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Abstract: Considering the increasing number of experimental results in the manufacturing process of
quantum dots (QDs) with different geometries, and the fact that most numerical methods that can be
used to investigate quantum dots with nontrivial geometries require large computational capacities,
the finite element method (FEM) becomes an incredibly attractive tool for modeling semiconductor
QDs. In the current article, we used FEM to obtain the first twenty-six probability densities and energy
values for the following GaAs structures: rectangular, spherical, cylindrical, ellipsoidal, spheroidal,
and conical QDs, as well as quantum rings, nanotadpoles, and nanostars. The results of the numerical
calculations were compared with the exact analytical solutions and a good deviation was obtained.
The ground-state energy dependence on the element size was obtained to find the optimal parameter
for the investigated structures. The abovementioned calculation results were used to obtain valuable
insight into the effects of the size quantization’s dependence on the shape of the QDs. Additionally,
the wavefunctions and energies of spherical CdSe/CdS quantum dots were obtained while taking
into account the diffusion effects on the potential depth with the use of a piecewise Woods–Saxon
potential. The diffusion of the effective mass and the dielectric permittivity was obtained with the use
of a normal Woods–Saxon potential. A structure with a quasi-type-II band alignment was obtained at
the core size of ≈2.2 nm This result is consistent with the experimental data.

Keywords: finite element method; spherical quantum dots; cylindrical quantum dots; conical
quantum dots; nanotadpoles; nanostars; core–shell quantum dots; quasi-type-II; CdSe/CdS

1. Introduction

Semiconductor QDs have been a focus of condensed matter scientists for several
decades. Their tunable properties mediated by the three-dimensional quantum confinement
effect have led them to find applications in numerous fields, including—but not limited
to—alternative energy [1–6], energy storage [7–11], sensing [12–17], quantum optics and
photonics [18–25], quantum information [26–30], etc. Moreover, the newest advances in
material science have led to the development of incredibly complex manufacturing and
growth methods for QDs. These developments have led to the finding of more applications
and the creation of a subclass of QDs: so-called QDs with nontrivial geometry. Examples of
such structures vary from relatively simple ones, such as lens-shaped QDs [31], quantum
rings [32–34], and nanorods [35–37], to more complex ones, such as nanotadpoles [38–40],
nanostars [41–44], nanoscrews [45], tetrapods [46,47], nanodumbells [48,49], etc. Moreover,
these structures are not limited to one material; they can be grown like heterostructures,
with one region of the structure comprised of one material and the other region of another.
Although experimental research has made great strides in the investigation of QDs with
nontrivial geometry, theoretical research has lagged. The reason for this lag is caused due
to the fact that in most cases, the attainment of electronic wavefunctions and energies
for QD with nontrivial geometries is impossible. Some research was conducted in the
framework of the envelope function approximation conjoined with the effective mass
approximation for QDs with strongly oblate and strongly prolate geometries. In these
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cases, the geometrical adiabatic approximation can be used to obtain the eigenvalues and
the eigenfunctions [50–54]. However, these cases are highly limited, and even relatively
simple structures such as conical QDs with comparable base radius and height cannot be
investigated in such a way.

So naturally, for cases where no analytical solution can be obtained, numerical methods
come into play [55–57]. However, most of these methods, such as quantum chemistry methods
require great computational capacities such as clusters or supercomputers. Moreover, the
calculation can take an extremely long time to complete. Although they are without a doubt
the most accurate, the speed of these methods makes them nonflexible for cases when the
research requires a variation of the geometrical parameters or a change in external fields.

With that taken into consideration, the FEM serves as a relatively low-cost computation-
wise method that has good accuracy for obtaining a qualitative understanding of QDs with
complex nontrivial geometry.

FEM has been in extensive use by engineers for the last decade. The method has
helped engineers make their designs safer and more cost-effective. The relatively fast speed
of the simulations allows the method to be used in modeling the material properties and
failure criteria for composite materials [54–61] both on a micro level and a macro level. For
a three-dimensional system, FEM is formulated in the following way: The volume of the
system is represented through finite elements. These elements are connected at nodal points
located at the corners, sides, surface, or volume of the elements. These nonoverlapping
elements fill the volume of the system. In the end, a set of algebraic equations emerges
from the formulation of a boundary value problem using the finite element approach.
The technique makes domain-wide approximations of the unknown function. The simple
equations that model these finite elements are then combined into a bigger system of
equations that models the entire problem. The calculus of variations is used by the FEM to
minimize an associated error function and then approximate a solution.

In comparison to the engineering field, the field of semiconductors has adapted this
method relatively recently. However, the FEM has created opportunities for relatively
high-accuracy theoretical research that would have been otherwise analytically impossible.
The FEM calculations have paved the way for the investigation of electronic and excitonic
states in core/shell and multilayer QDs, both with the use of model potentials [62–64] and
more direct simulational approaches [65–67].

In the following article [68], FEM was used to theoretically investigate the electronic states
in a core/shell pyramidal quantum dot with a GaAs core embedded in an AlGaAs matrix.
The electronic states were investigated by analyzing the effects of the geometrical parameters
and the external perturbations. The evaluation of the light absorption and relative refractive
index changes, under different applied magnetic field configurations, was carried out.

In the next example [69], the properties of the electron states in the presence of a
donor impurity in spherical sector-shaped quantum dots were obtained using FEM within
the framework of the effective mass approximation. The dependence of the spectrum on
the radius and apical angle as well as in the position of the impurity was discussed. The
comparison of the attained results with available experimental data for GaAs truncated-
whisker-like quantum dots shows considerable agreement. The calculation helped identify
the lowest-energy photoluminescence peak as donor-related.

Overall, the use of FEM simulations in recent years has grown considerably, showing
accuracy and practicality. The method has helped investigate structures with complex
geometries such as nanotadpoles and core/shell structures [70–74] and even takes into
account double structures [75].

This article aims to extensively investigate the applications of FEM for the simulation
of the geometrically nontrivial QDs. The article has the following structure. Section 1:
Introduction—This section contains the problem statement and the overview of the avail-
able scientific literature; Section 2: Materials and Methods—contains the methods for
investigating both one material and core/shell quantum dots; Section 3: Results and
Discussion—contains the detailed discussion of the probability density and the energy
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spectrum of the spherical, cylindrical, rectangular, conical, and ellipsoidal QDs, as well as
quantum rings (QR) nanotadpoles, nanostars, and core/shell; Section 4: Conclusions—this
section contains the summary of the most important results.

2. Materials and Methods

The most investigated semiconductor material after silicon is gallium arsenide GaAs.
It has a direct band structure and suitable parameters for many applications. As such, for
this article, GaAs is the most appropriate material. The material parameters that we used
in our calculations for GaAs are taken as follows: m∗e = 0.067m0—electron effective mass;
m∗h = 0.067m0—hole effective mass; εs = 12.8—static dielectric susceptibility; ε∞ = 10.86—
high-frequency dielectric constant; ER = 5.5 meV—electron effective Rydberg energy;
abohr = 10.2 nm—electron Bohr radius.

In the current article, the calculations were carried out with the use of commercial
software called Wolfram Mathematica; however, the obtained results and methods can be
generalized for other software such as MATLAB, COMSOL Multiphysics, etc. In any FEM
calculation, the first step is the definition of the partial differential equation; in our case, we
solved a three-dimensional one-particle Schrodinger equation:

− }2

2m∗

(
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

)
ψ(x, y, z) + Vψ(x, y, z) = Eψ(x, y, z) (1)

where ψ(x, y, z) is the wavefunction (eigenfunction) of the particle, V is the confinement
potential, and E is the energy (eigenvalue) of the particle. It is important to note that
depending on the system, the addition of terms representing the strain of the system caused
by boundaries between materials, piezoelectric effects, and external fields may be needed
for achieving the least deviation from the experiment.

Next, we need to define the boundary mesh region for the mesh regions used in our
calculations, presented in Figure 1. The geometrical parameters used for the calculations in
the current article are presented in Table 1.

The final step of the FEM is the statement of the boundary conditions, which is usually
defined by the potential V(x, y, z). In most of our examples, we took into account the
infinite well model, where the probability density turns to zero outside of the structure
|ψ(outside)|2 = 0. This model corresponds to the potential of the form:

V(x, y, z) =
{

V(inside) = 0
V(outside) = ∞

(2)

This implies that the particle is confined in the QD and cannot come outside of the
structure.

After following these steps, FEM divides the mesh domain into finite elements and
solves the equation. During these processes, the maximal size of these elements can be
changed; in general, the smaller the elements, the higher the accuracy. In Mathematica,
the size of these elements is defined by the property called MaxCellMeasure. To check
the accuracy of the solution, we can minimize the energy of the particle by varying the
MaxCellMeasure parameter. The numerical error is also dependent on the geometrical
parameters of the system. Another method for checking the accuracy of the method is to
compare the eigenvalues obtained by FEM to the analytically solvable cases. The analysis
of the ground-state energy dependent on the MaxCellMeasure and the comparison of the
first 25 eigenstates obtained by FEM to the analytically solvable QD models are presented
in Section 3.1: the Accuracy and Computational Time subsection of Results and Discussion.
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Figure 1. The mesh regions used for the calculations: (a) mesh for a rectangular QD, (b) mesh for a 
spherical QD, (c) mesh for a conical QD, (d) mesh for a cylindrical QD, (e) mesh for an ellipsoid 
QD, (f) mesh for an ellipsoid of revolution (spheroid), (g) mesh for a nanotadpole, (i) mesh for a 
nanostar, (j) mesh for the quantum ring. 
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Figure 1. The mesh regions used for the calculations: (a) mesh for a rectangular QD, (b) mesh for a
spherical QD, (c) mesh for a conical QD, (d) mesh for a cylindrical QD, (e) mesh for an ellipsoid QD,
(f) mesh for an ellipsoid of revolution (spheroid), (g) mesh for a nanotadpole, (i) mesh for a nanostar,
(j) mesh for the quantum ring.

Table 1. Geometrical parameters of structures in the calculations.

The Structure Values of Geometrical Parameters (nm)

Rectangular QD Lx = 40, Ly = 20, Lz = 20
Spherical QD R = 10

Cylindrical QD R = 5, H = 30
Ellipsoidal QD ax = 30, by = 10, cz = 20,
Spheroidal QD a = 30, b = 20, c = 20

QR Rinner = 10, Router = 20
Conical QD R = 12, H = 20

Nanotadpole Rhead = 12, Rtail = 6, Htail = 20
Nanostar Rsphere = 10, Rcone = 10, Hcone = 7.5

Next, let us consider one of the methods for considering structures that contain
different materials such as core/shell QDs or multilayer QDs. In such a system, we have
to take into account the change ib the effective mass, dielectric permittivity, and potential
depth and the effects caused by the diffusion. The V(x, y, z) has to change to a more
complex form, such as a piecewise Woods–Saxon potential [76]. For the sake of showcasing
both the effective mass and the dielectric constant anisotropy, we consider a system with a
hydrogen-like impurity at the center that has the following Hamiltonian:

− }2

2m∗

(
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

)
ψ(x, y, z) + Vψ(x, y, z) +

2e2

ε0

√
(
→
r − r0)

2
= Eψ(x, y, z) (3)
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where r =
√

x2 + y2 + z2 is the radius vector for the electron. For modeling the band
structure of a spherical CdSe/CdS core/shell structure, we can use:

V(r) =


V(r) =

(
VCdS

0 −VCdSe
0

)
− VCdS

0 −VCdSe
0

1+exp[(r−Rcore)/α]
, r < Rcore.

V(r) = VCdS
0 − VCdSe

0
1+exp[(r−Rcore)/α]

, r ≥ Rcore.
V(r) = ∞, r ≥ Rshell .

(4)

where VCdSe
0 = 4.8eV, VCdS

0 = 4.9eV is the position of the conduction band minimum for
CdSe and CdS, respectively; Rcore is the core radius in our case CdSe region; Rshell is the
shell radius, in our case, the CdS region; α is a transition smoothness parameter, which
varies with the degree of diffusion. You can see the potential form in Figure 2.
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Figure 2. Piecewise Woods–Saxon potential plotted for the following parameters: Rcore = 1 nm,
Rshell = 1.3 nm, acore = 0.03.

The effective mass and dielectric permittivity can be defined by a standard
Woods–Saxon potential:

m∗(r) = m∗CdS −
m∗CdS −m∗CdSe

1 + exp
[

r−Rcore
α

] (5)

where m∗CdSe = 0.112 ·m0, m∗CdS = 0.25 ·m0 are the electron effective masses in the respective
materials.

ε0(r) = εCdS −
εCdSe − εCdS

1 + exp
[

r−Rcore
α

] (6)

where εCdSe = 9.29, εCdS = 8.28 are the dielectric permittivity constant of the respective
materials.

Lastly, it is important to mention that because FEM sorts the states by increasing order
of energy, we use the number of the state n = 0, 1, . . . , ∞ which must not be confused with
the quantum number n, meaning n is the ordering number.

The calculations were performed on a computer with the specifications presented in
Table 2. For a computer with a different parameters, the computation time will be different.
Other than that, the results should be the same. Moreover the GPUs have little to no effect
on FEM calculations; we have brought the information for the sake of completeness.
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Table 2. Geometrical parameters of structures in the calculations.

Part Name Model

CPU AMD Ryzen Thresadripper 3990X
RAM Kingston 4 × 32 GB 3600 MHz
GPU Double NVIDIA GeForce RTX 3090

3. Results and Discussion
3.1. Acuracy and Computational Time

Before proceeding to the investigation of the energy spectrum, we should first show-
case the limits of FEM’s accuracy. This can be conducted in several ways. The most direct
method is by comparing the analytically obtainable energy values to the results obtained
numerically. In general, we can assume that the numerical error increases for states with
higher energy. The deviation from the exact analytical solution in the current article is
defined as d = 1− EFEM/EAnalytic; its minimum value is 0 (exact solution). The deviations
for the rectangular, spherical, and cylindrical QDs for the first twenty-six excited states are
shown in Figure 3. As we can see, the solution with the least deviation is obtained for the
rectangular QD (Figure 3a), and the solution with the most deviation and unpredictable
behavior corresponds to the cylindrical QD. However, it is important to note that the
deviation, even in the worst-case scenario, is less than 5%.
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Figure 3. The deviation of the analytically obtained electron energy value from the numerical values
for the first 26 states in (a) rectangular, (b) spherical, and (c) cylindrical QDs. The comparison was
carried out for the MaxCellMeasure = 0.01.

For the QDs with nontrivial geometry, the accuracy of FEM highly depends on how
well the element mesh approximates the structure (region). Some geometrical parameters
such as extreme angles (near 180◦ or near 0◦) can cause large discretization errors. Decreas-
ing the size of the elements will increase the accuracy but cost more computational time, so
it is important to find an optimal value for this parameter. To that end, we calculated the
ground-state energy Eground dependence on the MaxCellMeasure parameter. FEM generally
overestimates the energy values. We can assume that the lower the ground-state energy, the
higher the accuracy of the solution. Thus, in Figure 4, the dependence of the ground-state
energy on the MaxCellMeasure parameter is presented for the rectangular (a), spherical
(b), cylindrical (c), ellipsoidal (d), spheroidal (e), and conical (g) QDs as well as QR (f),
nanotadpoles (h), and nanostars (i). The parameter was varied in the range of 0.001− 0.1;
we can see that universally, the lowest value for Eground is at the MaxCellMeasure ≈ 0.001,
which was to be expected. The most extreme decrease in energy is present for QRs and
ellipsoidal QDs, meaning that their geometries are the hardest to approximate with tetra-
hedral mesh elements used in Mathematica. However, it is visible that for most cases, the
energy decrease is in the order of 0.1 meV, which is negligible for most applications, so
larger mesh elements of MaxCellMeasure ≈ 0.01 can be comfortably used. However, in
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the case of the ellipsoidal QD and the QR, we can see that the energy difference is in the
order of 1meV, which cannot be neglected. The reverse side of the coin is the computation
time, which increases with the decrease in the mesh element size. The time for obtaining
the first ten eigenvectors and eigenvalues for the abovementioned QDs is presented in
Figure 5. The results again solidify the fact that for spheroidal QDs, decreasing the size of
the mesh elements is a poor choice because the increase in computation time is the highest
for it; however, the accuracy decrease is negligible.
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conical QDs, (h) nanotadpole QDs, (i) nanostars.
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Figure 5. The dependence of computation time of the first 10 states on the MaxCellMeasure parameter
for (a) rectangular QDs, (b) spherical QDs, (c) cylindrical QDs, (d) ellipsoidal QDs, (e) spheroidal
QDs, (f) QRs, (g) conical QDs, (h) nanotadpole QDs, (i) nanostars.

The results for the QRs showcase the relatively low time of 6 s for the MaxCellMeasure
0.001; this makes the decrease in the MaxCellMeasure worthwhile. Lastly, although the
computation cost for the ellipsoidal QD is the second highest at 46 s, the accuracy increase
cannot be neglected, and the lowest possible value should be taken for the best results. It
is important to note that the discretization errors can be mitigated by the construction of
custom meshes that use hexahedral elements, or maybe even hybrid meshes consisting of
hexahedral and tetrahedral elements that take into account the symmetry of the QDs more
accurately. However, we believe that this is beyond the scope of this paper.

3.2. Electronic Energy and Wavefunctions of Semiconductor QDs

The energy of the particle localized in a QD strongly depends on the size quantization
effects. This effect is what makes the spectrum of the QDs discrete. The size quantization
effect depends on the material parameters of the structure, the size of the structure, and
finally the shape of the structure. The size quantization not only shapes the energetic
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spectrum but also the wave function of the confined particle. As we know, the wave
functions of the state differ in size, shape, and orientation. The size quantization affects all
of these features, and the changes in the probability density cause changes in the difference
between the energy levels, number of degenerate states, etc. That is why understanding
the energetic spectrum of QD requires a parallel analysis of the probability density.

Let us start from the simplest case: an electron confined in the spherical QD. The
energy spectrum is shown in Figure 6a and the probability densities for the first four states
are shown in Figure 7. As we can see, the ground state has spherical symmetry and has
no orbital nodes. The excited-state probability densities have one orbital node and are
oriented in three different directions. Because of the spherical symmetry, each direction is
equivalent to the other, and states that are defined by the same number of orbital nodes
that only differ in orientation are energetically degenerate. The degeneracy of the energy
spectrum is consistent with the well-known analytical solutions.
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The situation changes in the case of a rectangular QD with geometrical parameters
are similar to the ones taken in our calculation Lx = 40 nm, Ly = 20 nm, Lz = 20 nm.
As we can see here, the y- and z-directions have the same amount of size quantization.
However, the size quantization is weak in the x-directions. The degeneracy remains for
wave functions oriented towards the y- and z-directions, and this is reflected both by the
probability densities (Figure 8) and the energy spectrum (Figure 6b). If the probability
density is oriented in the x-direction, the resulting state has lower energy. This effect
is tangible to the point that the wavefunction with two orbital nodes oriented in the
x-direction has lower energy than wavefunctions with one orbital node oriented in the
y- and z-directions.
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This effect of the reordering of energy levels caused by the weaker size quantization
in one direction is much more pronounced in the case of cylindrical QDs. The energy
spectrum (Figure 6c) shows a nondegenerate behavior up to the sixth state, and this is
displayed in the probability density (Figure 9), where for the first five states, the number of
the nodes increases with each state, and the sixth and seventh states are the first states that
are not oriented in the z-direction and have one orbital node. The subsequent behavior of
the energetic spectrum can be explained similarly.

The first structure with the nontrivial geometry that we are going to present is the
ellipsoidal QD with the following geometrical parameters: ax = 30 nm, by = 10 nm,
cz = 20 nm. All three half-axes have different values. This means that each direction has a
different size quantization, which leads to the elimination of energetic degeneracy.

This is visible by the fact that the fourth state’s wave function does not have one node
and is not oriented in the y-direction. Instead, the state with the one-node wavefunction
oriented towards the y-axis corresponds to the seventh state (see Figure 10).
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Figure 10. The probability density of the ground state and first three excited states of an electron
confined in an ellipsoidal GaAs QD. The mesh domain used for the calculation is overlaid on the
probability density.

We know that an ellipsoid becomes a sphere if all of the half-axes are equal to each
other, and becomes a spheroid when two of the half-axes are equal. As such, we can expect
that an electron confined in a spheroidal QD will have a hybrid behavior between an
ellipsoid and a sphere. The expected behavior is shown in Figure 11. The ground state has
elliptic symmetry, and the first three excited states all have one node similar to the spherical
case. However, the difference arises from the fact that the wavefunction of the first excited
state is oriented in the z-direction and subsequently has weaker size quantization, causing
the first excited state to lose its degeneracy. The energy spectrum continues this behavior to
the higher states. It is important to note that for each case, the ratio of the unequal direction
to the equal directions plays a crucial role, and the spectrum will reorder itself depending
on the geometrical parameters.

This effect is caused by the directional non-equivalence and can be observed in any
structure that has initial asymmetries. An example of such a structure is conical QDs
(Figures 6f and 12). The first two excited states have the same energies and wavefunctions,
only differing in their orientation. The third excited state is oriented towards the z-direction,
and has a higher energetic value because the electron is localized near the peak. Similar
behavior can be observed in the energetic spectrum for the higher levels.
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Figure 12. The probability density of the ground state and first three excited states of an electron
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density.

The reverse picture can be observed for a nanotadpole. Here, we have a structure that
is comprised of two regions: a head region approximated with a sphere, and a tail region
approximated with a cylinder merged to the head in the z-direction. This asymmetry in
the z-direction leads to the lowering of the size quantization and a highly unusual shape
for the wave function. However, the shape for the second and third excited states almost
matches the spherical QD. This means that the electronic probability density only “seeps
through” to the tail region in the case when the wave function is to some extent oriented
in the z-direction (Figure 13). The energetic spectrum (Figure 6h) shows the effects of this
“seep through” with the partial elimination of degenerate levels.

However, the directional non-equivalence is partially eliminated if you have a sym-
metrical structure such as a nanostar, which is symmetrical towards the three axes. At
the first glance, you can see in Figure 14 that the wavefunctions are extremely similar to
the spherical case. However, the additional freedom provided by the points leads to the
transformation of the wave functions in all directions. For the ground state, the difference
is slightly visible; however, for the excited state, the most noticeable contribution is the
change in the orientation, as you can see that the first three excited states are no longer
aligned strictly to the x-, y- and z-axes.
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This type of structure can be approximated by a potential of the form (4) that is pre-
sented in Figure 2. Generally, core/shell structures are grown with materials that have a 
bigger potential depth in the core 0

CdSeV , so for medium and large core sizes coreR , the 
particles are localized in the core. Let us first discuss the electron localization probability 
of an electron in Figure 16a. If the electron’s energy is noticeably lower than the differ-
ence between the confinement potentials of the two materials 0 0 100CdS CdSe
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Figure 14. The probability density of the ground state and first three excited states of an electron
confined in a GaAs nanostar. The mesh domain used for the calculation is overlaid on the probability
density.

Let us close this subsection with the QRs. Here, the structure’s symmetry leads to the
most unique ground-state probability density that we have discussed. It has a ring-like
shape and is distributed uniformly in the structure, creating a “ring of probability density”.
The excited states have more shapes and more possible orientations compared to the sphere.
In the first twenty-five states, there are four states with wavefunctions that have one orbital
node. However, only two of them degenerate in energy in the second and third excited
states (Figure 15). The other two correspond to the twentieth and twenty-second excited
states, the former’s probability densities are comprised of two probability density “rings”
outgoing from the center (similar to the rings of Saturn), and the latter’s two probability
density “rings” are stacked on each other. These shape and orientation changes contribute
to the extreme energy differences between the first two and last two states with one-node
wavefunctions. If we look at the energy spectrum (Figure 6g), we can see that the states are
doubly degenerate or near degenerate until the sixteenth state.
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These results showcase the way in which we can control the overlap between electronic
and excitonic states and the energy spectrum, and by extension, most of the optoelectronic
properties of QD.

3.3. Properties of Semiconductor Core/Shell QDs

In this subsection, we are going to investigate the localization probability for electrons
and holes confined in a CdSe/CdS core–shell spherical QD with an impurity in the center.

This type of structure can be approximated by a potential of the form (4) that is
presented in Figure 2. Generally, core/shell structures are grown with materials that have
a bigger potential depth in the core VCdSe

0 , so for medium and large core sizes Rcore, the
particles are localized in the core. Let us first discuss the electron localization probability of
an electron in Figure 16a. If the electron’s energy is noticeably lower than the difference
between the confinement potentials of the two materials VCdS

e0 − VCdSe
e0 ≈ 100 meV, the

electron is mostly localized in the core. However, by making the core radius smaller,
the size quantization in the core becomes stronger and the electron’s probability density
“seeps through” to the shell region more and more as the ground-state energy rises. The
electron localization probability density’s dependence on the core radius Rcore is presented
in Figure 16a with the segmented blue line; the ground state energy is presented in the same
graph with the red solid line. You can see that around the point Rcore = 4.74 nm, about 80%
of the electron probability density is localized in the core. As the size of the core decreases,
electron probability “seeps through” more and more to the shell, until at Rcore = 2.2 nm,
only ∼ 20% is in the core. It is important to note that the VCdS

e0 − VCdSe
e0 depends on the

growing methods, and for different values the probability density will behave differently.
This is also visible for the hole. The potential difference for the hole VCdS

h0 − VCdSe
h0 is

twice as large VCdS
h0 − VCdSe

h0 ≈ 200 meV. The hole’s localization probability in the core
(Figure 16b) reaches about 85% at the core size Rcore = 1.4 nm. This is drastically different
from the electron, which means that for core size values of around 2.2 nm, the overlap
between the electron and hole wave functions decrease to the point that the structure can
be considered to have a quasi-type-II band structure. These kinds of structures have a
plethora of advantages, including the fact that the exciton lifetime increases drastically.

Quasi-type-II structures are actively investigated experimentally. For example, in [77],
the authors investigated the temperature dependence of spectral properties such as the
band gap, bandwidth, and fluorescence intensity of CdSe/CdS dot-in-rod nanocrystals.
Quasi-type-II structures were synthesized with core sizes of Rcore = 2.3 nm. The values
for quasi-type-II structure core size obtained by our calculations are very close to the
experimental values, which attests to the quality of our chosen model.

Overall, we can say that FEM can not only be used to model one-material QDs but
also core/shell, core/shell/shell, or dot-in-bulk structures successfully, even allowing us to
obtain structures with quasi-type-II band alignment.
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the overlap between the electron and hole wave functions decrease to the point that the 
structure can be considered to have a quasi-type-II band structure. These kinds of struc-
tures have a plethora of advantages, including the fact that the exciton lifetime increases 
drastically. 
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Quasi-type-II structures are actively investigated experimentally. For example, in 
[77], the authors investigated the temperature dependence of spectral properties such as 
the band gap, bandwidth, and fluorescence intensity of CdSe/CdS dot-in-rod nanocrys-
tals. Quasi-type-II structures were synthesized with core sizes of 2.3coreR =  nm. The val-
ues for quasi-type-II structure core size obtained by our calculations are very close to the 
experimental values, which attests to the quality of our chosen model. 

Overall, we can say that FEM can not only be used to model one-material QDs but 
also core/shell, core/shell/shell, or dot-in-bulk structures successfully, even allowing us 
to obtain structures with quasi-type-II band alignment. 

  

Figure 16. The segmented blue line is the probability density of the particle’s ground state localized
in the core region, the solid red line is the ground state energy of the particle depending on the inner
core size for an electron (a) and a hole (b). In (a), you can see three regions: the region that has a red
pattern represents the core radii where the localization probability of the hole in the core is less than
50%. The second region, represented by the red and blue pattern, shows the core radii where the
hole’s localization probability in the core is larger than 50% but the electron’s localization probability
is lower than 50%. The third region does not have a pattern, and shows the core radii where both the
hole’s and the electron’s localization probability in the core are larger than 50%.

4. Conclusions

Summarizing the results obtained in the scope of the current paper, we can say
that FEM can be used to model QDs with various trivial and nontrivial geometries as
well as multimaterial QDs. To recap Section 3.1, the deviation between FEM and the
analytically obtainable energy values of the first twenty-six states was less than d ≈ 0.05
for a MaxCellMeasure = 0.01. The dependence of the ground-state energy Eground on the
element size MaxCellMeasure showed a significant correlation for QRs and ellipsoidal
QDs (in the order of 1meV). This shows that these structures are hard to approximate by
Mathematica’s default discretization algorithm. This is also reflected by the fact that the
computation cost for obtaining the first ten wavefunctions and energies for ellipsoidal QD at
the MaxCellMeasure = 0.001 is the second highest at 46 s. However, despite this relatively
large timeframe, the impact on accuracy cannot be neglected. The situation is much more
positive for the QR: the time for completing the calculation with the same parameters is
about 6 s. In Section 3.2 of Results and Discussion, the electronic energy spectrum and
probability densities were investigated for rectangular, spherical, cylindrical, ellipsoidal,
spheroidal, conical QDs, QRs, nanotadpole QDs, and nanostars. The dependence of the
energy spectrum and wavefunction orientation on the size quantization effect’s directional
non-equivalence was discussed in detail. The effect of various asymmetries of structures
was obtained and discussed. In the last subsection of Results and Discussion, we obtained
the particle’s localization probability in the core of the CdSe/CdS structure for the electron
and the hole. It was found that it is possible to obtain a structure with a quasi-type-II band
alignment using the model chosen in our calculations, and the core size values correspond
to the experimentally obtained quasi-type-II structures. Overall, we can say that FEM is a
flexible tool for modeling QDs with various parameters, and the accuracy largely depends
on the chosen potential models and the constructed mesh.
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