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Abstract: In the Compressed Sensing (CS) framework, the underdetermined system of linear equation
(USLE) can have infinitely many possible solutions. However, we intend to find the sparsest possible
solution, which is l0-norm minimization. However, finding an l0 norm solution out of infinitely many
possible solutions is NP-hard problem that becomes non-convex optimization problem. It has been a
practically proven fact that l0 norm penalty can be adequately estimated by l1 norm, which recasts a
non-convex minimization problem to a convex problem. However, l1 norm non-differentiable and
gradient-based minimization algorithms are not applicable, due to this very reason there is a need
to approximate l1 norm by its smooth approximation. Iterative shrinkage algorithms provide an
efficient method to numerically minimize l1-regularized least square optimization problem. These
algorithms are required to induce sparsity in their solutions to meet the CS recovery requirement.
In this research article, we have developed a novel recovery method that uses hyperbolic tangent
function to recover undersampled signal/images in CS framework. In our work, l1 norm and soft
thresholding are both approximated with the hyperbolic tangent functions. We have also proposed
the criteria to tune optimization parameters to get optimal results. The error bounds for the proposed
l1 norm approximation are evaluated. To evaluate performance of our proposed method, we have
utilized a dataset comprised of 1-D sparse signal, compressively sampled MR image and cardiac cine
MRI. The MRI is an important imaging modality for assessing cardiac vascular function. It provides
the ejection fraction and cardiac output of the heart. However, this advantage comes at the cost of a
slow acquisition process. Hence, it is essential to speed up the acquisition process to take the full
benefits of cardiac cine MRI. Numerical results based on performance metrics, such as Structural
Similarity (SSIM), Peak Signal to Noise Ratio (PSNR) and Root Mean Square Error (RMSE) show that
the proposed tangent hyperbolic based CS recovery offers a much better performance as compared to
the traditional Iterative Soft Thresholding (IST) recovery methods.

Keywords: compressed sensing; holography cardiac cine MRI; l1-norm smooth approximations;
hyperbolic tangent function; soft thresholding

1. Introduction

Compressed Sensing (CS) exploits the sparsity of signals in a certain domain to
find a near-optimal solution to the underdetermined system of linear equations. In CS,
the sampling of signals depends on the information rate rather than its bandwidth. CS
technique facilitates simultaneous acquisition and compression of compressible or sparse
signals that potentially reduce the acquisition time. The CS is a data acquisition method
that allows for the reconstruction of a signal from very few measurements if the signal is
transformed in a sparsifying domain, and these measurements are highly incoherent with
respect to its sparsifying transform. Unfortunately, most of the reconstruction techniques
of compressively sampled signals are computationally expensive and non-linear [1–3].
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CS has recently been used to reconstruct under-sampled biomedical images by ex-
ploiting the sparsity of biomedical images in the sparsifying domain. The Fourier-encoded
nature of the MR image scanning process and the existence of suitable sparsifying trans-
form domains, i.e., Wavelets, Contourlets, total variation, etc., make the MRI a potentially
suitable application of CS [4]. Incoherent sampling, which is another important require-
ment of CS, can be accomplished with the variable density k-space sampling method to
introduce noise-like random aliasing artefacts during the MR image recovery. Variable
density k-space under-sampling pattern samples with high density from the center of the
k-space that contains maximum energy of the MR images and undersamples the outer
k-space region with lower density to efficiently reduce the MR image scanning time [5].

Cardiac cine magnetic resonance imaging (MRI) is an emerging medical imaging
modality to evaluate the growth of Cardiac-Vascular Disease (CVD). It is useful in evalu-
ating the cardiac wall thickness and motion in CVD patients [6–8]. Further, cardiac cine
MRI aids in performing the quantitative study of ejection fraction and cardiac output of the
heart. The ejection fraction is the percentage of blood that is ejected out of the ventricles
with each contraction. This amount is used to determine heart failures and other types
of heart diseases [9]. Cardiac output measures the amount of blood pumped by the heart
per minute. However, these advantages are limited by the lengthy acquisition process of
cardiac cine MRI that requires multiple breaths-holds of the patient and extended patient
engagement in MRI scanner. Therefore, it is essential to accelerate the image acquisition in
cardiac cine MRI by using fast pulse sequences and/or by reducing the number of samples
taken during data acquisition [10,11]. As the former approach is inherently limited by
different constraints, much research interest is moved to the latter approach. CS can be
applied successfully to the cardiac cine MRI, where sparsity is exploited in the temporal
dimension [4,12]. However, improving speed and efficiency of CS recovery methods is
an active area of interest for researchers working in medical imaging especially MRI. The
key conditions for the CS framework to work are sparsity, non-linear reconstruction and
incoherent undersampling.

In MR imaging, sparsity can be accomplished by transforming the image in its sparse
representation. To fulfil the condition of incoherent sampling in MR imaging, various
undersampling patterns can be utilized, such as radial lines sampling and variable density
sampling [4]. Non-linear reconstruction numerical techniques involve l1-norm regulariza-
tion in order to find sparse solutions to the least-squares optimization problem. l2-norm
based regularization provides the linear and simplest solution to under-determined system
problem. However, it minimizes the energy of the error and distributes it over all solution
set that results in non-sparse solution that does not fits in CS framework. Similarly lp-norm
(1 < p < ∞) based regularization, as value of p starts growing it tends to penalize only the
largest parameter, such as max function, and some bad parameters may hide under the
largest parameters, which results in less-sparse solution. For this very reason l1-norm is the
preferred regularization, as it promotes sparsity that perfectly fits in CS framework [1–3].
However, l1-norm penalty is non-differentiable, so applying efficient optimization methods
that involve derivative are not feasible. Therefore, various methods have been proposed
to resolve the l1-norm regularization problem. The IST based recovery methods have
successfully been utilized to efficiently reconstruct images from under-sampled data in the
CS framework [5,13]. An iterative hard thresholding-based recovery method is proposed
for the compressed sensing problem [14]. However, this algorithm has limited performance
as compared to the soft thresholding-based methods. Random filters for compressive
sampling [15], Bregman iterative algorithms for compressed sensing [16], and a weighted l1
minimization recovery algorithm [17] are proposed to solve the compressed sensing recov-
ery problem. Lately, smooth l1-norm penalty based sparse signal reconstruction method
was evolved for approximation of l1-norm that uses a hyperbolic tangent function [18]. The
research shows that this technique can be used for the reconstruction of undersampled MR
images from fewer acquired samples, which allows fast imaging without compromising
spatial resolution. Jawad et al. proposed that the wavelet thresholding can be implemented
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using hyperbolic tangent function. It was explained that the differentiable hyperbolic
function provides a much more accurate recovery than IST techniques [19–21]. It was
experimentally shown that the hyperbolic tangent function performs a much improved
signal recovery as compared to the hard threshold, soft threshold and Garrote threshold
functions [22,23].

In this paper, CS technique is applied to reduce MRI scanning time, CS exploits the
sparsity of MRI in Fourier domain that enables us to take fewer samples without compro-
mising on the quality of image recovered from undersampled MRI. We propose a novel
and more efficient CS recovery algorithm based on the hyperbolic tangent function for
approximating l1-norm and shrinkage operation for accurate recovery of compressively
sampled sparse signals, MR images and the cardiac cine MRI. We introduce smooth ap-
proximation of l1-norm, the hyperbolic tangent function, where steepest descent algorithm
is applicable for minimization of objective function. The error bounds for the proposed
l1-norm penalty are presented in this paper. We have used the soft thresholding technique
based on the hyperbolic tangent function that is inspired by the maximum a posteriori
(MAP) noise estimator. In this work, we also recommend the efficient criteria for the tuning
parameters. Performance analysis of the proposed method is shown using simulations; to
recover random 1-D sparse signal, 2-D MR image and clinical cardiac cine MRI. Several
quantitative performance measures are used apart from qualitative depiction, i.e., Mean
Square Error (MSE), Root Mean Squared Error (RMSE), Signal to Noise Ratio (SNR), Peak
Signal to Noise Ratio (PSNR), Improved Signal to Noise Ratio (ISNR), correlation, fitness,
and Structural Similarity (SSIM) in order to prove the supremacy of proposed method over
existing recovery techniques.

2. Materials and Methods

Reconstruction of undersampled signal through CS is an optimization problem, which
promotes sparsity in our solution by minimizing the l1–norm.

2.1. Proposed Method

Let zεRn be the signal in a vector form and yεCm be the undersampled measurements.
Then, the CS recovery function is written as:

f (z) =
1
2
‖y−ΦΨHz‖2

2 + λ‖z‖1 (1)

where Φ is the sampling domain of the signal z, whereas Ψ represents sparsifying transform.
The tuning parameter λ in Equation (1) provides an important trade-off parameter between
fidelity and sparsity. The performance of our algorithm is dependent on proper threshold
level selection. We have employed the fixed value expression, depending on the signal
dimensions and its noise variance [13].

λ = σv

√
2 ln(n) (2)

where σv is the noise standard variance and n is the length of the sparse signal.
Since the hyperbolic tangent function has properties, such as non-convex, odd, smooth

analytical bounded function that is monotonically increasing, the slope of the function at
the origin can be tuned to any desired value [21]. So, our proposed approximation for the
l1 norm in Equation (1) is defined as:

‖z‖1
∼=

n

∑
i=1

zitanh(γzi) (3)

Since the hyperbolic tangent function is used as a smooth and differentiable approxi-
mation to l1-norm. Therefore, the value of γ is taken quite high to make it closer to l1-norm,
as shown in Figure 1. It is also providing the benefits of the smoothness and differentiability.
Equation (1) can now be written as:
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f (z) =
1
2
‖y−ΦΨHz‖2

2 + λ ∑n
i=1 zitanh(γzi) (4)
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Figure 1. l1 norm approximation using the hyperbolic tangent function for different values of
γ = (1, 4, 6, and 10). As the value of gamma continues to increase and the approximation is closer
to the actual l1 norm, however, it is less smooth. The proposed technique gives us the flexibility to
choose between the level of smoothness and accuracy.

For steepest descent algorithm, vector differentiation can not be used. Hence, it can be
rewritten as Equation (4) in element form to find the partial derivative. Let A = ΦΨH , then
the element-wise equation is defined as:

f (z) =
1
2 ∑

i
(Az− y)i(Az− y)i + λzitanh(γzi) (5)

Let A = φΨH , then partial derivative of Equation (4) in element form is formulated as:

∂ f (z)
∂zl

= ∑
ij

AijAilzj −∑
i

yiAil + λ
(

tanh(γzl) + zlγ
(

1− tanh2(γzl)
))

(6)

Hence, the steepest descent algorithm for lth update is:

(∆z)l = −η
∂ f (z)

∂zl
(7)

Equation (7) is used to find a solution using the steepest descent algorithm.

2.2. Error Bounds for Proposed Smooth l1-Norm

The error bounds for the proposed smooth l1 norm approximation defined by Equation (2)
are derived in this section [24]. The l1 norm approximation is proposed based on the fol-
lowing two principles.

1. |z| = (z)+ + (−z)+, where (z)+ = max{z, 0} is the plus function;
2. This plus function can be smoothly approximated as:

(z)+ ≈ p(z, γ) =
1
2
[z + z.tanh(γz)] (8)
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From Equation (8), we can write a smooth approximation of l1 norm:

‖z‖1 = (z)+ + (−z)+ ≈ p(z, γ) + p(−z, γ)
= z

2 [1 + tanh(γz)]− z
2 [1 + tanh(−γz)]

= z
2 tanh(γz) + z

2 tanh(γz)
= z tanh(γz)
= ‖z‖γ

(9)

Equation (9) represents the γ approximation of the l1 norm, as shown in Figure 1.
Unlike the l1 norm, we can apply the unconstraint optimization techniques, where gradient

needs to be calculated and the proposed approximation is twice differentiable and the 1st and
2nd order gradients of the proposed l1 norm are shown in Equations (10) and (11), respectively.

∇(‖z‖) ≈ tanh(γz)− γz
(

tanh(γz)2 − 1
)

(10)

∇2(‖z‖) ≈ 2γ(γz tanh(γz)− 1)
(

tanh(γz)2 − 1
)

(11)

As the value of γ approaches infinity the error between ‖z‖1 and ‖z‖γ approaches
zero. We here propose the simple lemma to determine the error bounds for ‖z‖ and ‖z‖γ.

Lemma 1. The proposed smooth function of l1 norm f (z) = z tanh(γz) fulfils the suffi-
cient and necessary convexity condition in the interval z ∈ [−1, 1] as its derivative f ′(z) de-
fined by Equation (9) is monotonically non-decreasing and its second derivative f ′′(z) defined by
Equation (10) is nonnegative for 0 < γ ≤ 1;

Lemma 2. l1 norm approximation error bounds for any z ∈ R andγ > 0.∣∣∣‖z‖1 − ‖z‖γ

∣∣∣ ≤ 1
2γ

(12)

Proof. Let us consider two cases, first case for z > 0,

p(z, γ)− (z)+ = z
2 (1 + tanh(γz))− z

= z
2 (1 + tanh(γz))− z

= z
2 (tanh(γz)− 1)

(13)

Now, we can find the maximum value of tanh(γz) to find the upper bound for
Equation (13). As we know that the maximum value of tanh(γx) is 1, so we can write:

maxima
z

tanh(γz) =
eγz − e−γz

eγz + e−γz = 1 (14)

Using Equation (14), the relationship between γ and z can be easily derived as:

z =
1

2γ
(15)

By inserting the value of z from Equation (15) in Equation (14)

p(z, γ)− (z)+ ≤
1

4γ
(16)

�

Figure 2 shows the proposed method obeys error bounds define by Equation (16).
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Figure 3 shows graphically that our proposed approximation function obeys the
bounds defined by Equation (19).

For z ≤ 0,
0 ≤ p(z, γ)− (z)+ = p(z, γ) ≤ p(0, γ)

= z
2 (tanh(γz)− 1) ≤ 0

= 1
4γ

(17)

As p is the monotonically increasing function. Hence, from Equations (17) and (18),
p(z, γ) will dominate (z)+, so

|p(z, γ)− (z)+| ≤
1

4γ
(18)

From Equation (8), we can insert ‖z‖ = (z)+ + (−z)+∣∣∣‖z‖1 − ‖z‖γ

∣∣∣ =
∣∣p(z, γ) + p(−z, γ)−

(
(z)+ + (−z)+

)∣∣
≤ |p(z, γ)− (z)+|+

∣∣p(−z, γ)− (−z)+
∣∣

≤ 1
4γ + 1

4γ = 1
2γ

(19)

Figure 3 shows the error bounds versus error in the smooth approximation.
Let us define ‖z‖(1,γ) as a smooth approximation to the l1 norm function ‖z‖1 for a

vector z ∈ Rn as:

‖z‖(1,γ) = ∑n
i ‖zi‖γ∣∣∣‖z‖(1,γ) − ‖z‖1

∣∣∣ ≤ 2n 1
4γ = n

2γ

(20)

Hence, we can conclude that:
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lim
γ→∞
‖z‖(1,γ) = ‖z‖1 ∀z ∈ Rn (21)

Let L : Rn → R by any continuous cost function and defined by f (z) = L(z) + ‖z‖1

and fγ(z) = L(z) + ‖z‖(1,γ). If we define z =
argmin

z
f (z) and zγ =

argmin
z

fγ(z). By

definition of f and fγ and from Equation (20), it can be concluded that

lim
γ→∞

fγ(z) = f (z) ∀z ∈ Rn (22)
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In addition, it is a known fact that f (z) ≤ f (z)∀z. In particular f (z) ≤ f (zγ), then:

f (z) ≤ f (zγ) = L(zγ) + ‖zγ‖1
= L(zγ) + ‖zγ‖1 + ‖zγ‖(1,γ) − ‖zγ‖(1,γ)

=
(

L(zγ) + ‖zγ‖(1,γ)

)
+
(
‖zγ‖1 − ‖zγ‖(1,γ)

)
= fγ(zγ) +

(
‖zγ‖1 − ‖zγ‖(1,γ)

) (23)

This implies that f (z)− fγ(zγ) ≥ − n
2γ from Equation (21), similarly (z)− fγ(zγ) ≤ n

2γ ,
hence proved that lim

γ→∞
fγ(z) = f (z).

It can be further stated that:
| f (zγ)− f (z)| = | f (zγ)− f (z)− fγ(zγ) + fγ(zγ)|

≤ | f (zγ)− fγ(zγ)|+ | fγ(zγ)− f (z)| (24)

Hence, it proved that lim
γ→∞

f (zγ) = f (z). Moreover, if L is strictly convex, it can be

easily proven that: lim
γ→∞

zγ = z.
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3. The Map Estimator and Proposed Thresholding Mechanism

Conventionally l1-norm minimization has inherent soft thresholding [13]. However,
when we approximate the l1-norm by the hyperbolic tangent function, thresholding is not
done implicitly. The hard thresholding operator proposed in [14] can be defined by the
following equation.

Sβ(z) =
{

z |z| > β
0 otherwise

(25)

We have used a new thresholding function based on the tangent hyperbolic function.
Therefore, β is an important parameter in controlling the under-sampling noise, which
has Gaussian distribution [21]. To obtain the optimum value of β, the thresholding de-
pends upon the undersampling noise. Therefore, the following data-driven thresholding
parameter β is used [13,25].

β =
σ2

v
σz

(26)

With σz is the standard deviation of sparse signal and σv the standard deviation of Gaussian-
like noise produced due to under-sampling.

To enhance the performance under different scenarios, different mathematical thresh-
olding operators could be found in the literature [26–28]. The main idea in this approach is
mapping the values nearer to the origin to zero and those that are further away from the
origin are shrunk towards zero.

The basic denoising technique aims to find the estimate of original image or signal
from its perturbed set of observations, as shown in Equation (27).

y = z + v (27)

where y ∈ Rn is the noisy image, z ∈ Rn is the original signal and v is the zero-mean
Gaussian noise with probability distribution function (pdf) given by:

pv(θ) =
1√

2πσ2
v

exp

(
‖θ‖2

2
2σ2

v

)
(28)

By taking the Wavelet transform of Equation (27), we get:

q = s + v (29)

where q = Ψy and s = Ψz represent the sparsifying domain for noisy image and the
original image, respectively. As Wavelet transform is the linear operator, therefore the
zero-mean Gaussian noise v after transformation will not change. The MAP estimation of
random vector s is given by:

ŝ = max
s∈Rn

p(s|q) (30)

By using Bayes’ rule, one can ignore p(q) as it is independent of s, MAP estimator can
be written as:

ŝ = max
s∈Rn

p(q|s)ps(s) (31)

The problem defined in Equation (31) can be further simplified by taking p(q|s) = pv(q− s) :

ŝ = max
s

[pv(q− s)]ps(s)

= max
s

[lnpv(q− s) + lnps(s)]

= max
s

[
ln
{

1√
2πσ2

v
exp

(
− ‖q−s‖2

2
2σ2

v

)}
+ lnps(s)

]
= max

s

[
ln
{(

1√
2πσ2

v

)n
exp

(
− ‖q−s‖2

2
2σ2

v

)}
+ lnps(s)

]
= max

s

[
− ‖q−s‖2

2
2σ2

v
+ f (s)

]
(32)
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where f (s) = ln ps(s). By differentiating the argument of Equation (32) w.r.t. s and
equating the result to zero, we can calculate the MAP estimator for Wavelet coefficients of
the noise-free image as:

(qi − ŝi)

σ2
v

+ f ′(ŝi) = 0, 1 ≤ i ≤ n (33)

The pdf of biomedical images are more peaked at the center than Gaussian, so Lapla-
cian can better estimate the distribution of Wavelet domain coefficients, i.e.,

ps(si) =
1√
2σv

exp

(√
2

σv
|si|
)

(34)

gives f ′(ŝi) = −
√

2
σ sig(ŝi). Solving Equation (33) will result in

qi = ŝi +
√

2 sig(ŝi) (35)

Let β =
√

2σ2
v and solve Equation (35) for ŝi to formulate the nonlinear shrinkage:

ŝi = Sβ(q) = max{|q| − β, 0}.sig(q) (36)

Equation (36) can be further elaborated as:

Sβ(q) ∼=
{

sgn(q)(|q| − β) |q| > β
0 otherwise

(37)

In this paper, novel thresholding approach has been proposed, which is used on
the hyperbolic tangent, as the hyperbolic tangent function slope can be adjusted from
the origin and it is a bounded function that makes it an suitable surrogate function for
soft thresholding. Hence, hyperbolic tangent based soft thresholding can be described
mathematically by following equation:

Sβ(q) ∼=
{

cz{tanh(α(|q| − β))} |q| > β
0 otherwise

(38)

where β is a thresholding parameter and parameter α is used to control the shape of the
hyperbolic tangent function. If α is closer to zero, Equation (38) approximately changes
into the soft thresholding function. When α approaches ∞, Equation (38) changes to the
hard thresholding function, as shown in Figure 4. Our proposed Algorithm 1 starts as a
soft thresholding function and smoothly changes to a hard threshold at higher iterations.
The proposed approximation of this soft thresholding results in a better reconstruction as
compared to the conventional soft thresholding method [21] as illustrated in Figure 4.

Algorithm 1. Proposed Algorithms.

Inputs:
Sensing matrix Fu, measurement vector yεCm, parameters γ, λ and β,
Output:
A k-sparse vector x̂ ∈ Rn

Initialization: Initialize x0, Index i = 0
Step-1 (Sparse Representation): zi = Ψxi
Step-1 (Gradient Computation): Find ∇ f (zi) using Equation (5)
Step-2 (Solution Update): Compute the update using Equations (6) and (7).
Step-3 (Shrinkage): Estimate Solution using Equation (38), i.e., ẑi+1 = Sβ(zi+1)

Step-4 (Repeat): If stopping criterion is not met, i = i + 1 & go to step 1
Output: x̂ = ΨH ẑi
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Figure 4. Hyperbolic tangent function based thresholding for alpha α = (2, 4, 8, 16), the value of α

determines the slope of soft thresholding. The proposed method gives us the flexibility to shape the
curves using α depending upon its application.

4. Results and Discussions

In order to gauge the performance of proposed algorithm, we have applied our
algorithm to 1-D sparse signal, Compressively sampled MR image and Cine Cardiac MRI.
MRXCAT simulator is used to evaluate the proficiency of recovery algorithms in the field of
Cardiac MRI. We have evaluated the performance of our proposed technique quantitatively
and qualitatively. The performance measures that are used in this research article are:
pictorial depiction of under-sampling artefacts, Structural Similarity (SSIM), Peak Signal to
Noise Ratio (PSNR) and Root Mean Square Error (RMSE).

4.1. 1-D Sparse Signal Recovery

The proposed algorithm is applied for the recovery of the 1-D sparse signal recovery,
where the random sparse signal of length n = 512 is created in MATLAB and the support
for the sparse signal was generated randomly with K = 85 non-zero elements. The random
sparse signal is compressively sampled using a random measurement matrix A ∈ R256×512

with only m = 256 measurements.
Figure 5 shows the fitness achieved by the proposed algorithm and soft-thresholding

method. The proposed method achieved faster convergence as compared to soft threshold-
ing. Figure 6 shows sparsity effect on successful recovery achieved by the soft thresholding
and proposed algorithm. The proposed algorithm performs much better even with a
higher sparsity level as compared to the soft thresholding technique. Similarly, in Figure 7,
the proposed method recovered the sparse signal with great accuracy, whereas the soft
thresholding technique failed to accurately recover the sparse signal. The accuracy of the
proposed technique was also measured against performance measures, such as SNR, MSE
and correlation, as shown in Table 1. The proposed algorithm performed much better than
the soft thresholding method against all these performance measures. The time comparison
for proposed algorithm is 1.57 s as compared to 1.34 s by conventional soft thresholding.
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Figure 7. (a) The recovered sparse signal from the proposed algorithm; (b) The recovered sparse
signal from soft thresholding.

Table 1. Performance comparison of different sparsity transforms using mean squared error in the
transform domain. Temporal FFT performs better in cardiac cine MRI.

Performance Metrics Soft Thresholding Proposed Algorithm

MSE 1.00 × 10−2 1.61 × 10−4

Fitness 0.8664 0.0224
SNR 12.6712 30.6259

Correlation 0.9787 0.9995

4.2. 2-D Compressively Sampled MR Image Recovery

The random sampling at the CS image acquisition produces incoherent and noise-like
artefacts in its sparsifying domain. In case of MR imaging or similar Fourier domain
encoded biomedical imaging, where the MR image is in the spatial domain, the linear
reconstruction (where, missing Fourier data points are replaced by zero and the resultant
image inverse Fourier transform is taken) produces artifacts similar to additive Gaus-
sian noise. The type of noise produced by subsampling is governed by undersampling
patterns [29]. In order to recover an image, the compressed sensing recovery essentially
becomes an image denoising problem. Using this analogy of CS encoding and noisy image,
the first step in recovering the original image is to estimate a noise, this is achieved by
maximum a posteriori (MAP) estimator. The proposed algorithm is also implemented to
recover a 2-D Compressively sampled real human brain MR image of size 256 × 256. The
human brain MR image is a fully sampled scanned image by a 1.5 Tesla GE-HDxt-MRI
scanner with Gradient Echo (GE) sequence and 8 channels head coils with the specifications,
i.e., TE = 10 msec, flip angle = 90◦, bandwidth = 31.25 KHz, slice thickness=3 mm, TR = 55,
and image dimensions = 256 × 256, at St. Mary’s Hospital, London, UK. This MR image is
compressively sampled by taking only 25% samples in k-space.

Figure 8 shows the performance of the proposed method with respect to Structural
Similarity (SSIM). The proposed method achieved much better SSIM as compared to
soft thresholding. The Peak Signal to Noise Ratio (PSNR) accomplished by proposed
method is shown in Figure 9. Figure 10 shows the (a) Original 2D Brain MR Image,
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(b) Conventional Soft Thresholding based recovered 2D MRI, (c) 2D Brain MR Image
recovered from undersampled image, (d) Difference of original and soft thresholding image,
(e) Difference of proposed recovery method image with original image. The Difference is
scaled up by 1000 in order to enhance its visibility. Table 2 shows the proposed method
has outperformed soft thresholding method in terms of PSNR and SSIM. Table 3 shows
the performance of proposed algorithm and soft thresholding in terms of Mean Square
Error (MSE), Improved Signal to Noise Ratio (ISNR), Correlation, SSIM, SNR, PSNR after
the 15 iterations of soft thresholding and the proposed algorithm. The results show that
proposed method achieved much better results in as compared to soft thresholding.
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Figure 8. Structural Similarity of proposed and soft thresholding algorithm for recovery of compres-
sively sampled MR image against each iteration.

Computation 2023, 10, x FOR PEER REVIEW 14 of 21 
 

 

 
Figure 9. Correlation of proposed and soft thresholding algorithm of recovered compressively sam-
ple MR image. 

 

 

Figure 10. (a) Original 2D Brain MR Image, (b) Conventional Soft Thresholding based recovered 2D 
MRI, (c) 2D Brain MR Image recovered from undersampled image, (d) Difference of original and 
soft thresholding image, (e) Difference of proposed recovery method image with original image. 
The Difference is scaled up by the factor of 1000 in order to enhance its visibility. 

  

Figure 9. Correlation of proposed and soft thresholding algorithm of recovered compressively sample
MR image.



Computation 2023, 11, 7 14 of 21

Computation 2023, 10, x FOR PEER REVIEW 14 of 21 
 

 

 
Figure 9. Correlation of proposed and soft thresholding algorithm of recovered compressively sam-
ple MR image. 

 

 

Figure 10. (a) Original 2D Brain MR Image, (b) Conventional Soft Thresholding based recovered 2D 
MRI, (c) 2D Brain MR Image recovered from undersampled image, (d) Difference of original and 
soft thresholding image, (e) Difference of proposed recovery method image with original image. 
The Difference is scaled up by the factor of 1000 in order to enhance its visibility. 

  

Figure 10. (a) Original 2D Brain MR Image, (b) Conventional Soft Thresholding based recovered 2D
MRI, (c) 2D Brain MR Image recovered from undersampled image, (d) Difference of original and soft
thresholding image, (e) Difference of proposed recovery method image with original image. The
Difference is scaled up by the factor of 1000 in order to enhance its visibility.

Table 2. Performance comparison of conventional soft thresholding and proposed method with
different compression levels, i.e., 5% to 50% of subsampling of the original 2-D MR image. These
results show that the proposed method achieves better results in terms of SSIM and PSNR at varying
compression ratios.

Compression Ratio
Soft Thresholding Proposed Algorithm

SSIM PSNR SSIM PSNR

5 % 0.6843 75.9056 0.7048 76.1609
10% 0.7786 78.9320 0.8175 79.6580
20% 0.8994 82.0316 0.8472 83.7628
30% 0.9407 87.3535 0.9790 91.1620
40% 0.9724 91.2540 0.9920 96.1281
50% 0.9884 95.4245 0.9955 99.5496

Table 3. Performance comparison of different sparsity transforms using mean squared error in the
transform domain. Temporal FFT performs better in cardiac Cine MRI.

Performance Metrics Soft Thresholding Proposed Algorithm

MSE 1.38 × 10−4 0.73 × 10−4

PSNR 86.7195 89.4497
ISNR 28.3832 31.1135
SSIM 0.9346 0.9711
SNR 26.0298 28.7491

Correlation 0.9980 0.9989

4.3. Cardiac Cine Magnetic Resonance Imaging Recovery

The proposed algorithm is applied to MRXCAT, which produces breath-held under-
sampled cardiac cine MR image data. For MRXCAT, the following parameters were set:
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recovery matrix size: 256 × 256 with 24 cardiac phases, with an image resolution set as
1 × 1 × 1 mm3, TR = 3 ms, TE = 1.5 ms. Five different acceleration rates R = (2, 4, 8,
12, 20) were used to assess the performance of the proposed method. For in vivo data,
the following parameters were used: reconstruction matrix size: 256 × 256, 25 cardiac
phases, with FOV of 375 mm. TE = 1 ms, TR = 3 ms and flip angle = 600. Five acceleration
rates are R = (2, 4, 8, 12, 20) are used to evaluate the performance of the proposed
method. The reconstructed images are matched with the fully sampled original generated
cardiac cine MRI as shown in Figure 11. All images are recovered in MATLAB by the
proposed algorithm.
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To gauge the efficiency of proposed algorithm, we use MRXCAT simulator software. 
It is designed for the analysis of reconstruction algorithms performance in the area of car-
diac cine MRI. MRXCAT simulator is used to evaluate the proficiency of recovery algo-
rithms in the field of Cardiac MRI. We have evaluated the performance of our proposed 

Figure 11. (a) Short axis cardiac cine MRI with completely sampled diastolic frame. (b) Sparsifying
transform of cine cardiac MRI diastolic frame with temporal Fourier transform (Ψ), which results in
sparse representation, (c) Another sparse representation of cardiac cine MR image (diastolic frame)
using total variation transform (Ψ).

To gauge the efficiency of proposed algorithm, we use MRXCAT simulator software. It
is designed for the analysis of reconstruction algorithms performance in the area of cardiac
cine MRI. MRXCAT simulator is used to evaluate the proficiency of recovery algorithms in
the field of Cardiac MRI. We have evaluated the performance of our proposed technique
quantitatively and qualitatively. The performance measures that are used in this research
article are: pictorial depiction of under-sampling artefacts, Structural Similarity (SSIM),
Peak Signal to Noise Ratio (PSNR) and Root Mean Square Error (RMSE).

To evaluate the performance of proposed recovery technique qualitatively, we have
experimentally depicted the recovered diastolic and systolic frames using acceleration rates
of (R = 2, 4, 8, 12, 20). The quantitative assessment of the proposed algorithm is done using
RMSE, PSNR and SSIM. Comparison between proposed algorithm and traditional soft
thresholding technique is also performed. Figure 11 depicts the proficiency of the proposed
algorithm at various acceleration rates while comparing with the soft thresholding. The first
column shows the diastolic frame at different acceleration rates of cine cardiac MR image
and the second column represents the systolic frame of cine MRI. The top row depicts the
results of traditional IST algorithm, while the bottom row depicts proposed method results.

Table 4 shows the performance comparison of different sparsity transform using mean
squared error in the transform domain. It measures the average of the error squares between
the reconstructed and the acquired coefficients in the sparse domain. The proposed tangent
hyperbolic based approximation performs well in temporal FFT as compared to the other
sparse transforms. In particular, at higher acceleration rates, the tangent hyperbolic tangent
based proposed technique shows much improved recovery of CS images.



Computation 2023, 11, 7 16 of 21

Table 4. Performance comparison of different sparsity transforms using mean squared error in the
transform domain. Temporal FFT performs better in cardiac cine MRI.

Acceleration Rates Spatial Domain Total Variation Temporal FFT

2 0.1096 0.1123 0.0728
4 0.2321 0.1849 0.0848
8 0.2810 0.2438 0.0948
12 0.3533 0.2684 0.1043
20 0.4756 0.2982 0.1150

Figure 12 shows simulated data where (a) compares proposed method at bottom row
with IST at top row with acceleration rate of 2. The arrow in (a) depicts the very minute
presence of artefacts, while (b) depicts the performance of proposed method at acceleration
rate equal to 4. The arrow in (b) depicts the presence of artefacts (c) shows the results of
both algorithms with acceleration rate set at 8. The artefacts due to subsampling become
gradually more visible in IST results as highlighted by arrow mark (d) depicts the results
when acceleration rate is set at 12. Both techniques depicts the artefacts, however these
artefacts are visible in the IST as mentioned by the white arrow in the figure (e) shows very
much degraded image quality of IST, while comparing it with the proposed method. The
subsampling artefacts dominate the traditional IST result when acceleration rate R is set
at 20.
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with IST algorithm. 
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Figure 12. Simulated data (a) Compares proposed method at bottom row with IST at top row with
acceleration rate of 2. The arrow in (a) depicts the very minute presence of artifacts. Here (b) depicts
the performance of proposed method at acceleration rate equal to 4. The arrow in (b) depicts the
presence of artefacts (c) shows the results of both algorithms with acceleration rate set at 8. (d) depicts
the results when acceleration rate is set at 12. These artefacts are visible in the IST as mentioned by
the white arrow in the figure (e) shows very much degraded image quality of IST, while comparing it
with the proposed method.
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To evaluate the recovered images quantitatively, we have used SSIM to compare the
proposed technique with the IST technique. Figure 13 depicts the SSIM of our proposed
algorithm, iterative soft thresholding (IST) and undersampled images. The quality of
undersampled images is visibly quite poor. The efficiency of our proposed technique and
IST technique is almost similar at low acceleration rates. However, the visible quality of the
soft thresholding based recovered images decreases as acceleration rates are increased, as
compared to the proposed method.
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Figure 13. This figure depicts the efficiency of proposed algorithm by means of SSIM index. As
acceleration rate increases, the SSIM of proposed algorithm degrades slowly while comparing it with
IST algorithm.

Figure 14 shows the requisite iterations for the image reconstruction in both the
methods. The proposed method solves the problem in six iterations, while the IST recov-
ery technique takes ten iterations to reach the optimal solution. In this result, the data
consistency is used to show the performance of proposed method.
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Figure 14. Comparison of cardiac cine MRI recovery at number of iterations; it can be seen from
results that proposed method converges to an optimal solution in lesser iterations as compared to
traditional thresholding.

To evaluate the efficiency of our recovered algorithm quantitatively, the results are
shown the reconstruction results using PSNR at various acceleration rates (R = 2, 4, 8, 12, 20).
We have compared our method with the traditional iterative soft thresholding technique.
Figure 14 depicts the efficiency of our proposed technique at various acceleration rates
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as compared to IST algorithm. Red line shows the results of our method at the different
acceleration rates. Figure 15 shows the PSNR of soft thresholding method and under-
sampled data are shown with the green and blue lines, respectively.
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Figure 15. The performance using the peak signal-to-noise ratio (PSNR). PSNR of our method is
better at all acceleration rates as compared to the soft thresholding method.

Table 5 elaborates the comparison of performance using root mean squared error
(RMSE). It measures the error squares average between the recovered samples and the
actual samples. The proposed method performance is much superior as compared to
the IST technique. In particular, while operating at higher acceleration rates, the tangent
hyperbolic method performs much better in recovering the images. However, the efficiency
of traditional IST algorithm degrades at higher acceleration rates.

Table 5. Comparison of proposed method with conventional IST algorithm with RMSE. Proposed
method performance is much better as acceleration rates are increased.

Acceleration
Rates

Undersampled
Image

Iterative Soft
Thresholding

Proposed
Method

Simulated Data

2 0.081 0.0365 0.0353
4 0.1218 0.0472 0.0372
8 0.1498 0.0702 0.0419

12 0.1583 0.0775 0.0485
20 0.1782 0.0941 0.0606

In vivo Data

2 0.085 0.0099 0.0056
4 0.106 0.0241 0.0172
8 0.1170 0.0495 0.0206

12 0.120 0.0567 0.0338
20 0.1398 0.0585 0.0551

To evaluate the performance of reconstructed images qualitatively, using in vivo data,
we have shown a comparison between the proposed method and the soft thresholding
method in Figure 16. We have used five acceleration rates R = (2, 4, 8, 12, and 20) to show
the comparison between the proposed method and the soft thresholding method. In this
figure, the performance of the proposed technique and IST algorithm is similar at lower
acceleration rates. However, the blurring artefacts in IST based recovered images are more
prominent at higher acceleration rates as compared to the proposed algorithm as indicated
by the white arrows.
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Figure 16. In real vivo data (a) Compares proposed method at bottom row with IST at top row with
acceleration rate of 2. The arrow in (a) shows very minute artifacts. (b) depicts the performance
of proposed method at acceleration rate equal to 4. The arrow in (b) depicts the presence of arte-
facts (c) shows the results of both algorithms with acceleration rate set at 8. The artefacts due to
subsampling become gradually more visible in IST results as highlighted by arrow mark (d) depicts
the results when acceleration rate is set at 12. Both techniques depicts the artefacts, however these
artefacts are visible in the IST as mentioned by the white arrow in the figure (e) show very much
degraded image quality of IST, while comparing it with the proposed method. The subsampling
artefacts dominate the traditional IST result when acceleration rate R is set at 20.

5. Conclusions

In this paper, the novel CS recovery algorithm is proposed for compressively sampled
sparse signals and biomedical images. The proposed method is applied in the 1-D sparse
signal, 2-D real human brain MRI and cardiac cine MRI. In our proposed algorithm, we
have introduced a hyperbolic tangent smooth approximation of non-differentiable l1-norm
and shrinkage. The experimental results quantitative analysis based on SSIM, PSNR,
RMSE of recovered sparse signal and MR images have outperformed the conventional IST
algorithm. The qualitative observations show significant improvement in the proposed
method, especially at higher acceleration rates on Cine Cardiac MR images. In future, this
research work can be further enhanced to incorporate machine learning techniques using
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large compressively sampled MRI datasets to restore accurate images, and the proposed
method can be implemented on CS MRI scanners to reduce patient anxiety.
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