxley and
Burgers–Fisher equations. We establish quartic convergence for each method and demon-
strate its high accuracy by comparing with existing techniques through absolute error
analysis. Our method stands out for its accuracy and efficiency, requiring minimal spatial
divisions and boasting notably low CPU times. Overall, the combined approach proves
stable, accurate, and efficient, offering a promising solution for these equations compared
to existing methods.
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