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Abstract: Currently, researching the Yang–Baxter equation (YBE) is a subject of great interest among
scientists of diverse areas in mathematics and other sciences. One of the fundamental open problems
is to find all of its solutions. The investigation deals with developing theories such as knot theory,
Hopf algebras, quandles, Lie and Jordan (super) algebras, and quantum computing. One of the most
successful techniques to obtain solutions of the YBE was given by Rump, who introduced an algebraic
structure called the brace, which allows giving non-degenerate involutive set-theoretical solutions.
This paper introduces Brauer configuration algebras, which, after appropriate specializations, give
rise to braces associated with Thompson’s group F. The dimensions of these algebras and their
centers are also given.

Keywords: brace; Brauer configuration algebra; path algebra; Yang–Baxter equation

1. Introduction

The Yang–Baxter equation (YBE) arose from research in theoretical physics and sta-
tistical mechanics. On the one hand, Yang [1] introduced in 1967 such an equation in
two short papers regarding generalizations of the results obtained by Lieb and Liniger.
Using the Bethe ansatz, they solved the one-dimensional repulsive Bose gas with delta
function interaction. On the other hand, Baxter [2] solved the eight-vertex ice model in
1971, introduced previously by Lieb. Baxter’s method was based on commuting transfer
matrices starting from a solution called by him the generalized star–triangle equation,
which currently is known as the Yang–Baxter equation [3,4].

It is worth pointing out that finding a complete classification of the YBE solutions
remains an open problem. However, to date, many solutions have been found to this
equation. Research on this subject can be considered a trending topic. It has encouraged
investigations in several science fields. For instance, the YBE has had an important role
in developing Hopf algebras, Yetter–Drinfeld categories, quandles, knot theory, cluster
algebras (via the Jones polynomial of a two-bridge knot), braided categories, group action
relations on sets, quantum computing, cryptography, etc. [5–9].

Another strategy to tackle the problem of classifying some types of the YBE was
introduced by Rump [10,11], who introduced the notion of the brace. Braces allow classify-
ing so-called non-degenerate involutive set-theoretical solutions of the YBE. In particular,
Ballester-Bolinches et al. [12] proved how it is possible to obtain a left brace (G(X, r),+, .)
structure from the Cayley graph of a suitable subgroup of the symmetric group Sym(X)
associated with a set X defining a solution (X, r) of the YBE.

On the other hand, Brauer configuration algebras (BCAs) are bound quiver alge-
bras [13] induced by configurations of appropriate multisets called Brauer configurations.
The combinatorial data arising from these configurations provide information on the theory
of representations of their corresponding Brauer configuration algebras. As in the case of
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the YBE, BCAs have proven to be a tool for developing different science fields. They have
been used in cryptography to give an algebraic interpretation of the Advanced Encryption
Standard (AES) key schedule, in the theory of graph energy to compute the trace norm
of some families of matrices and trees, in coding theory to compute the energy of a code,
etc. [14–16].

It is worth noting that Espinosa [17] proved that to be associated with a Brauer con-
figuration. There is a message obtained by concatenating appropriate words defining
their multisets named polygons by Green and Schroll [13]. Espinosa defined specializa-
tions for these messages, making them elements of suitable algebraic structures (rings,
groups, etc.). Such a procedure allows new interpretations of objects and morphisms in
different categories.

1.1. Motivations

Researching the classification of the YBE solutions is one of the trending topics in
mathematics and its applications. Results regarding the subject involve areas such as
cryptography, quantum computing, group theory, Hopf algebras, and Lie (super) algebras,
among others [5–9]. On the other hand, Brauer configuration algebras have helped inves-
tigate the theory of graph energy, cryptography, and coding theory [14–16]. This work
connects the Brauer configuration algebras theory with the YBE theory by introducing
Brauer configurations whose specializations give rise to braces, which provide solutions to
the YBE.

1.2. Contributions

This paper introduces brace families arising from appropriate Brauer configuration
algebras. The dimensions of these algebras and their centers are also computed. According
to Rump’s results, the obtained braces give rise to non-degenerate involutive set-theoretical
solutions of the YBE.

Figure 1 shows how Brauer configuration algebras and brace theories are related to
obtaining the main results presented in this paper (see the targets of red arrows).

Section 3.1 introduces Brauer configuration algebras of type F(i,j,k).
Theorem 2 proves that algebras of type F(i,j,k) are reduced and connected. Corollary 1

gives formulas for the dimensions of algebras F(i,j,k) and their centers. Corollary 2 proves
that these Brauer configuration algebras have length grading induced by the associated
path algebra as a consequence of Proposition 1.

Lemma 2 proves that messages associated with Brauer configurations of type F(i,j,k)

induce a subgroup of Thompson’s group of type F. This lemma is used to prove that such
a subgroup endowed with an appropriate sum constitute a brace, which can be used to
generate non-degenerate involutive set-theoretical solutions of the YBE.

The organization of this paper is as follows. The main definitions and notation are
given in Section 2. In particular, we recall the notions of the YBE, braces, and Brauer
configuration algebra (Section 2.2). In Section 3, we give our main results. We introduce
Brauer configurations of type F(i,j,k) (Section 3.1), and it is proven that the corresponding
algebras are reduced, indecomposable, and have length grading induced by the associated
path algebra. It is also proven that messages associated with these Brauer configurations
give rise to some braces, therefore to some solutions of the YBE. Concluding remarks are
given in Section 4.
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Brauer configuration algebras (Section 2.2)

��

Yang–Baxter equation (Section 2.1)

��

Theorem 1, Formulas (23), (24)

��
Proposition 1

��
Section 3.1

��
Theorem 2

��
Corollary 1

��
Corollary 2

++

Lemma 1

ss
Lemma 2

��
Theorem 3

Figure 1. Main results presented in this paper (targets of red arrows) allow establishing a connection
between Brauer configuration algebras and YBE theories.

2. Background and Related Work

This section reminds about the basic notation and results regarding the YBE, braces,
and Brauer configuration algebras, which are helpful for a better understanding of the paper.

2.1. Yang–Baxter Equation and Its Solutions

In this section, we give a brief review on the Yang–Baxter equation and some of the
methods used to solve it [4–6,10,12].

Let V be a vector space over an algebraically closed field F of characteristic zero. A
linear automorphism R of V ⊗ V is a solution of the Yang–Baxter equation (sometimes
called the braided relation), if the following identity (1) holds

(R⊗ id) ◦ (id⊗ R) ◦ (id⊗ R) = (id⊗ R) ◦ (R⊗ id) ◦ (R⊗ id). (1)

in the automorphism group V ⊗V ⊗V.
R is a solution of the quantum Yang–Baxter equation if

R12 ◦ R13 ◦ R23 = R23 ◦ R13 ◦ R12 (2)

where Rij means R acting on the ith and jth tensor factor and as the identity on the
remaining factor.

To date, finding a complete classification of all the solutions of the YBE is an open
problem. However, several approaches have been explored to obtain solutions of these
equations. For instance, Drinfeld et al. [18] proposed studying set-theoretical solutions of
the YBE; in such a case, for a given set X and a map S : X × X → X × X, the identity (1)
has the form

(S× id) ◦ (id× S) ◦ (S× id) = (id× S) ◦ (S× id) ◦ (id× S), (3)

in X× X× X.
Note that, if τ : X2 → X2 is defined in such a way that τ(x, y) = (y, x), then a map

S : X2 → X2 is a set-theoretical solution of the YBE if and only if r = τ ◦ S is a solution of
the following braided equation:

r12r23r12 = r23r12r23. (4)
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A bijective map r : X × X → X × X, such that r(x, y) = (σx(y), γy(x)) is involutive
if r2 = idX2 . r is said to be left non-degenerate (right non-degenerate), if each map γx (σx)
is bijective.

Note that, if X is finite, then an involutive solution of the braided equation is right non-
degenerate if and only if it is left non-degenerate. It is worth noticing that non-degenerate
involutive set-theoretical solutions of the YBE were given by Etingof et al. [19] and Gateva-
Ivanova and Van den Bergh [20] by associating a group G(X, r) with the solution (X, r) [4].

Rump [10] introduced another line of investigation to tackle the problem of classifying
the non-degenerate involutive set theoretical solutions of the YBE. To do that, he defined
right braces and left braces. A right brace is a set G with two operations + and · such that:

• (G,+) is an abelian group.
• (G, ·) is a group and

(a + b)c + c = ac + bc, for all a, b, c ∈ G. (5)

(G,+) is said to be the additive group and (G, ·) the multiplicative group of the
right brace.

A left brace is defined similarly; in this case, the identity (5) has the shape

a(b + c) + a = ab + ac. (6)

For a ∈ G, we define ρa, λa ∈ SymG (the symmetric group on G) by

ρa(b) = ba− a,

λa(b) = ab− a.
(7)

Rump proved the following result.

Lemma 1 (Lemma 4.1, [4], Propositions 2 and 3 [10]). Let G be a left brace. The following
properties hold:

1. aλ−1
a (b) = bλ−1

b (a).
2. λaλ

λ−1
a (b) = λbλ

λ−1
b (a).

3. The map r : G× G → G× G defined by r(x, y) = (λx(y), λ−1
λx(y)

(x)) is a non-degenerate
involutive set-theoretical solution of the YBE.

Recently, Guarnieri and Vendramin [21] generalized Rump’s work to the non-commutative
setting in order to obtain not necessarily non-degenerate involutive set-theoretical solutions
of the YBE. Ballester-Bolinches et al. [12] endowed a subgroup (of the symmetric group
Sym(X)) G(X, r) associated with a solution (X, r) of the YBE with two operations + and ·
in such a way that the algebraic structure (G(X, r),+, ·) is a left brace. To do that, they used
the Cayley graph of G(X, r).

2.2. Multisets and Brauer Configuration Algebras

A multiset is a set with possibly repeated elements. To be more precise, a multiset is
an ordered pair (M, f ), where M is a set and f is a function from M to the nonnegative
integers; for each m ∈ M, f (m) would be called the multiplicity of m.

According to Andrews, a permutation of a multiset (M, f ) is a word in which each
letter belongs to M, and for each m ∈ M, the total number of appearances (or occurrences)
of m in the word is f (m), i.e., if M is a finite set, say {m1, m2, . . . , mr}, then a multiset (M, f )
can be written as a word with the form described by Identity (8).

(M, f ) = {m f (m1)
1 m f (m2)

2 . . . m f (mr)
r }. (8)
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It is worth pointing out that, to denote multisets, the order of the elements does
not matter. This condition makes the theory of multisets a source of many interesting
problems in the theory of partitions assuming that M = {1, 2, . . . , r}, for an appropriate
positive integer r, for instance, if inv(m1, m2, . . . , mr; n) denotes the number of permutations
x1x2 . . . xm1+m2 ...mr of the multiset {1m12m2 . . . rmr} in which there are n pairs (xi, xj) such
that i < j and xi > xj. Then, inv(m1, m2; n) equals the number of partitions of n into at
most m2 parts, each ≤ m1 [22].

An alternative notation for multisets is given by da Fontoura [23], who writes multisets
in the following form:

(M, f ) = {|[m1, f (m1)], [m2, f (m2)], . . . , [mr, f (mr)]|}. (9)

If (M, f ) and (N, g) are multisets, then

(O, h) = (M, f ) ∪ (N, g) = {[x, h(x)] | x ∈ M ∪ N, h(x) = max{ f (x), g(x)}}
(P, i) = (M, f ) + (N, g) = {[x, i(x)] | x ∈ M ∪ N, i(x) = f (x) + g(x)}}
(R, s) = (M, f ) ∩ (N, g) = {[x, s(x)] | x ∈ M ∪ N, s(x) = min{ f (x), g(x))}}.

(10)

Note that, since the order of the elements does not matter, then if

(M1, f1), (M2, f2), . . . , (Mn, fn) (11)

are multisets and w(Mi, fi) = x
fi(x(i,1))
(i,1) x

fi(x(i,2))
(i,2) . . . x

fi(x(i,ti))

(i,ti)
is the word associated with the

multiset (Mi, fi), then the concatenation w(M1, f1)w(M2, f2) . . . w(Mn, fn):

x
f1(x(1,1))

(1,1) x
f1(x(1,2))

(1,2) . . . x
f1(x(1,t1)

)

(1,t1)
. . . x

fn(x(n,1))

(n,1) x
fn(x(n,2))

(n,2) . . . x
fn(x(n,tn))

(n,tn)
(12)

of the words w(Mi, fi), 1 ≤ i ≤ n is said to be the message associated with the multisets (11).

It coincides with
n
∑

i=1
(Mi, fi), if Mi ∩Mj = ∅ with i 6= j. Henceforth, if no confusion arises,

we will omit brackets to denote these types of words. Note that messages associated with
the same family of multisets are equivalent.

If an element x(i,j) ∈ Mi1 ∩Mi2 ∩ · · · ∩Mir ⊆
n
∑

h=1
Mh, then the sum

r
∑

h=1
fih(x(i,j)) is said

to be the valency of x(i,j), denoted val(x(i,j)) [13].

For collections of labeled multisets M1, M2, . . . , Mn with M0 =
n⋃

h=1
Mh and

ti

∑
k=1

fi(x(i,k)) > 1, for any 1 ≤ i ≤ n and ti = |Mi|. (13)

Green and Schroll introduced in [13] systems or configurations of multisets of the form

(M0; {M1, M2, . . . , Mn}; ν;O) (14)

where ν is a multiplicity map ν : M0 → N × N such that ν(x) = (val(x), µ(x)), with
µ(x) ≥ 1. Green and Schroll [13] called vertices the elements of M0 and polygons the mul-
tisets Mi. According to them, a vertex x(i,j) is truncated provided that ν(x(i,j)) = (1, 1)
(i.e., val(x(i,j))µ(x(i,j)) = 1); otherwise, x(i,j) is said to be non-truncated. The message
of the configuration is said to be reduced if, for any vertex x(i,j) ∈ M0, it holds that
µ(x(i,j))val(x(i,j)) > 1. Henceforth, we let νx(i,j) denote the product µ(x(i,j))val(x(i,j)) associ-
ated with the multiplicity of a vertex x(i,j) of a Brauer configuration.

The orientation O is obtained by defining for each non-truncated vertex x(i,j) ∈ M0 a
cyclic ordering <x(i,j) on the polygons Mij for which f (x(i,j)) ≥ 1, i.e., if x(i,j) ∈ Mi1 ∪Mi2 ∪
. . . Mir , then the cyclic ordering is obtained by defining a linear order Sx(i,j) of the form
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M1
i1
< M2

i1
< · · · < M

fi(x(i,j))
i1

< · · · < M1
ir < M2

ir < · · · < M
fr(x(i,j))
ir and adding a new

relation M
fr(x(i,j))
ir < M1

i1
. In this case, sequences of the form

Ms
ih
< Ms+1

ih
< · · · < M

fh(x(i,j))
ih

< · · · < M1
ir < M2

ir < · · · < M
fr(x(i,j))
ir < M1

i1
< M2

i1
<

· · · < Ms−1
ih

are equivalent. Note that, for the sake of clarity, we have omitted the index
x(i,j) for the relation <(x(i,j)).

Sequences S(x(i,j)) are said to be successor sequences.

Remark 1. Systems of the form (14) were named Brauer configurations by Green and Schroll.
In this work, it is assumed that, if M < M′ in the successor sequence associated with a vertex
x ∈ M0, then if a vertex x′ 6= x belongs to the polygons M and M′, then M < M′ in the successor
sequence associated with the vertex x′, i.e., the successor sequence Sx′ inherits the order defined by
the vertex x.

A Brauer configuration without truncated vertices is said to be reduced. This paper only deals
with reduced Brauer configurations.

If M = (M0; {M1, M2, . . . , Mn}; νM;OM), and N = (N0; {N1, N2, . . . , Nm}; νN ;ON)
are Brauer configurations, then the Brauer configuration:

P = M + N = (M0 + N0, {M1, . . . , Mn, N1, N2, . . . , Nm}, νM+N ,OM+N) (15)

such that:

• M0 ∩ N0 = ∅;
•

νM+N(x) =

{
νM(x), if x ∈ M,
νN(x), if x ∈ N;

• OM+N = OM +ON .

Then, it is said to be disconnected; otherwise, P is connected.
The Brauer message M(P) of the Brauer configuration P is the concatenation of the

messages M(M) and M(N) of the Brauer configurations M and N, respectively. In other
words, if w(Mi) (w(Nj)) is the word associated with the polygon Mi (Nj), then

M(P) = w(M1)w(M2) . . . w(Mn)w(N1)w(N2) . . . w(Nm). (16)

In general, for s ≥ 1, the Brauer message M(P1 + P2 + · · ·+ Ps) associated with Brauer
configurations is a concatenation of the form M(P1)M(P2) . . .M(Ps), where M(Pi) denotes
the Brauer message of the Brauer configuration Pi.

According to Espinosa et al., if M0 = {m1, m2, . . . , mr} in the Brauer configuration
M = (M0; {M1, M2, . . . , Mr}, µ,O), then it is possible to specialize the message of the
Brauer configuration over a given algebraic structure R endowed with a sequence of
operations O = {o1, o2, . . . , on} in such a way that, for oi, oj, ok ∈ O. The specialized message
e(M(M)) is given by the substitution:

e(M(M)) = e(w(M1))oje(w(M2))oj . . . oje(w(Mr)). (17)

where, for 1 ≤ i ≤ r and w(Mi) = x f (xi,1)

(i,1) x f (xi,2)

(i,2) . . . x
f (xi,ti

)

(i,ti)
and a suitable map e : M0 → R,

it holds that

e(w(Mi)) = (e(x(i,1)))
f (x(i,1))oi(e(x(i,2)))

f (x(i,2))oi . . . oi(e(x(i,ti)
))

f (x(i,ti)),

(e(xi,j))
h = e(x(i,j))oke(x(i,j))ok . . . oke(x(i,j)︸ ︷︷ ︸

h−times

). (18)
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The specialized Brauer message e(M(P1 + P2 + · · ·+ Ps)) of a sum of Brauer configu-
rations is given by an identity of the form:

e(M(P1 + P2 + · · ·+ Ps)) = e(M(Ps))ole(M(Ps−1))ol . . . ole(M(P1)), (19)

for an appropriate operation ol . A Brauer configuration:

e(M) = (e(M0) = Img(e : M0 → R); {e(M1), e(M2), . . . , e(Mr)}; e(ν); e(O)) (20)

is said to be a specialized Brauer configuration of a Brauer configuration:

M = (M0; {M1, M2, . . . , Mr}, ν,O)),

if e(Mi) = {e(x(i,1)), e(x(i,2)), . . . , e(x(i,ti)
)}, with Mi = {x(i,1), x(i,2), . . . , x(i,ti)

}, 1 ≤ i ≤
r, e(Mi) < e(Mj), for any covering Mi < Mj defined by the orientation O,

e(ν(x)) = (val(e(x)), µ(x)). (21)

A Brauer configuration M = (M0, {M1, M2, . . . , Mr}, ν,O) is said to be labeled by a set
X, if each polygon Mi is labeled by a subset Xi ⊆ X; in such a case, we write

M = (M0, {[M1, X1], [M2, X2], . . . , [Mr, Xr]}, ν,O). (22)

The labeled Brauer configurations has been helpful to obtain algebraic interpretations
of the AES key schedule and in the theory of graph energy to compute the trace norm of
significant classes of matrices [14–16].

Brauer Configuration Algebras

Green and Schroll introduced the notion of a Brauer configuration algebra (BCA). The
authors refer the interested reader to [13,24] for a more detailed study of Brauer graph
algebras (BGAs) and BCAs.

A BCA ΛM is a bound quiver algebra of the form FQM/IM induced by a Brauer
configuration M = (M0,M1 = {M1, M2, . . . , Mr}, ν,O), where FQM is the path algebra
induced by the quiver QM, or simply Q = (Q0, Q1, s, t), such that:

• Q0 is in bijective correspondence with the set of polygons M1 = {M1, M2, . . . , Mr},
i.e., each vertex vi ∈ Q0 corresponds to a unique polygon Mi ∈M1.

• Each covering Mi < Mi+1 defined by the orientationO defines an arrow α : vi → vi+1,
i.e., s(α) = vi and t(α) = vi+1. The cycles C(x(i,j)) given by a vertex x(i,j) ∈M0 are said
to be special cycles.

• Q is bounded by an admissible ideal IM (or simply I if no confusion arises) generated
by the following three types of relations:

1. C
µ(xi,j)
x(i,j) − C

µ(x(i,k))
xi,k , for any pair of special cycles Cx(i,j) and Cx(i,k) associated with

vertices x(i,j), x(i,k) ∈ Mi, 1 ≤ i ≤ r, fixed (i.e., special cycles defined by vertices
in the same polygon are equivalent).

2. C
µ(xi,j)
x(i,j) f , where f is the first arrow of the special cycle Cx(i,j) associated with the

vertex x(i,j). In particular, if l(x(i,l)) is a loop associated with a vertex x(i,l) with

val(x(i,j)) = 1, then a relation of the form lµ(x(i,j))+1 also generates the ideal I.
3. Quadratic monomial relations of the form αβ ∈ I, if αβ ∈ FQ, α is an arrow

contained in an special cycle Cx(i,j) , and β is contained in an special cycle Cx(r,s)
with i 6= r.

Latter on, if there is no possibility of confusion, we will assume notations Q (for a
quiver), I (for an admissible ideal), and Λ (for a Brauer configuration algebra).

The following Theorem 1 proves that the theory of representation of a BCA Λ is given
by the combinatorial data provided by the underlying family of multisets [13].
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Theorem 1 ([13], Theorem B, Proposition 2.7, Proposition 3.2, Proposition 3.5, Theorem
3.10, Corollary 3.12 ). Let Λ = FQ/I be a Brauer configuration algebra induced by a Brauer
configuration M = (M0,M1, µ,O):
1. There is a bijection between the set of indecomposable projective modules over Λ and M1.
2. If PV is an indecomposable projective module over a BCA Λ defined by a polygon V in M1,

then rad PV =
r
∑

i=1
Ui, where Ui ∩Uj is a simple Λ-module for any 1 ≤ i, j ≤ r and r is the

number of (non-truncated) vertices of V.
3. I is admissible, whereas Λ is a multiserial symmetric algebra. Moreover, if M is connected,

then Λ is indecomposable as an algebra.
4. If rad P (soc P) denotes the radical (socle) of an indecomposable projective module P and

rad2 P 6= 0, then the number of summands in the heart rad P/soc P of P equals the number
of non-truncated vertices of the polygons in M corresponding to P counting repetitions.

5. If ΛM and ΛM′ are BCAs, induced by Brauer configurations M = (M0,M1, ν,O) and
M′ = (M0\{h},M1\V ∪ V′, ν,O), where V′ = V\{h}, |V| ≥ 3, and val(h)µ(h) = 1,
then ΛM is isomorphic to ΛM′ .

Green and Schroll in [13] proved that the dimension of a Brauer configuration algebra
induced by a Brauer configuration M is given by the following formula.

1
2

dimF ΛM − |M1| = ∑
i∈M0

tνi−1

µ(i)
. (23)

where i ∈ M0 (tj) denotes a non-truncated vertex (the jth triangular number) and νi =
val(i)µ(i) (see (14)).

Sierra [25] obtained the next formula for the dimension of the center of a Brauer
configuration algebra ΛΓ induced by a reduced configuration Γ.

dimF Z(Λ) = 1 + ∑
i∈M0

µ(i) + |M1| − |M0|+ #(Loops Q)− |CΓ|, (24)

where CΓ = {i ∈M0 | ν(i) = (1, t), t > 1}.
Green and Schroll also proved the following result.

Proposition 1 ([13], Proposition 3.6). Let ΛM be the Brauer configuration algebra associated
with a connected Brauer configuration M. The algebra ΛM has a length grading induced from
the path algebra FQ if and only if there is an N ∈ Z>0 such that, for each non-truncated vertex,
δ ∈ M0, val(δ)µ(δ) = N.

As an example, we use compositions of the number three to define a Brauer configura-
tion M = (M0,M1, ν,O) for which:

• M0 = {1, 2, 3};
• M1 = {V1 = {3, 1, 1, 1}, V2 = {2, 1}, V3 = {1, 2}};
• M(M) = 31112112;
• ν(1) = (5, 1), ν(2) = (2, 1), ν(3) = (1, 2);

• Successor sequences: S1 = V(1)
1 < V(2)

1 < V(3)
1 < V2 < V3, S2 = V2 < V3,

S3 = V1;
• |M0| = 3, |M1| = 3, |CM| = 1;
• dimF ΛM = 29;
• dimF Z(ΛM) = 8.

The following Figure 2 shows the Brauer quiver QM.
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QM = V1
α1

1 //

l1
1
��

l1
2

LL

l3
1

��

l3
2

kk V2
α1

2 //

β2
1

$$
V3

β2
2

gg

α1
3

cc

Figure 2. Brauer quiver induced by the Brauer configuration M.

The admissible ideal I∆ is generated by the following relations (a and a′ denote the
first arrows of special cycles Cα associated with a vertex α):

• l1
i l3

j , (l1
i )

2, (l3
i )

2, for all possible values of i and j.
• l3

i α1
1, α1

1β2
1, β2

1α1
3, C1

1α, C1
2α′, C1

1 ∼ C1
2 ∼ C2

3 , for all possible special cycles asso-
ciated with Vertices 1, 2, and 3.

3. Main Results

This section provides Brauer configurations whose specializations give rise to left
braces. Solutions of the YBE are obtained according to Lemma 1. The dimensions of the
corresponding Brauer configuration algebras and their centers are also given.

3.1. Brauer Configurations of Type F(i,j,k)

Let us define the following families of labeled (by the interval [0, 1]) Brauer configura-
tions, for which i, k ≥ 1 are fixed and 1 ≤ j ≤ 2i+1.

F(i,j,k) = (F
(i,j,k)
0 ,F(i,j,k)

1 = {[ f(i,j,k,0), I(i,j,k,0)], . . . , [ f(i,j,k,k), I(i,j,k,k)]}, ν(i,j,k),O(i,j,k)). (25)

F
(i,j,k)
0 =

{
{a(i,j,k,0), a(i,j,k,1), a(i,j,k,2)}, if i = k = 1,
{a(i,j,k,1), a(i,j,k,2)}, if i > 1.

The words w( f(i,j,k,h)) associated with polygons f(i,j,k,h) are given by the following
identities, for 0 ≤ h ≤ k.

w( f(i,j,k,h)) = ak−h
(i,j,k,1)a

h
(i,j,k,2). (26)

ν(i,j,k)(a(i,j,k,h)) =

{
(1, 2), if i = k = 1, 1 ≤ j ≤ 4, h ∈ {1, 2},
(tk, 1), otherwise.

Successor sequences Sx associated with a given vertex x ∈ F
(i,j,k)
0 are built in such a

way that, for i, j and k fixed, it holds that

Sx = [ f(i,j,k,0), I(i,j,k,0)] < [ f(i,j,k,1), I(i,j,k,1)] < · · · < [ f(i,j,k,k), I(i,j,k,k)]. (27)

I(i,j,k,h) denotes a subset of the interval [0, 1] ⊂ R, i.e., the Brauer configuration F(i,j,k)

is labeled by the closed interval [0, 1].
Similarly, we define Brauer configurations G(i,j,k) such that

G(i,j,k) = (G
(i,j,k)
0 ,G(i,j,k)

1 = {[g(i,j,k,0), J(i,j,k,0)], . . . , [g(i,j,k,k), J(i,j,k,k)]}, ν(i,j,k),O(i,j,k)). (28)

G
(i,j,k)
0 =

{
{b(i,j,k,0), b(i,j,k,1), b(i,j,k,2)}, if i = k = 1,
{b(i,j,k,1), b(i,j,k,2)}, if i > 1.

For 0 ≤ h ≤ k, it holds that

w(g(i,j,k,h)) = bh
(i,j,k,2)b

k−h
(i,j,k,1). (29)
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Multiplicities and orientations are defined as for F(i,j,k).
As an example, we give the Brauer configuration algebra induced by the Brauer

configuration F(1,1,1), for which:

F
(1,1,1)
0 = {a(1,1,1,0), a(1,1,1,1), a(1,1,1,2)}; F

(1,1,1)
1 = {[ f(1,1,1,0), I(1,1,1,0), [ f(1,1,1,1), I(1,1,1,1)]},

w( f(1,1,1,0)) = a(1,1,1,0)a(1,1,1,1), w( f(1,1,1,1)) = a(1,1,1,0)a(1,1,1,2),
ν(a(1,1,1,0)) = (2, 1), ν(a(1,1,1,1)) = ν(a(1,1,1,2)) = (1, 2),

Sa(1,1,1,0) = [ f(1,1,1,0), I(1,1,1,0)] < [ f(1,1,1,1), I(1,1,1,1)],
Sa(1,1,1,1) = [ f(1,1,1,0), I(1,1,1,0)],
Sa(1,1,1,2) = [ f(1,1,1,1), I(1,1,1,1)].

(30)

Figure 3 shows the Brauer quiver associated with the Brauer configuration F(1,1,1);
for the sake of clarity, we assume the notation a(i,j,k,h) = h, f(i,j,k,h) = fh for vertices
and polygons.

QF(1,1,1) = f0
α0

1 //

l1
1
��

f1

l2
1

��

α0
2

ff

Figure 3. Brauer quiver induced by the Brauer configuration F(1,1,1).

The admissible ideal I ⊂ FQF(1,1,1) is generated by relations of the following types:

• (l j
1)

3;

• α0
i l j

i , l j
i α

0
i , for all possible values of i and j;

• α0
1α0

2α0
1, α0

2α0
1α0

2.

According to identities (23) and (24), we have that for 1 ≤ j ≤ 4, it holds that

dimF ΛF(1,j,1) = 4 + 2(2− 1) + 1(2− 1) + 1(2− 1) = 8,

dimF Z(ΛF(1,j,1)) = 1 + 5− 3 + 2− 2 = 3.
(31)

The following Theorem 2 gives the properties of the Brauer configuration algebras ΛF(i,j,k) .

Theorem 2. For i, j, k ≥ 1 fixed and 1 ≤ j ≤ 2i + 1, the Brauer configuration algebra ΛF(i,j,k) is
indecomposable as an algebra and the Brauer configuration F(i,j,k) is reduced.

Proof. If x ∈ F
(i,j,k)
0 , then

ν
(i,j,k)
x =

{
tk, if x ∈ {ai,j,k,1, ai,j,k,2},
2, if x = a(i,j,k,0).

Thus, F(i,j,k) has no truncated vertices.
Since:

• a(1,j,1,0) ∈ f(1,j,1,0) ∩ f(1,j,1,1);
• a(i,j,k,1) ∈ f(i,j,k,0);
• a(i,j,k,2) ∈ f(i,j,k,k);

• {ai,j,k,1, ai,j,k,2} ⊂
k−1⋂
h=1

f(i,j,k,h).

as multisets, then F(i,j,k) is connected. Thus, the result follows as a consequence of
Theorem 1. We are done.

As a consequence of Formulas (23) and (24), the following Corollary 1 gives formulas
for the dimensions of an algebra of type ΛF(i,j,k) and its center.
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Corollary 1. For i ≥ 1, k > 1, and 1 ≤ j ≤ 2i+1 fixed, it holds that

dimF ΛF(i,j,k) = 2(k + 1) + 4t(tk−1),

dimF Z(ΛF(i,j,k)) = k + 2.
(32)

where ti =
i(i+1)

2 denotes the ith triangular number.

Proof. Note that, if x ∈ F
(i,j,k)
0 , then ν(x) = (tk, 1). Furthermore, |F(i,j,k)

1 | = k + 1.

Corollary 2. For i ≥ 1, ≤ j ≤ 2i+1, and k ≥ 1 fixed, the algebra ΛF(i,j,k) has a length grading
induced from the path algebra FQF(i,j,k) , where QF(i,j,k) is the Brauer quiver associated with the
Brauer configuration F(i,j,k).

Proof. For any x ∈ F
(i,j,k)
0 , it holds that νx = tk.

Remark 2. Note that Theorem 3 and Corollaries 1 and 2 also hold for Brauer configuration algebras
ΛG(i,j,k) induced by Brauer configurations of type G(i,j,k).

3.2. Specializations

This section defines specializations e(i,j,k)(F(i,j,k)) of Brauer configurations by defining

maps e(i,j,k) : F(i,j,k)
0 → [0, 1][0,1], where i, k ≥ 1, 1 ≤ j ≤ 2i+1 and [0, 1][0,1] is the set of

functions from [0, 1] to [0, 1].
For i ≥ 1, 1 ≤ j ≤ 2i+1, and k ≥ 1 fixed, we define e(i,j,k)(F(i,j,k)) in such a way that

e(i,j,1)(a(i,j,1,0))(x) = 0, for any x ∈ [0, 1], i ≥ 1, 1 ≤ j ≤ 2i+1. (33)

e(i,j,1)(a(i,j,1,1))(x) =


x, if x ∈ [0, 2+3(j−1)

2i+3 ],
1
2 x + 2+3(j−1)

2i+4 , if x ∈ [ 2+3(j−1)
2i+3 , 2+3j

2i+3 − 1
2i+3 ],

0, if x ∈ ( 2+3j
2i+3 − 1

2i+3 , 1].

where [0, 2+3(j−1)
2i+3 ] ∪ [ 2+3(j−1)

2i+3 , 2+3j
2i+3 − 1

2i+3 ] corresponds to the label I(i,j,1,0) of f(i,j,1,0).

e(i,j,1)(a(i,j,1,2))(x) =


0, if x ∈ [0, 2+3j

2i+3 − 1
2i+3 ),

2x− 2+3j
2i+3 , if x ∈ [ 2+3j

2i+3 − 1
2i+3 , 2+3j

2i+3 − 1
2i+4 ],

x, if x ∈ [ 2+3j
2i+3 − 1

2i+4 , 1].

The label associated with f(i,j,1,1) is I(i,j,1,1) = [ 2+3j
2i+3 − 1

2i+3 , 2+3j
2i+3 − 1

2i+4 ]∪ [
2+3j
2i+3 − 1

2i+4 , 1].

Remark 3. If i and j are fixed, then we write ak
1(ak

2) instead of a(i,j,k,1) (a(i,j,k,2)). a1(x) =
e(i,j,1)(a(i,j,1,1))(x), a2(x) = e(i,j,1)(a(i,j,1,2))(x), for any x ∈ Ii,j,1,0 (x ∈ I(i,j,1,1)).

If f ∈ [0, 1][0,1] and Supp( f ) = {x ∈ [0, 1] | f (x) 6= 0}, then

Supp(ak
1 = a1 ◦ a1 · · · ◦ a1︸ ︷︷ ︸

k−times

) = [0,
2 + 3(j− 1)

2i+3 ] ∪ [
2 + 3(j− 1)

2i+3 ,
2 + 3j
2i+3 −

1
2i+3 ],

Supp(ak−h
1 ah

2 = a1 ◦ a1 · · · ◦ a1︸ ︷︷ ︸
(k−h)−times

a2 ◦ a2 · · · ◦ a2︸ ︷︷ ︸
h−times

) = [
2 + 3j
2i+3 −

1
2h+i+2 ,

2 + 3j
2i+3 −

1
2h+i+3 ],

Supp(ak
2 = a2 ◦ a2 · · · ◦ a2︸ ︷︷ ︸

k−times

) = I(i,j,k,k),

I(i,j,k,k) = [
2 + 3j
2i+3 −

1
2k+i+2 ,

2 + 3j
2i+3 −

1
2k+i+3 ] ∪ [

2 + 3j
2i+3 −

1
2k+i+3 , 1].

(34)
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ak−h
1 ah

2 is the specialization e(i,j,k)( f(i,j,k,h)) of the word associated with the polygon f(i,j,k,h).
It is a function of the form:

e(i,j,k)( f(i,j,k,h))(x) =

{
ak−h

1 ah
2(x), if x ∈ [ 2+3j

2i+3 − 1
2h+i+2 , 2+3j

2i+3 − 1
2h+i+3 ],

0, elsewhere.

where [ 2+3j
2i+3 − 1

2h+i+2 , 2+3j
2i+3 − 1

2h+i+3 ] is the label I(i,j,k,h) associated with the polygon f(i,j,k,h).
The same notation is assumed for the Brauer configuration G(i,j,k). In such a case,

Supp(bk
1 = b1 ◦ b1 · · · ◦ b1︸ ︷︷ ︸

k−times

) = [0,
2 + 3(j− 1)

2i+3 ] ∪ [
2 + 3(j− 1)

2i+3 ,
2 + 3j
2i+3 +

1
2i+j+2 ],

Supp(bh
2bk−h

1 = b1 ◦ b1 · · · ◦ b1︸ ︷︷ ︸
(k−h)−times

b2 ◦ b2 · · · ◦ b2︸ ︷︷ ︸
h−times

) = I(i,j,k,h),

Supp(bk
2 = b2 ◦ b2 · · · ◦ b2︸ ︷︷ ︸

k−times

) = [
2 + 3j
2i+3 −

1
2k+i+2 ,

2 + 3j
2i+3 −

1
2k+i+3 ] ∪ [

2 + 3j
2i+3 −

1
2k+i+3 , 1].

(35)

I(i,j,k,h) = [ 2+3(j−1)
2i+3 + 1

2j−h+i+3 , 2+3(j−1)
2i+3 + 1

2j−h+i+2 ] is the label associated with the polygon
g(i,j,k,h).

e(i,j,1)(b(i,j,1,1))(x) =


x, if x ∈ [0, 2+3(j−1)

2i+3 ],

2x− 2+3(j−1)
2i+5 , if [ 2+3(j−1)

2i+3 , 2+3j
2i+3 + 1

2i+j+2 ],

0, if x ∈ ( 2+3j
2i+3 + 1

2i+j+2 , 1].

e(i,j,1)(b(i,j,1,2))(x) =


0, if x ∈ [0, 2+3j

2i+3 + 1
2i+j+2 ),

1
2 x + 2+3j

2i+2 , if x ∈ [ 2+3j
2i+3 − 1

2i+3 , 2+3j
2i+3 − 1

2i+4 ],
x, if x ∈ ( 2+3j

2i+3 − 1
2i+4 , 1].

For i, k ≥ 1 fixed, the specialized Brauer message Me(i,j,k)(F(i,j,k)) has the form (see (20)
and (21)):

Me(i,j,k)(F(i,j,k)) = e(i,1,k)( f(i,j,k,0)) + e(i,2,k)( f(i,j,k,1)) + · · ·+ e(i,j,k,k)( f(i,j,k,k)) = F(i,j,k),

F(i,j,k) = F(i,j,1) ◦ F(i,j,1) ◦ · · · ◦ F(i,j,1)︸ ︷︷ ︸
k−times

, for 1 ≤ j ≤ 2i+1 f ixed. (36)

For i, k ≥ 1 fixed, we let M(i,j,k) denote the set of specialized messages.
For i, k ≥ 1, we define the sum of Brauer messages F(i,j,k), F(i,j′ ,k) ∈ M(i,j,k) in such a

way that
F(i,j,k) + F(i,j′ ,k) = F(i,j′ ,k) ◦ F(i,j,k). (37)

Remark 4. We adopt the same notation for Brauer messages and the corresponding operations
associated with Brauer configurations of type G(i,j,k).

We let H(i,j,k) denote the subset of functions from [0, 1] to [0, 1] such that, for i, k ≥ 1
fixed,

H(i,j,k) = { f ∈ [0, 1][0,1] | f = Fα1,1
(i,1,k) + Gα1,2

(i,1,k) + Fα2,1
(i,2,k) + Gα2,2

(i,2,k) + . . .

· · ·+ F
α2i+1,1

(i,2i+1,k) + G
α2i+1,2

(i,2i+1,k), αi,j ≥ 1},

Hαt
(i,j,k) = H(i,j,k) ◦ H(i,j,k) ◦ · · · ◦ H(i,j,k)︸ ︷︷ ︸

αt−times

, H ∈ {F, G}.
(38)
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It is worth recalling that Thompson’s group F (under composition) consists of those
homomorphisms of the interval [0, 1], which satisfy the following conditions [26,27]:

1. They are piecewise linear and orientation-preserving.
2. In the pieces where the maps are linear, the slope is a power of 2.
3. Points where slopes change their values are said to be breakpoints, which are dyadic,

i.e., they belong to the set B× B, where B = [0, 1] ∩Z[ 1
2 ].

Breakpoints are used to identify any element f ∈ F provided that such an element has
finitely many breakpoints. In other words, if the set of pairs {[a1, b1], [a2, b2], . . . , [ak, bk]}
represents f , it is assumed that (a0, b0) = (0, 0) ∈ f , (ak+1, bk+1) = (1, 1) ∈ f , and
bi+1−bi
ai+1−ai

= 2s, for some s ≥ 0.

For instance, the set of pairs {( 1
8 , 1

2 ), (
1
4 , 3

4 ), (
1
2 , 7

8 )} defines the function:

f (x) =


4x, if x ∈ [0, 1

8 ],
2x + 1

4 , if x ∈ [ 1
8 , 1

4 ],
1
8 (4x + 5), if x ∈ [ 1

4 , 1
2 ],

1
4 (x + 3), if x ∈ [ 1

2 , 1].

Some of the main properties of Thompson’s group F is that it is torsion-free and
contains a free abelian subgroup of infinite rank. Furthermore, F is an example of a
torsion-free FP∞ group that is not of finite cohomological dimension.

Regarding Thompson’s group of type F, we have the following result.

Lemma 2. For i, k ≥ 1 fixed and 1 ≤ j ≤ 2i + 1, (H(i,j,k), ◦) is a subgroup of the Thompson’s
group F. In particular, H(i,j,k) is a subgroup of H(i,j,k′) if k′ divides k.

Proof. Firstly, we note that, for any j, 1 ≤ j ≤ 2i+1, the messages F(i,j,k) and G(i,j,k) are
elements of F, provided that they are compositions of elements F(i,j,1) and G(i,j,1), which
are elements of F by definition. In fact, F(i,j,k) and G(i,j,k) are defined as follows:

F(i,j,k)(x) =



x, if x ∈ [0, 2+3(j−1)
2i+3 ],

ak
(i,j,1,1), if x ∈ [ 2+3(j−1)

2i+3 , 2+3j
2i+3 − 1

2i+3 ],

ak−h
(i,j,1,1)a

h
(i,j,1,2), if x ∈ [ 2+3j

2i+3 − 1
2h+i+2 , 2+3j

2i+3 − 1
2h+i+3 ],

ak
(i,j,1,2), if x ∈ [ 2+3j

2i+3 − 1
2k+i+2 , 2+3j

2i+3 ],

x, if x ∈ [ 2+3j
2i+3 , 1].

G(i,j,k)(x) =



x, if x ∈ [0, 2+3(j−1)
2i+3 ],

bk
(i,j,1,1), if x ∈ [ 2+3(j−1)

2i+3 , 2+3(j−1)
2i+3 + 1

2i+k+2 ],

bh
(i,j,1,2)b

k−h
(i,j,1,1), if x ∈ [ 2+3(j−1)

2i+3 + 1
2i+k−h+3 , 2+3(j−1)

2i+3 + 1
2i+k−h+2 ],

bk
(i,j,1,2), if x ∈ [ 2+3(j−1)

2i+3 + 1
2i+3 , 2+3(j−1)

2i+3 + 1
2i+2 ],

x, if x ∈ [ 2+3(j−1)
2i+3 + 1

2i+2 , 1].

where

a(i,j,1,1) =
1
2

x +
2 + 3(j− 1)

2i+4 , a(i,j,1,2) = 2x− 2 + 3j
2i+3 ,

b(i,j,1,1) = 2x− 2 + 3(j− 1)
2i+3 , b(i,j,1,2) =

1
2

x +
2 + 3j
2i+4 .

(39)

Thus, for i, j and k fixed, it holds that Gm
(i,j,k) = (Fm

(i,j,k))
−1. For
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f = Fα1,1
(i,1,k) + Gα1,2

(i,1,k) + Fα2,1
(i,2,k) + Gα2,2

(i,2,k) + · · ·+ F
α2i+1,1

(i,2i+1,k) + G
α2i+1,2

(i,2i+1,k)

g = Fβ1,1
(i,1,k) + Gβ1,2

(i,1,k) + Fβ2,1
(i,2,k) + Gβ2,2

(i,2,k) + · · ·+ F
β2i+1,1

(i,2i+1,k) + G
β2i+1,2

(i,2i+1,k), it holds that f ◦ g =

Fα1,1+β1,1
(i,1,k) + Gα1,2+β1,2

(i,1,k) + Fα2,1+β2,1
(i,2,k) + Gα2,2+β2,2

(i,2,k) + · · ·+ F
α2i+1,1+β2i+1,1
(i,2i+1,k) + G

α2i+1,2+β2i+1,2
(i,2i+1,k) .

Thus, f ◦ g ∈ F. Therefore, H(i,j,k) is a subgroup of Thompson’s group. We are
done.

The following Theorem 3 proves that if the subgroup H(i,j,k) is endowed with the sum
defined for messages M(i,j,k), then it is a brace. Note that, if f , g ∈ H(i,j,k), then

f = Fα1,1
(i,1,k) + Gα1,2

(i,1,k) + Fα2,1
(i,2,k) + Gα2,2

(i,2,k) + · · ·+ F
α2i+1,1

(i,2i+1,k) + G
α2i+1,2

(i,2i+1,k)

g = Fβ1,1
(i,1,k) + Gβ1,2

(i,1,k) + Fβ2,1
(i,2,k) + Gβ2,2

(i,2,k) + · · ·+ F
β2i+1,1

(i,2i+1,k) + G
β2i+1,2

(i,2i+1,k), and

f + g = G
β2i+1,2

(i,2i+1,k) ◦ F
β2i+1,1

(i,2i+1,k) ◦ · · · ◦Gβ2,2
(i,2,k) ◦ Fβ2,1

(i,2,k)◦G
β1,2
(i,1,k) ◦ Fβ1,1

(i,1,k) ◦G
α2i+1,2

(i,2i+1,k) ◦ F
α2i+1,1

(i,2i+1,k) ◦
· · · ◦ Gα2,2

(i,2,k) ◦ Fα2,1
(i,2,k) ◦ Gα1,2

(i,1,k) ◦ Fα1,1
(i,1,k) ∈ H(i,j,k).

Theorem 3. For any i, k ≥ 1 fixed and 1 ≤ j ≤ 2i+1, it holds that (H(i,j,k), ◦,+) is a left brace.

Proof. Lemma 3 proves that (H(i,j,k), ◦) is a group. In particular, f + id[0,1] = f , for any
f ∈ H(i,j,k), i.e., id[0,1] = 0. f + (g + h) = ( f + g) + h, for any f , g, h ∈ H(i,j,k).

For j 6= j′, let DF
(i,(j,j′),k), DG

(i,(j,j′),k), and DFG
(i,(j,j′),k) be subsets of [0, 1] such that

DF
(i,(j,j′),k) = {x ∈ [0, 1] | F(i,j,k)(x) 6= x} ∩ {x ∈ [0, 1] | F(i,j′ ,k)(x) 6= x},

DG
(i,(j,j′),k) = {x ∈ [0, 1] | G(i,j,k)(x) 6= x} ∩ {x ∈ [0, 1] | G(i,j′ ,k)(x) 6= x},

DFG
(i,(j,j′),k) = {x ∈ [0, 1] | F(i,j,k)(x) 6= x} ∩ {x ∈ [0, 1] | G(i,j′ ,k)(x) 6= x}.

(40)

Since DF
(i,(j,j′),k) = DG

(i,(j,j′),k) = DFG
(i,(j,j′),k) = ∅, it holds that

F(i,j,k) ◦ F(i,j′ ,k) = F(i,j′ ,k) ◦ F(i,j,k),

G(i,j,k) ◦ G(i,j′ ,k) = G(i,j′ ,k) ◦ G(i,j,k),

F(i,j,k) ◦ G(i,j′ ,k) = G(i,j′ ,k) ◦ F(i,j,k),

F(i,j,k) ◦ G(i,j,k) = id[0,1],

G(i,j,k) ◦ F(i,j,k) = id[0,1].

(41)

Thus, for any f , g ∈ H(i,j,k), f + g = g + f . Moreover,

f ◦ (g + h) + f = f ◦ f ◦ h ◦ g,

f ◦ g + f ◦ h = f ◦ h ◦ f ◦ g = f ◦ f ◦ h ◦ g.
(42)

We are done.

The following elements of Thompson’s group F are examples of generators of the
subgroup H(1,j,1).

F(1,1,1)(x) =


x, if x ∈ [0, 1

8 ],
1
2 x + 1

16 , if x ∈ [ 1
8 , 1

4 ],
2x− 5

16 , if x ∈ [ 1
4 , 5

16 ],
x, if x ∈ [ 5

16 , 1].
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F(1,2,1)(x) =


x, if x ∈ [0, 5

16 ],
1
2 x + 5

32 , if x ∈ [ 5
16 , 7

16 ],
2x− 1

2 , if x ∈ [ 7
16 , 1

2 ],
x, if x ∈ [ 1

2 , 1].

F(1,3,1)(x) =


x, if x ∈ [0, 1

2 ],
1
2 x + 1

4 , if x ∈ [ 1
2 , 5

8 ],
2x− 11

16 , if x ∈ [ 5
8 , 11

16 ],
x, if x ∈ [ 11

16 , 1].

F(1,4,1)(x) =


x, if x ∈ [0, 11

16 ],
1
2 x + 11

32 , if x ∈ [ 11
16 , 13

16 ],
2x− 7

8 , if x ∈ [ 13
16 , 7

8 ],
x, if x ∈ [ 7

8 , 1].

G(1,1,1)(x) =


x, if x ∈ [0, 1

8 ],
2x− 1

8 , if x ∈ [ 1
8 , 3

16 ],
1
2 x + 5

32 , if x ∈ [ 3
16 , 1

4 ],
x, if x ∈ [ 1

4 , 1].

G(1,2,1)(x) =


x, if x ∈ [0, 5

16 ],
2x− 5

16 , if x ∈ [ 5
16 , 3

8 ],
1
2 x + 1

4 , if x ∈ [ 3
8 , 7

16 ],
x, if x ∈ [ 7

16 , 1].

G(1,3,1)(x) =


x, if x ∈ [0, 1

2 ],
2x− 1

2 , if x ∈ [ 1
2 , 9

16 ],
1
2 x + 11

32 , if x ∈ [ 9
16 , 5

8 ],
x, if x ∈ [ 5

8 , 1].

G(1,4,1)(x) =


x, if x ∈ [0, 11

16 ],
2x− 11

16 , if x ∈ [ 11
16 , 3

4 ],
1
2 x + 7

16 , if x ∈ [ 3
4 , 13

16 ],
x, if x ∈ [ 13

16 , 1].

4. Concluding Remarks

We defined Brauer configurations of type F(i,j,k), which induce reduced and inde-
composable Brauer configuration algebras. Specializations of the corresponding Brauer
messages give rise to braces associated with Thompson’s group F. Such braces allow
building non-degenerate involutive set-theoretical solutions of the YBE.

Future Work

The following are interesting tasks to carry out in the future:

1. To determine braces of type H(i,j,k) associated with Thompson’s groups of type T
and V.

2. To determine braces based on the Cayley graph of Thompson’s group, F, T, and V.
3. To give applications of the obtained results in graph energy theory, cryptography, and

coding theory.
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Abbreviations
The following abbreviations are used in this manuscript:

BCA Brauer configuration algebra
dimF ΛM Dimension of a Brauer configuration algebra
dimF Z(ΛM) Dimension of the center of a Brauer configuration algebra
F Field
M0 Set of vertices of a Brauer configuration M
M(P) Brauer message of a Brauer configuration P
tn nth triangular number
val(α) Valency of a vertex α

να val(α)µ(α)
w(Mi, fi) The word associated with a polygon (Mi, fi)

YBE Yang–Baxter equation
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