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Abstract: The paper is devoted to the theoretical analysis and numerical implementation of a mathe-
matical model of a nonlinear reaction–diffusion system on the COMSOL Multiphysics platform. The
applied problem of the computer simulation of polarization switching in thin ferroelectric films is
considered. The model is based on the Landau–Ginzburg–Devonshire–Khalatnikov thermodynamic
approach and formalized as an initial-boundary value problem for a semilinear parabolic partial
differential equation. The theoretical foundations of the model were explained. The user interface de-
sign application was developed with COMSOL Multiphysics. A series of computational experiments
was performed to study the ferroelectric hysteresis and temperature dependences of polarization on
the example of a ferroelectric barium titanate film.

Keywords: reaction–diffusion system; Landau–Ginzburg–Devonshire–Khalatnikov model; finite
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1. Introduction

Currently, in the theory and practice of mathematical modeling and computer simula-
tion, there is considerable interest in the study of reaction–diffusion processes. Equations of
the “reaction-diffusion” type are used to describe space–time structures in nonlinear media
of various natures. Examples of such applications can be cited in a wide variety of subject
areas: chemistry, biology, economics, ecology, physics, the theory of heat and mass transfer,
hydrodynamics, etc. [1–7].

So, for example, equations of the “reaction-diffusion” type have been used in problems
of environmental forecasting when modeling the spread of pollutants [3], describing the
processes of hemodynamics in large blood vessels in medicine [4], and modeling the behav-
ior of prices in European and Asian options (the Black–Scholes model) in economics [5].
The Barkley model and systems with the Belousov–Zhabotinsky reaction determine the
excitability and propagation of oscillations in biological media, Nagumo’s equation formal-
izes the propagation of nerve impulses [1,6], and the reaction–diffusion model is used for
description of oxygen transport in the brain [7].

The Fisher–Kolmogorov (or Kolmogorov–Petrovsky–Piskunov) equation has been
used to describe chemical reactions, genetic systems, and population dynamics. Reaction–
diffusion equations provide a fundamental basis for modeling many phenomena in physics
and biology [1,8–12]: for quantum mechanical calculations of the probability density func-
tions of particles (in the formulation of the Fokker–Planck, Kolmogorov, and Schrödinger
equations) [1,8], for modeling heat and mass transfer and transport mechanisms of charged
particles [2,9,11], for complex bacterial behavior [13], for simulation of electron beam in-
duced charging processes in polar dielectrics [12,14], etc. The deterministic approach leads
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to a fundamental description of the models of reaction–diffusion processes in the formula-
tion of boundary and initial-boundary value problems for partial differential equations of
parabolic type.

The Landau–Ginzburg model can also be referred to as the reaction–diffusion model,
which is used to describe a large class of nonlinear phenomena in multicomponent and
complex systems. For example, based on the Landau–Ginzburg equation, various aspects
of signal propagation in cardiac tissue, superconductivity, superfluidity, and nonlinear
optical systems have been described [15]. The model has also been applied to describe the
processes in the physics of lasers, liquid crystals, and hydrodynamics, in quantum field
theory [16].

In a series of works [17–26], the application of the Landau–Ginzburg model for
studying the properties of ferroelectrics, modeling ferroelectric polarization switching,
and hysteresis loops, has been considered in the framework of the Landau–Ginzburg–
Devonshire ferroelectric theory. Mathematically, the space–time distribution of polarization
can be described based on the Landau–Ginzburg–Devonshire–Khalatnikov thermodynamic
model [17–19] in the formulation of the initial-boundary value problem for a partial differ-
ential equation of the “reaction-diffusion” type [21,22]. However, in practice, the problem
can be simplified by reducing it to the initial value problem for an ordinary differential
equation [25] or a boundary value problem for the ODE of second order [26]. In the first
case, the spatial distribution of polarization in the volume of the sample and surface effects
are not taken into account, which is crucial for low-dimensional structures. On the other
hand, the use of a second order ODE provides the dependence of polarization on the
coordinate, but assumes a stationary regime. The time dependence of the polarization-field
is introduced artificially, assuming that the polarization has time to relax to the equilibrium
state, which in the general case can be a rough approximation.

In the authors’ works [22–24], the numerical aspects of the implementation of the 1D
model of polarization switching have been considered; computer simulation of ferroelectric
hysteresis has been performed based on the approaches of classical thermodynamic theory.
A theoretical analysis of the model has been performed in [24], in which the existence
and uniqueness of a weak solution to the initial-boundary value problem for the Landau–
Khalatnikov equation has been established.

In the general case, the construction of analytical solutions for solving reaction–
diffusion physical problems is associated with some serious difficulties, and practically,
numerical methods and computing techniques are widely used. Recently, the finite element
method has become increasingly popular among numerical methods for solving problems
of mathematical physics. There is a wide range of software for the analysis of processes
and phenomena based on the finite element approach. The functionality of specialized
software products allows one to solve applied problems formalized by equations of the
reaction–diffusion type. One of the effective platforms for the numerical implementation of
this class of problems is represented by the COMSOL Multiphysics software. COMSOL
Multiphysics is also a finite element-oriented modeling system. Using COMSOL tools,
one can perform computer simulations of difficult-to-formalize systems and predict the
characteristics of the analyzed processes.

The ultimate goal of the present study is to perform computer-assisted mathematical
modeling of the polarization switching process as a nonlinear reaction–diffusion physical
system using the tools of the COMSOL Multiphysics platform. Computational experiments,
in particular, the study of the temperature dependence of hysteresis loops, are conducted
dependent, for example, on studies of thin films of barium titanate. The important contribu-
tions of this work to the field are presented by the development of the mathematical basis
and computational techniques for the implementation of the time-dependent cubic-quintic
Landau–Khalatnikov model.

The rest of the paper is organized as follows. In Section 2 we introduce the governing
equation of the reaction–diffusion Landau–Khalatnikov model for first-order phase transi-
tion ferroelectrics. Section 3 is devoted to the mathematical basis for the initial-boundary
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value problem for the generalized Landau–Khalatnikov model, namely, the existence and
uniqueness of the solution of the considered problem. Section 4 looks at the key steps of
computer implementation of the model using COMSOL Multiphysics techniques. The
results of numerical experiments and discussion are presented in Section 5. The user
interface for scientific computing designed by COMSOL is described in Section 6. Section 7
contains concluding remarks.

2. Mathematical Model

Let us introduce into consideration the mathematical problem statement of the ferro-
electric polarization model based on the Landau–Ginzburg–Devonshire thermodynamic
theory. In the case of switching, polarization is realized along with one of its components
and induced by an applied electric field, the mathematical model can be expressed as a
two-dimensional (concerning spatial coordinates) initial-boundary value problem for the
nonstationary Landau–Ginzburg–Devonshire–Khalatnikov equation:

∂P
∂t

= D∆P + aP + bP3 − cP5 + E(t), 0 < x < l, 0 < y < l, 0 < t ≤ θ, (1)

P|t=0 = P0(x, y), 0 < x < l, 0 < y < l, (2)

∂P
∂n

∣∣∣∣
Γ
= −P

λ
, 0 < t ≤ θ, (3)

where P(x,y,t) is the space–time distribution of the polarization in C/m2; n is the outward
normal vector to the boundary; Γ is the boundary of the domain (0, l) × (0, l); λ is the
extrapolation length in m; D is the thermodynamic parameter in m2/s that makes sense of
the combination of the gradient coefficient and the restoring force with sense and dimension
of diffusion coefficient; a = −A/δ, b = −B/δ, and c = C/δ are the positive constants; A, B,
and C are the thermodynamic parameters depending on temperature T; δ is the kinetic
coefficient in m×s/F; θ is the observation time in s; E(t) = E(t)ν/δ, and E(t) is the applied
electric field in V/m; and ν is the scaling factor.

To obtain dielectric hysteresis loops, the field is defined to be periodic. To be pre-
cise, we assume that polarization reversal is observed under the action of the sinusoidal
electric field:

E(t) = E0x sin(ωt) (4)

where E0x is the amplitude of the electric field intensity in V/m; ω = 2π f is the radial
frequency of the applied field in rad/s; and f is the frequency of field oscillations in Hz.

Note that, Equation (1) can be classified as a semilinear (cubic-quintic) time-dependent
equation of the reaction–diffusion type. Relation (1) is suitable for ferroelectrics with the
first order of phase transition and it can be reduced to the cubic partial differential equation
for ferroelectrics with the second order phase transition taking into account the sign of the
coefficient B < 0.

3. Theoretical Justification of the Mathematical Model

Following [24], where a similar one-dimensional model has been considered, we trans-
form problems (1)–(3) into the Cauchy problem for an equation with an operator coefficient.

Let us assume that Ω = (0, l) × (0, l) is a bounded Lipschitz domain, Γ = ∂Ω,
Q = Ω× (0, θ). Here we denote the Lebesgue space by Lp, 1 ≤ p ≤ ∞ (the space of
p-integrable functions essentially bounded if p = ∞) and by Hs the Sobolev space of Ws

2 .
We set H = L2(Ω), V = H1(Ω). By V′ we denote the dual space of V, V ⊂ H = H′ ⊂ V′.
By Ls(0, θ; X), s ≥ 1, we denote the space of p-integrable on (0, θ) functions assuming val-
ues in a Banach space X. Accordingly, by C([0, θ]; X) we denote to the space of continuous
on functions assuming values in a Banach space X.
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Let us define the operator F : V → V′ that

(FP, v) = D
∫
Ω

∇P∇vdxdy +
D
λ

∫
Γ

PvdΓ, ∀ P, v ∈ V

Further we multiply Equation (1) by the test function v ∈ V, then integrate over
Ω, using Green’s formula for the first term on the right side and taking into account the
boundary condition (3). As a result, we obtain a weak formulation of the initial-boundary
value problems (1)–(3) in the form of the following Cauchy problem for an ordinary
differential equation with an operator coefficient.

Cauchy problem. Find a function P ∈ Ls(0, θ; V) such that

P′ + FP = aP + bP3 − cP5 + E(t) a.e. on (0, θ), P|t=0 = P0 (5)

It is easy to establish that if a weak solution (namely, solution to problem (5)) is smooth
enough, then it will be a classical solution to the initial boundary-value problems (1)–(3).

The proof of the solvability of problem (5) can be carried out by the Galerkin method
similarly to the case of the initial-boundary value problem with the homogeneous Dirichlet
conditions ([27], Th. 1.1), [24]. The presence of the quantic term in the right-hand side of (1)
allows us to obtain the necessary a priori estimates of the Galerkin approximations and
prove the following result.

Theorem 1. For P0 ∈ H, E ∈ L2(Q), there exists a unique solution P of (5) such that

P ∈ C([0, θ]; V) ∩ L6(Q), P′ ∈ L2(0, θ; V′
)
+ L6/5(Q).

4. Computational Details of the Model Implementation

The computational process corresponding to the model implementation can be visual-
ized using the functional diagram shown in Figure 1.
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Figure 1. Functional block diagram of the model implementation.

To solve the initial-boundary value problem defined by (1)–(4), we use the COMSOL
Multiphysics v5.0 platform. COMSOL is a software environment for simulation of a wide
range of applied problems, which can be formalized by differential equations or systems
of differential equations. Practical advantages of COMSOL Multiphysics are mostly the
well-structured interface as well as user-friendly tools for model implementations. The
finite element method is the main numerical method used in this software [28,29].
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In this package, we can simulate both a separate process and related processes, taking
into account the relationships between the quantities included in different equations of
the mathematical model. The COMSOL platform is quite effective in computer modeling
due to a joint interface and the integration of all model building processes in a convenient
and visual environment. Regardless of the statement and complexity of the problem, the
same functions and settings are used to initialize the model parameters. Furthermore, the
platform tools are used to set and calculate custom systems of equations when solving
non-standard problems that do not have a ready-made physical interface.

To solve the problem, we used the universal mathematical PDE (partial differential
equation) interface of the COMSOL Multiphysics-based platform, which is not associ-
ated with any particular physics, namely, the coefficient form PDE (the coefficient form
of the mathematical notation of the boundary value problem for PDE). The algorithm
for the computer implementation of models (1)–(4) in the PDE interface consists of the
following steps.

1. Setting the model parameters, which means defining the dimensions of the model
and the regime of the study.

2. Defining and building the model geometry.
3. Setting the parameters of the model and variables, setting the initial and bound-

ary conditions, and determining the source function according to the mathematical
formulation of the problem.

4. Generation of a finite element mesh and splitting the solution domain into simple
elements.

5. Setting the solver settings, solving, and modifying the problem.
6. Visualization and post-processing of the obtained results.

5. Implementation of the Model on the COMSOL Multiphysics Platform

Further, let us perform the implementation of the physical and mathematical model
given by (1)–(4) using COMSOL Multiphysics. A series of computational experiments was
carried out to study polarization switching in thin ferroelectric films.

Thin films of a typical barium titanate (BaTiO3) ferroelectric were chosen as model
objects. Barium titanate is a biaxial ferroelectric; nevertheless, the introduced approach
and the geometry of the model make it possible to estimate the main characteristics of the
polarization switching in c-domains. A simplified scheme of polarization reversal processes
in the c-domains of a barium titanate ferroelectric sample under external field applied
along the corresponding polar axis is demonstrated in Figure 2.
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To perform calculations, we initialize the constants and physical parameters of models
(1) – (4), a complete list of which is presented in Table 1 (see [19,30] and references therein).
The solution of the initial-boundary problem is presented by the space–time distribution of
the polarization P(x,y,t) in the computational domain.
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Table 1. Model parameters.

Parameter Unit Value

Sample linear size, l m 50 × 10−9

Extrapolation length, λ m 88 × 10−9

Diffusion coefficient, D m2/s 10−11

A/2 m/F 3.34 × (T − 381) × 105

B/4 m5/(C2×F) (3.6 × (T − 448) − 202) × 106

C/6 m9/(C4×F) (−5.52 × (T − 393) + 276) × 107

Kinetic coefficient, δ m×s/F 0.5 × 104

Temperature, T K 293
Amplitude of the electric filed, E0x V/m 3 × 106–6 × 106

Frequency of field oscillations, f Hz 100
Observation time, θ s 0.015

Application of a sinusoidal field along one of the polarization components results in a
periodic change in polarization. The polarization–electric field dependence P(E) is defined
as the time function of the average polarization over the sample area on the applied field.
In this way, we can visualize hysteresis loops under variations of control model parameters
such as simple thickness l, temperature T, frequency f, the amplitude of the electric field
E0x, etc. In general, the hysteresis loop under given thermodynamic conditions enables one
to estimate important characteristics of polarization reversal processes such as the coercive
field, remanent polarization, and spontaneous polarization.

The results of computations of the polarization–electric field dependence under varia-
tion of the simple thickness of the BaTiO3 film l are shown in Figure 3. These computational
experiments indicate a significant dependence of the shape of the hysteresis loop on the
linear size of the thin film.
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Figure 3. The polarization–electric field dependences under variation of thickness of the film:
(a) l = 50 nm, (b) l = 20 nm.

If the thickness of BaTiO3 films is smaller than 50 nm, the size effects of the hysteresis
phenomenon can be observed. In this case, a decrease in the film thickness leads to
deformation of the hysteresis loop with its subsequent disappearance.

Figure 4 illustrates the results of computer simulations of space–time distributions of
polarization in BaTiO3 films calculated at different values of sample thickness, in particular
at l = 0.1 µm and l = 10 nm.
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Figure 4. The space–time distributions of polarization in BaTiO3 films computed at (a) l = 0.1 µm and
(b) l = 10 nm.

These graphs show the temporal dynamics of polarization distribution through the
sample thickness calculated at the fixed value of temperature T = 293 K. It can be noted
that the profile of temporal dependence of polarization is smeared out as the film thickness
decreases. At a thickness of more than 100 nm, the shape is close to rectangular, but at
thicknesses close to critical, it turns out to be significantly deformed and smoothed.

Here we can claim that the critical value of the film thickness is going to be 3–4 nm,
below which the loop disappears. These findings obtained by computer simulations are
consistent with the data obtained by the independent authors in [26] for the barium titanate
nanowire. To estimate the hysteresis loops, a stationary analogue of the Landau–Ginzburg
model in the formulation of the boundary value problem for an ordinary differential
equation has been applied in [26].

The next interesting study, which can be performed with COMSOL Multiphysics,
should be exploring polarization–electric field hysteresis dependence under variation of
temperature. By inductive assumption, let us suppose that temperature is varied in the
ferroelectric phase range. As a consequence, changes in temperature result in changes in
the values of the corresponding thermodynamic parameters (see Table 1).

The results of computational experiments for BaTiO3 films with a sample thickness
l = 50 nm are shown in Figure 5.

It can be noted that an increase in temperature leads to deformation and narrowing of
the hysteresis loop, followed by its disappearance. The obtained results are consistent with
studies of the temperature by polarization by the authors of the work [31].

Since both the temperature and the thickness of the ferroelectric sample are important
to control parameters of the model, let us present the results of calculations of the temper-
ature dependences of the remanent polarization Pr (polarization values at zero applied
field) and the coercive field Ec (the electric field at which the macroscopic polarization
disappears) in BaTiO3 for different values of the sample thickness l. These dependences are
approximately estimated with the use of calculated hysteresis loops and listed in Table 2. It
should be pointed out that within the framework of this study, we do not aim to directly
compare the simulation data with the experimental data. Nevertheless, the qualitative
control characteristics of the model correspond to the experimental data. The experimental
values of remanent polarization for a barium titanate single crystal approximately vary over
the range Pr = 0.23 ÷ 0.3 C/m2 and the coercive field is evaluated as Ec = 1 ÷ 2 105 V/m at
room temperature [19].
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Table 2. The remanent polarization Pr and the coercive field Ec under variation of sample thickness.

Sample Linear
Size, l (nm)

Temperature, T (K)

293 353

Pr, C/m2 Ec, V/m Pr, C/m2 Ec, V/m

1 0.0002 2.50 × 104 16 × 10−5 1.85 × 104

5 0.008 1.35 × 105 0.005 1.10 × 105

10 0.14 5.57 × 105 0.03 2.55 × 105

20 0.2 1.25 × 106 0.1 5.51 × 105

50 0.22 1.65 × 106 0.15 0.85 × 106

100 0.23 1.90 × 106 0.155 0.98 × 106

300 0.235 1.93 × 106 0.158 1.05 × 106

The results of calculations indicate that the value of the remanent polarization de-
creases with increasing temperature. In this case, the hysteresis loops become narrower
and smaller. The loop deformation rate increases as the linear size of the film reaches a
critical value.

Strictly speaking, the considered model can be classified as a quasi-two-dimensional
model, since for multiaxial crystals it is necessary to take into account the expansion of
the thermodynamic potential into the corresponding polarization components. Therefore,
further development of the study will be focused on solving this applied problem in view
of the specific configuration of the domain structure and the component representation of
the polarization vector for a multiaxial crystal.
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6. Developing User Interface Design Application for Mathematical Model with
COMSOL Multiphysics

In order to make using COMSOL-oriented simulation more visual and convenient,
a user interface application was developed with the tools provided by COMSOL Multi-
physics. The application is based on a described mathematical model built on COMSOL
and implemented by the finite element method. The user interface application is designed
so that the user can analyze any model without spending a lot of time learning the program.
COMSOL applications are specialized modeling tools that contain all the functionality of a
model built in Model Builder mode but hide unnecessary information from the user.

The Application Builder is included with the core COMSOL Multiphysics platform
and is accessible from the COMSOL Desktop GUI in Application Builder mode [32]. The
Application Builder environment allows researchers to create ready-to-use intuitive user
interfaces for their numerical models. The user of such an application operates only with
the input data and meaningful results of the simulation, which does not require him to have
a priori knowledge of the underlying model. The application development environment
allows you to extend applications with user interfaces based on your models. Such a user
interface may be a simplified version of the model, or it may contain parts of the input and
output fields that need to be made available to the user.

The application with the user interface shown in Figure 6 was created using a form
editor that does not require programming.
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Figure 6. The general view of the user interface application for graphical representation of
polarization–electric field dependencies.

The main control parameters of the model are placed on the main form of the applica-
tion: sample thickness, temperature, thermodynamic constants, and diffusion coefficient.
In the application run mode, the user can change the values of the parameters that define
the model, and see the output of graphical results of the dependence of the polarization on
the electric field by varying the values of the parameters. There are two function buttons on
the main working screen of the application: Compute and Plot. Compute starts the process
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of calculating the base model after changing the initial data. The Plot command allows us
to display a graphical result after entering new values for the model parameters.

7. Conclusions

The complexity of the mathematical problem statements for reaction–diffusion models
necessitates the use of finite element analysis software for their computer implementation.
Specifically, the COMSOL Multiphysics platform provides effective tools for implementing
mathematical models of nonlinear and semilinear reaction–diffusion processes which can
be formalized by initial-boundary or/and boundary value problems. The finite-element
simulation with COMSOL allows a researcher to avoid routine procedures for programming
numerical algorithms.

In the present study, we consider the implementation of the Landau–Ginzburg–
Devonshire–Khalatnikov thermodynamic model as an applied problem in the COMSOL
environment. The considered model describes the process of polarization switching in
ferroelectrics under an applied electric field. The mathematical model was formalized as
a semilinear initial-boundary value problem and solved using the finite element method.
The brief theoretical foundations for the analysis of the model were described. The ob-
tained finding provides the theoretical basis for the numerical implementation of the
thermodynamics model.

In addition, the user interface design application was developed in COMSOL Multi-
physics in order to conduct computer simulation of the hysteresis loops of ferroelectrics
under variation of control modeling parameters. Based on the computer implementation of
the model, a series of computational experiments were carried out on thin films of a typical
ferroelectric material made of barium titanate. The calculations allowed us to visualize
the size effects of the polarization characteristics observed by independent authors. The
computations of thickness- and temperature-dependent ferroelectric hysteresis loops of
BaTiO3 were examined. Our results indicate that a decrease in the film thickness leads to
deformation of the hysteresis loop with its subsequent disappearance. The critical value of
the film thickness is estimated to be 3–4 nm, below which the loop disappears.

The results of computer simulations of polarization–electric field dependencies under
variation of temperature suggest that the maximum polarization value decreases with an
increase in temperature followed by the complete disappearance of the hysteresis loop.
Finally, additional studies are necessary to solve the applied problem in view of the specific
configuration of the domain structure and the component representation of the polarization
in the case of multiaxial crystals.
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