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Abstract: Early detection of diseases is vital for patient recovery. This article explains the design
and technical matters of a computer-supported diagnostic system for eye melanoma detection
implementing a security approach using chaotic-based encryption to guarantee communication
security. The system is intended to provide a diagnosis; it can be applied in a cooperative environment
for hospitals or telemedicine and can be extended to detect other types of eye diseases. The introduced
method has been tested to assess the secret key, sensitivity, histogram, correlation, Number of
Pixel Change Rate (NPCR), Unified Averaged Changed Intensity (UACI), and information entropy
analysis. The main contribution is to offer a proposal for a diagnostic aid system for uveal melanoma.
Considering the average values for 145 processed images, the results show that near-maximum
NPCR values of 0.996 are obtained along with near-safe UACI values of 0.296 and high entropy of
7.954 for the ciphered images. The presented design demonstrates an encryption technique based
on chaotic attractors for image transfer through the network. In this article, important theoretical
considerations for implementing this system are provided, the requirements and architecture of the
system are explained, and the stages in which the diagnosis is carries out are described. Finally, the
encryption process is explained and the results and conclusions are presented.

Keywords: chaotic attractors; computer vision; disease diagnosis; encryption; computer-assisted
diagnosis; convolutional neural networks

1. Introduction

Computer assistance in providing disease diagnoses has a broad range of applications,
and the development of tools that help to reach this end is of paramount significance.
Computer-Assisted Diagnosis (CAD) has been applied in many different contexts, includ-
ing Digital Imaging and Communications in Medicine (DICOM); in this regard, a web
application for disease diagnosis through a browser is shown in [1]. Other examples of
medical images transmission can be found in [2,3]. In [4], the authors evaluated a fuzzy
clustering algorithm for breast cancer detection, while [5] illustrates developments in the
detection of diabetic retinopathy involving computer-aided diagnostic systems.

In Colombia, as well as in other parts of the world, access to an ophthalmologist
entails several appointments and procedures, which usually lead to long waits. For this
reason, it is essential to create tools to aid in timely diagnosis in order to provide adequate
treatment. In [6], the authors proposed a telemedicine system to diagnose stomach diseases.
Issues with developing computer-aided diagnosis systems (CADS) have been studied
in [7], where the authors explained a new model along with several fundamental CADS
techniques. Cloud Computing (CC), TensorFlow (TF), and Django are used as support for
the construction of such systems. CC supports the storage and access of information of
interest for different parties, while TF (created by Google under an open-source Apache 2.0
license [8]) provides an interface for building and running machine learning algorithms to
use and run eye disease prediction models.
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Regarding computer-assisted diagnosis, reference [9] presents a diagnostic system for
schizophrenia using effective connectivity of resting-state electroencephalogram (EEG) data,
while [10] studies the practicality of deep learning algorithms applied to chest X-ray images
for COVID-19 detection. In [11], the authors presented a COVID-19 prediction applying
supervised machine learning algorithms using the Waikato Environment for Knowledge
Analysis (WEKA), which is an open-source software developed at the University of Waikato
in New Zealand. Lastly, reference [12] proposed a system for detection of cancer cells using
commercially automated microscope-based screeners. Employing supervised machine
learning, the authors developed software capable of classifying Feulgen-stained nuclei
within eight diagnostically important types.

Regarding eye image processing (classification), in [13], the authors described the
implementation of a framework for healthy and diabetic retinopathy retinal image recogni-
tion. In [14], the authors presented a framework for eye tracking calibration where features
extracted from the synthetic eyes dataset are used in a fully connected network to isolate the
effect of a specific user’s features. Their work was oriented towards the design of low-cost
eye-tracking systems. In [15], the authors performed an Image Quality Assessment (IQA)
of eye fundus images in the context of digital fundoscopy with Topological Data Analysis
(TDA) and machine learning methods. IQA is a fundamental step in digital fundoscopy
for clinical applications, and is considered one of the first steps in the preprocessing stages
of Computer-Aided Diagnosis (CAD) systems using eye fundus images. Their research
employed cubical complexes to represent the images; the grayscale version was then used
to calculate a homology illustrated with persistence diagrams and thirty vectorized topo-
logical descriptors were calculated from each image for use as input to a classification
algorithm. Finally, Diabetic Retinopathy (DR) is a disease that is one of the main causes
of blindness around the world. Therefore, reference [16] employed retinal fundus images
as diagnostic tools to screen abnormalities associated with eye diseases. In this regard,
article [16] proposed an algorithm to segment and detect hemorrhages in retinal fundus
images. The method they described performs preprocessing on retinal fundus images by
utilizing a windowing-based adaptive threshold to segment hemorrhages. In this way,
conventional features are extracted for each candidate and classified using a support vector
machine.

In regards to research related to image encryption based on chaos, developed ap-
proaches include specially fractional-order chaotic systems, which exhibit more complex
dynamics than integer-order chaotic systems. In [17], a fractional-order memristor was
developed, analyzed, and electronically implemented. In this order, a three-dimensional
(3D) fractional-order memristive chaotic system with a single unstable equilibrium point
was proposed for use in an encryption system applied to grayscale images. Other related
research was presented in [18], where the authors proposed using a chaotic oscillator
without linear terms as a random number generator for application in biomedical image
encryption. They demonstrated the physical realization of the oscillator and carried out
a security and performance analysis. In [19], an oscillator with chaotic dynamics was
presented and various properties of the oscillator, such as bifurcations, equilibria, and
Lyapunov exponents, were studied in order to show the existence of chaotic dynamics (as
the oscillator has a chaotic attractor). Using the features of the chaotic oscillator, a method
for generating pseudo-random numbers was presented in the context of designing secure
substitution boxes applied to an image cryptosystem. In this same orientation, in [20] the
authors developed, analyzed, tested, and electronically implemented a 4D fractional-order
memcapacitor that observed the nonlinear dynamic properties of a hyperchaotic system.
On this basis, they proposed an encryption algorithm for color encryption based on the
system’s chaotic behavior in which every pixel value of the original image is incorporated
into the secret key to strengthen the encryption algorithm. A related work was presented
in [21] involving a hyperchaotic 4D fractional discrete Hopfield neural network system.
The chaotic dynamics features were analyzed and the chaotic system was used as a pseudo-
random number generator for an image encryption scheme based on a fractal-like model
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scrambling method. This approach was able to enhance the complexity and security of the
encryption algorithm. Finally, in [22], a chaotic oscillator was presented in which the chaotic
dynamics were pre-located around manifolds. After analyzing the complex dynamics of
the oscillator, this approach was employed in the design of an image cryptosystem, and the
results of the cryptosystem were tested while considering different metrics.

The present study proposes a system for computer-aided diagnosis, detection, and
classification of eye diseases using chaotic-based encryption for image transmission. The
proposal is based on the previous works in [23,24] for image encryption and [25,26] for
image diagnostics.

Regarding differences with other related works, references [9–12] display various
applications in computer-assisted diagnosis that are not applicable to eye image diagnosis;
while [13–16] are focused specifically on eye image processing and classification. Regarding
image encryption methods based on chaotic attractors, references [17–22] each describe sev-
eral different developments, while [18] considers the encryption of medical images and [22]
is concerned with Internet of Things (IoT) applications for remote diagnosis. The novelty
of the present work is in its integration of an identification system for Uveal melanoma
with an encryption mechanism in order to obtain a computer-assisted diagnosis system
that can help professionals in improving the diagnostic process. As such, a computer-aided
diagnosis system is presented here that integrates an image processing (classification)
system based on a convolutional neural network and a mechanism for image transmission
using an encryption method based on a chaotic attractor.

The rest of this paper is constructed as follows. Section 2 displays the design of
the proposed system. Section 3 specifies the encryption framework and reviews the
chaotic Lorenz attractor and its relevant properties for encryption. Section 4 presents
the implementation results for the encryption system. Finally, Sections 5 and 6 respectively
present the discussion and conclusions.

2. Proposed Diagnosis and Encryption System

This section presents the system architecture and the process used to diagnose the
graphic user interface, then explains the system operation employing Convolutional Neural
Network (CNN).

The structure of the application is similar to the one proposed in [27] divided into
three layers: presentation, domain logic, and data access. The presentation layer comprises
the patient and doctor user interfaces and all actions that a user can carry out. The domain
logic contains the business module and the process of transferring and ciphering images
over the network; this frame uses the data access layer, which stores the data the systems
need to operate. Figure 1 shows a graphic of the doctor user interface (presentation
layer), providing an example of a result after diagnosis. The specialist interface provides
a diagnostic from all the eye images received. Contiguous to each eye, there is a textbox
where the specialist can formulate the diagnostic; additionally, it offers options to run the
automatic CNN diagnostic model. A button to send the diagnostic is provided. When
clicking on the image of the eye, the specialist performs the operations described in Table 1.
This interface has a responsive design, allowing it to be used from a smartphone.

The system allows different operations to be executed on the eye; these are shown in
Table 1. These operations are aimed at modifying eye the image according to user needs,
for instance, zooming in on a particular region or removing noise.
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Figure 1. Specialist’s interface with different diagnostic options.

Table 1. Operations that the specialist carries out on the images. These operations allow the doctor to
perform a more reliable diagnostic.

Operation Description

Grayscale transformation Conversion of the I[x, y, z] color image to grayscale O1[x, y]
to reduce noise and improve the performance of the follow-
ing stages. The conversion of a color image to a grayscale
image consists of converting RGB values (24 bits) to gray-
scale values (8 bits).

Apply median filter This process is performed to apply smoothing, which is
achieved by sliding a window over the image, thus sup-
pressing the higher frequencies. It can be seen as a change
of the brightness of the input image.

Apply thresholding For the present project, this utilizes mean adaptive thresh-
olding and Gaussian adaptive thresholding to clearly define
the borders. The main objective of this step is to provide
better definition of the edges.

Dilate the image By applying a morphological operation to reduce noise, di-
lation allows objects to be expanded, thus potentially filling
small holes, in this case reducing pepper noise.

Rotation The image is rotated at a predefined or random angle. In the
case of the iris, 360 different rotations can be performed.

Zooming This technique creates new versions of an image with dif-
ferent zoom views, in many cases focusing on the region
of interest. The resulting images are enlarged or reduced
according to a predefined range.

The user takes a picture of the eye and sends it using the application; this image is
saved in the server through a request, then the specialist receives this photo and writes
a diagnosis. This process can be seen in Figure 2. Before transmitting over the network,
images are ciphered using chaotic encryption to maintain privacy. The Diffie–Hellman
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algorithm shares the initialization conditions for ciphering and deciphering the server and
the client.

Figure 2. Model explaining communication between the patient and specialist. The patient can send
images through their cellphone or computer.

Diagnostic Using Deep Convolutional Neural Network

For implementing the layer corresponding to the diagnostic, preliminary tests were
conducted recognizing fuzzy systems neural networks and neuro-fuzzy systems as shown
in [25,26]. However, better results are attained utilizing convolutional neural networks.
Thus, the diagnostic system employs a famous pre-trained model, Resnet18, which recog-
nizes abnormalities with an accuracy of 99%. Figure 3 presents the Resnet18 architecture.

In order to train the CNN, a data augmentation process was employed obtaining
a dataset of 2048 figures, consisting of 1024 healthy and 1024 unhealthy. The original
database is taken from [28], consisting of images of 150 healthy and 33 unhealthy patients.
Additional details related to the design and training of the CNN can be found in [29].
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Figure 3. Resnet18 architecture.

The model trained with the Resnet18 architecture receives an image (iris image) and
produces a value corresponding to the classification; in addition, there is a second model
that produces a bounding box with the location of the detected abnormality. The model
is used when the specialist clicks the “Use AI to Diagnose” button. In [29], different
convolutional neural networks (CNNs) were used to detect ocular abnormalities with an
illustrative case of uveal melanoma (UM), a type of ocular cancer. Thus, this work is a
complement to that research, seeking to implement a CAD.

Resnet is a well-known convolutional neural network architecture that allows the
training of hundreds or thousands of layers and achieves excellent performance. The
biggest advantage of Resnet is its ability to reduce the vanishing gradient problem [30].
Before Resnet, a deep network was hard to train, as the gradients need to back-propagate
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through an enormous number of layers in a deep network, which makes the gradient
infinitely small. Resnet has solved this problem, as it can skip the backwards connections
between layers and create identity shortcuts in the gradients’ path, that allows the gradients
to flow faster to the initial layer [31].

The model was trained with a cross-entropy loss function to minimize the distance
between predicted and ground-truth probabilities. This is defined in Equation (1), where pi
and qi are the ground-truth and predicted probability, respectively. The loss function was
minimized utilizing the Adam optimization algorithm, as it is computationally efficient
and works well with noisy or sparse gradient problems.

L = −
N

∑
i=1

pi log(qi) (1)

3. Security Techniques

This section reviews the chaotic Lorenz attractor and its relevant properties for encryp-
tion, and describes notable security techniques.

Privacy is essential for systems that hold patient information, and is indispensable in
speeding up the diagnostic process. Various techniques have been introduced, including
data encryption standard (DES), Rivest–Shamir–Adleman (RSA), and chaos, among others.
Chaos provides high sensitivity to initial conditions and unpredictability. For instance, ref-
erence [32] used chaotic Arnold Maps (AM) to randomize the original position of the pixels,
causing the image to become noisy. In [33,34], the authors proposed a system for encrypting
color using the advantage of chaotic maps. The idea behind these maps is to distribute the
pixels with a transformation such that the correlation of adjacent pixels can be reduced.
Using compression and security features, this scheme can be applied in public networks.
In [35], a feasible system for image encryption was presented using techniques applicable
for real-time image transmission and encryption. However, applications in medical image
transfer are relatively scarce; one of the few that has been found is the use of Arnold maps
for the diffusion stage in a system that allows the encoding of pixels of biometric data [36].
This system uses a chaotic Chen system to change the statistical properties and resist attacks
of the same type, achieving a robust system capable of resisting brute force attacks and
thus demonstrating that this system is applicable for the transmission of biometric data
over open and shared networks. However, AM is not sufficient to protect against statistical
attacks. This is why a second phase of encryption is needed using Lorenz’ system, as used
in different works such as [37,38]. The Lorenz system is a model of thermally induced fluid
convection in the atmosphere, which has properties that make it ideal for ciphering images.
It is defined by the following set of equations:

x1 = a(x2 − x1) (2)

x2 = cx1 + x2 − x1x3 − x4 (3)

x3 = x1x2 − bx3 (4)

x4 = kx2x3 (5)

Figure 4 shows the Lorenz system for x1, x2, and x3, with initial conditions x1 = 2.7,
x2 = 1.3, x3 = −1.7, and x4 = −5.

Equations (2)–(5) correspond to the 4D hyperchaotic Lorenz system, where a, b, c, k > 0
are the control parameters. Using suitable values can obtain the desired chaotic behavior.
In this work, we employ the encryption scheme presented in [23] that utilizes this Lorenz
model. In addition, we consider [24], where the 3D Lorenz classical model is used for iris
image encryption.
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Figure 4. Lorenz system with initial conditions x1 = 2.7, x2 = 1.3, x3 = −1.7, and x4 = −5. Plot of
x1, x2, and x3.

Encryption Process

The introduced encryption algorithm uses RGB images of the eye and bases its oper-
ation on two means, permutation and diffusion; the first is performed through Arnold’s
chaotic map, while the second is accomplished through the numerical solutions 4th of
Lorenz’s system generated by Runge Kutta. In the permutation phase, each pixel is re-
positioned with one-to-one correspondence, i.e., all pixels composing the permuted image
correspond to the group of pixels of the original image, making it possible to recover the
actual image without any distortion. Different techniques can be applied in this situation;
Arnold’s Chaotic Map provides easy and efficient implementation and shows consistent
results in terms of the metric used to establish how much the pixels have moved from the
original position [39].

To describe the encryption process, the width w and height of the image h are obtained,
and three arrays arrr, arrg, and arrb of cardinality w × h + δ are generated with values
obtained from the Lorenz map using R4. The value δ is a natural number representing the
amount of iterations required for the values of x1, x2, x3, and x4 to enter the chaotic system.

Figure 5 illustrates the image ciphering process and Figure 6 is a subset of images
of the CASIA dataset used to perform statistical analysis. First, the image histogram is
observed without carrying out the encryption process. Later, the respective encryption
allows for observation of cases in which image transmission is susceptible to a “digital
attack”. In this context, a “digital attack” attempts to reconstruct the transmitted image
without authorization.

Figure 5. Image with an abnormality in the bottom right part of the iris (image used for testing).
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Figure 6. Subset of images from the CASIA Iris dataset used to perform statistical analysis of the
proposed ciphering scheme.

The more uniform the histograms are, the more secure the ciphering is against statisti-
cal attacks; the histograms of the real image can be seen in Figure 7a–c. If permutation is
not carried out, it is feasible that an attacker could gain insights into the original image.

An example of a process of ciphering without using permutation is presented in
Figure 8. it can be seen that the ciphering process without a permutation procedure causes
the circular structure of the iris to be somewhat recognizable.
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Figure 7. Histograms for RGB channels of the original image (Figure 5): (a) red image histogram,
(b) green image histogram, (c) blue image histogram.

Figure 8. Ciphering process without a permutation process causes the circular structure of the iris to
be recognizable.
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The patterns displayed in the images permuted with Arnold’s map are based on the
number of iterations. For instance, Figure 9 shows the images in Figure 6, and with these
results Figure 10 displays the diffused images with Lorenz.

Figure 9. Nine of the ciphered images after Arnold’s map.

Figure 10. Nine ciphered images with Lorenz’ attractor and Arnold’s map.

4. Results

A simulated example of a diagnosis carried out over two eyes of the test dataset can
be seen in Figure 1. The top image shows a healthy picture corresponding to the diagnosis
“Your eye is healthy” and at the bottom, the image contains a potential abnormality, an
unhealthy eye. In this case, the option “Use AI to diagnose” was used to produce the
results, which triggers the CNN network and produces a number with a probability, which
in this case is “Doctor, there is a 98.6% probability” that the eye has Uveal Melanoma. Next,
considering Figure 5 to illustrate the process of image ciphering, the module receives an eye
image which is permuted using Arnold’s Map to produce Figure 11a. Finally, this image is
diffused using Lorenz’ attractor, generating Figure 11b, which can then be transmitted over
the network. The original database used here is taken from [28].
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(a) (b)

Figure 11. Results of the permutation and diffusion processes. The input of the diffusion process
is the result of the permutation stage. As can be seen, the shape of the iris is no longer presented.
(a) Image permuted with seven iterations using Arnold’s map. (b) Image permuted ciphered using
Lorenz’ attractor.

As explained in [40], there are different kinds of correlation attacks. Correlation
analysis techniques include the Mean Difference Method (MDM) and Pearson Correlation
Coefficient Method (PCCM); producing lower values of correlation makes the system
more robust against these attacks. Hence, it is a crucial statistical analysis tool based on
the frequency distribution of the encrypted pixels illustrated in the histograms (visual
representation of such distribution, plotting the number of pixels at each level). After
performing the proposed scheme, the results of the correlation can be seen in Table 2,
exposing small correlation values for the transmitted images. In addition, the histograms
can be seen in Figure 12a–c, showing that the ciphered images have a uniform distribution
in the intensity of each color component, which in plain sight would result in an inconsistent
or meaningless image. Thus, the possibility of an attacker obtaining the actual image is
noticeably low, as the pixels of each color component of the encrypted image are distributed
without providing any indication to use in statistical analysis to obtain a possible image.

Table 2. Correlation values for Red, Green, and Blue channels for different images in the encryp-
tion process.

Image Red Green Blue

Figure 5 (Image without ciphering) 0.996 0.996 0.995

Figure 11a (Image after Arnold’s map) 0.314 0.276 0.274

Figure 11b (Image after Arnold’s map and Lorenz’ attractor) 0.002 0.001 0.002
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Figure 12. Histograms of RGB channels for a given ciphered image: (a) histogram red channel,
(b) histogram green channel., (c) histogram blue channel.

4.1. Sensibility in the Key

As mentioned above, in a chaotic system the initial conditions significantly affect the
performance of the Chen system. A security system must be sensitive to a wrong key
to ensure that data cannot be obtained without the proper key. To provide an example,
the following are the initial conditions: [x1 = 2.7, x2 = 1.3, x3 = −1.7, x4 = −5], and to
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measure to sensitivity, these values are slightly changed to [x′1 = 2.71, x′2 = 1.3, x′3 = −1.71,
x′4 = −5.08]. This slight alteration produces large changes, confirming the high sensitivity
present in the Lorenz system. In order to observe the sensibility of the initial conditions,
Figure 13 shows the values for x1, x2, x3 and x4. The values of (x1, x2, x3) are used to
cipher each of the RGB pixels. Therefore, a small alteration in any of the initial conditions
produces remarkably different results.

Sensitivity to initial conditions is one of the requirements defined by Shannon [41] for
confusion and diffusion in cryptography; the problem with these systems is that they can
be broken due to their small key space [42,43], as the most important part of any encryption
algorithm is the key that defines whether the system is sufficiently strong against attacks.
However, as shown in [44], the Lorenz system can be used to generate keys that successfully
pass the National Institute of Standards and Technology (NIST) statistical test suite.
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Figure 13. Values generated with initial conditions for x1, x2, x3, and x4.

4.2. Metrics

According to [45], the NPCR and UACI statistical tests are employed when dealing
with base chaos encryption; for example, references [46,47] employed these metrics. The
Number of Pixel Change Rate (NPCR), which computes the pixel difference ratio between
ciphered and original images, is calculated with Equation (6); in this equation, D(i, j)
corresponds to Equation (7):

NCPR =
1

M× N

M

∑
i=1

N

∑
j=1

D(i, j)× 100% (6)

D(i, j) =

{
0, if A(i, j) = B(i, j)
1, if otherwise

(7)
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where A(ij) is the pixel value of the original image, B(i, j) is the pixel value of the encrypted
image, and (M, N) corresponds to image dimensions. A higher NPCR displays better
algorithm performance. The range of NPCR values is [0, 1].

Meanwhile, UACI computes the difference between the ciphered image and the
original image, allowing the strength of the encryption algorithm to be observed. UACI
measures the average change in a pixel’s values between the ciphered and original images
by employing Equation (8):

UACI =
1

M× N

M

∑
i=1

N

∑
j=1

|A(i, j)− B(i, j)|
255

× 100%. (8)

A high UACI indicate that the systems is resistant against different attacks. The state
of the art shows that a UACI of 0.33 is a secure value [24].

The entropy metric relies on the probability of pixel values and computes the degree
of randomness; this metric is calculated using Equation (9), where P(i) is the probability of
pixel value i and is computed by Equation (10):

E =
255

∑
i=0

(
P(i) log2

(
1

P(i)

))
, (9)

P(i) =
Frequency of the pixel value i
Total number of image pixels

. (10)

The efficiency of the encrypted image is superior if the entropy value is greater. The
maximum entropy value is 8.

In this work, the results of these metrics for RGB images are shown in Table 3, in which
it can be seen that the NPCR, UACI, and Entropy in the ciphered images have high values
of security acceptable for use in image transmission.

Table 3. Results of NPCR, UACI, and Entropy tests for a RGB image after permutation and diffusion.

Measure Red Green Blue

NPCR 0.996 0.996 0.996

UACI 0.310 0.328 0.334

Entropy 7.996 7.996 7.995

In order to ensure that the obtained result was not an outlier, we used the Chinese
Academy of Sciences—Institute of Automation (CASIA) database, taking several iris images
in grayscale to obtain a dataset that allows a statistical analysis to be performed. For iris
recognition research, CASIA contains a free access database; the images were captured
using a uniform illumination to obtain an adequate iris image. This database of free access
images can be found in [48].

Example images and the results of the iterations are shown in Figures 6, 9 and 10,
while the metrics obtained after this process are shown in Table 4 for 145 images. These
results show that near-maximum values of NPCR are obtained, as are near-safe values of
UACI and high entropy in the different channels for the ciphered images. These values
are sufficiently high for encrypted images, and therefore can be considered to have strong
resistance to differential attacks.
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Table 4. Metrics: median, standard deviation, minimum and maximum of 145 images for NPCR,
UACI, and Entropy using CASIA dataset.

Measure Median Standard Deviation Min Max

NPCR 0.996 0.0004 0.994 0.997

UACI 0.296 0.0196 0.266 0.357

Entropy 7.954 0.0022 7.949 7.961

5. Discussion

Although this article describes a system for medical diagnosis, the main results aim to
showing the various aspects of the encryption process; consequently, a user test is outside
the scope of this work. This is due to the difficulty of establishing a group of professionals
to carry out such tests. Additionally, the details of the convolutional neural networks used
for the classification system can be consulted in [29].

As mentioned, there are several different works related to the proposal made in this
document, included those on computer-aided diagnosis systems, image classification, and
encryption systems. Several references cited in the introduction section were considered
here, as follows:

• Computer Aided Diagnosis [9–12];
• Eye Image Classification [13–16];
• Chaotic Encryption [17–22].

It should be noted that [18] considered the encryption of medical images and [22] con-
sidered internet of things applications which included the possibility of remote diagnosis.

As observed, a comparison with related works can be made considering different
approaches. In this respect, a comparison consists of the process of image encryption taking
similar works as reference. Then, considering the average values for the implementations
made in other related works, Table 5 displays the NPCR, UACI, and entropy values.

Although all cited works present better values in the metrics considered, the results
obtained are close to those reported in [17–22], taking into account that the best values of
the indicators are close to 1 for NPCR, around 0.33 for UACI, and 8 for entropy. In addition,
in this comparison it should be considered that different numbers of figures with several
sizes and features were used to carry out the tests. As displayed in Table 5, in this work
145 figures were used to validate the encryption process, which is more than in the other
works. Therefore, to make a uniform comparison, in future works a benchmark must be
defined considering standard figures according to the application in consideration.

Table 5. Performance comparison with other related works.

Research Images Used NPCR UACI Entropy

This work 145 0.9960 0.2960 7.9540

Reference [17] 1 0.9987 0.4996 7.9951

Reference [18] 3 - - 7.9957

Reference [19] 4 0.9961 0.3347 7.9027–7.9999

Reference [20] 1 0.9981 0.3362 7.9996

Reference [21] 3–10 0.9961 0.3344 7.9983

Reference [22] 4 0.9962 0.3345 7.9993
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6. Conclusions

In this paper, we have presented a system for medical image diagnosis using chaotic-
base encryption with a particular case for Uveal Melanoma diagnosis. This cipher scheme
was assessed using several statistical tests, including entropy test analysis, key sensitivity
test, correlation properties, and randomization tests using UACI and NPCR. Although the
encryption confirms that the original and encrypted images have no visual correspondence,
statistical analysis through histograms reveals uniform distributions. Nonetheless, the
correlation coefficients of adjacent pixels are low enough to guarantee that the original
image cannot be easily recovered from the image resulting from the encryption process
without knowledge of the initial conditions.

It should be noted that the Arnold maps with the Lorenz system are an encryption
scheme with suitable results for the transmission of images over public networks, which
requires the confidentiality, integrity, and privacy of the message.

The results display adequate performance of the encryption system, with high values
obtained for NPCR (0.994 to 0.997), near-safe values for UACI (0.266 to 0.357), and high
entropy of 7.949 to 7.961 for the ciphered images.

Considering the results in Table 4 for the 145 images, NPCR describes the lowest
variation (standard deviation) of 0.0004 for the tests performed, followed by entropy with
0.0022, and finally UACI at 0.0196. This shows that the experiments carried out do not
present greater variation when encrypting the largest number of processed figures in the
same way.

In subsequent work, we intend to carry out user tests in order to improve the computer-
aided diagnosis system.
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