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Abstract: Early prediction of mortality and risk of deterioration in COVID-19 patients can reduce
mortality and increase the opportunity for better and more timely treatment. In the current study, the
DL model and explainable artificial intelligence (EAI) were combined to identify the impact of certain
attributes on the prediction of mortality and ventilatory support in COVID-19 patients. Nevertheless,
the DL model does not suffer from the curse of dimensionality, but in order to identify significant
attributes, the EAI feature importance method was used. The DL model produced significant results;
however, it lacks interpretability. The study was performed using COVID-19-hospitalized patients in
King Abdulaziz Medical City, Riyadh. The dataset contains the patients’ demographic information,
laboratory investigations, and chest X-ray (CXR) findings. The dataset used suffers from an imbalance;
therefore, balanced accuracy, sensitivity, specificity, Youden index, and AUC measures were used to
investigate the effectiveness of the proposed model. Furthermore, the experiments were conducted
using original and SMOTE (over and under sampled) datasets. The proposed model outperforms the
baseline study, with a balanced accuracy of 0.98 and an AUC of 0.998 for predicting mortality using
the full-feature set. Meanwhile, for predicting ventilator support a highest balanced accuracy of 0.979
and an AUC of 0.981 was achieved. The proposed explainable prediction model will assist doctors
in the early prediction of COVID-19 patients that are at risk of mortality or ventilatory support and
improve the management of hospital resources.

Keywords: deep learning; explainable artificial intelligence; machine learning; mortality; prediction;
ventilator support

1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) also known as COVID-19,
was first diagnosed in China in late 2019. Since then, it has infected around 222 countries
worldwide and as of 7 January 2022, the total number of cases is approximately 301,121,144,
including 92,107 patients in critical condition [1]. COVID-19 patients can be symptomatic
or asymptomatic. Symptomatic patients’ stages can be mild, moderate, or severe. Severe
cases may lead to failure of the respiratory system or mortality at the same time. Although
the probability of severe cases in patients is not high, sometimes a moderate-stage patient
may quickly experience serious complications and need immediate hospitalization and
intensive care. Because of this uncertainty, hospitals are sometimes confronted with a huge
number of COVID-19-critical patients requiring ventilator support. Similarly, due to the
unpredictable nature of COVID-19 [2], it is very crucial to develop an early warning system
to predict which patients will deteriorate.

Several artificial intelligence (AI)-based systems have been developed for early diag-
nosis using clinical data, chest X-rays (CXR) [3], CT scans [4], hybrid data [5], mortality
predictions, ventilatory support identification, contact tracing, drug discovery, perceptions
of people based on social media data analysis, etc. Studies have proven the significance of
AI techniques for combating the COVID-19 pandemic [6,7]. Therefore, early identification
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of patients who need ventilator support is very crucial for treating patients in a timely
manner, as well as for hospitals to manage their resources effectively. Furthermore, it will
also assist hospital systems to prioritize their patients. Several studies have been conducted
for the early identification of hospitalized patients who are vulnerable to deterioration and
require ventilator support, using machine learning (ML) and deep learning (DL).

However, the integration of ML and DL techniques has led to remarkable outcomes in
healthcare. These techniques have enhanced the decision-making process, but due to the
complexity of the models they engender a lack of interpretability. ML and DL techniques are
opaque and represent a form of black-box technique, and fail to provide justification for their
respective predictions or decisions [8]. Intrinsically there is a trade-off between predictive
power and interpretability; for example, DL models have high prediction accuracy, but the
complexity of the model increases the model’s opacity. Similarly, ML algorithms such as
the decision tree (DT) have good interpretability but sometimes produce low prediction
results compared to DL models [9]. The innate opaqueness of the model has raised the
need for transparent and interpretable systems that can assist healthcare professionals in
making decisions.

Nevertheless, ML and DL have high predictive power but lack interpretability [10]. To
deal with the challenges of ML and DL, recent trends have evolved towards explainable
artificial intelligence (EAI) techniques. Although EAI is not a new field, it only integrates
interpretability and transparency into the ML and DL models [11]. EAI systems lead to
better, more trustworthy, and more interpretable decisions.

Recently, research trends have moved towards EAI [12]. Accordingly, from a health-
care perspective, EAI needs to consider different data modalities to achieve the required
result [13]. This necessitates that healthcare professionals should be able to understand the
rationale behind the how and why of a particular decision. Therefore, in the current study,
EAI techniques are used to predict mortality and identify those COVID-19 patients whose
condition is rapidly deteriorating and who may require ventilator support.

Contribution

The objective of the study is twofold, i.e., to predict mortality and ventilatory support.
The main contributions of the study are:

• An attempt to propose a model with better predictive power and interpretability
compared to the benchmark study, which can help healthcare professionals to make
better and more retraceable decisions.

• The proposal of an evidence-based and interpretable decision-making system using EAI
techniques for the early prediction of mortality and susceptibility to ventilator support.

• Identification of highly significant risk factors for the early prediction of ventilatory
support and mortality.

• To the best of the author’s knowledge, very few studies have investigated EAI
for the early identification of the COVID-19 patients who are at risk for mortality
and deterioration.

• Overall, the proposed model outperformed the baseline study.

The rest of this article is organized as follows: Section 2 presents the literature review;
Section 3 shows the material and methods used in the study; Section 4 discusses the
experimental results; Section 5 contains the discussion; Section 6 concludes the paper.

2. Related Studies

Due to the integration of technology in the healthcare and electronic health records,
a huge number of studies have been conducted to combat COVID-19 from different per-
spectives such as diagnosis, triage, prognosis, epidemiology, contact tracing, drug efficacy,
genome structure analysis, etc. [14]. Furthermore, different types of data such as chest X-
rays, CT scans, and clinical data have been extensively used for the diagnosis of COVID-19
patients, early prediction of mortality, identification of patients requiring ventilator support,
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and remote triaging of COVID-19 patients. The following section discusses some of the
recent studies on early mortality prediction and ventilator support.

2.1. AI-Based Studies for Early Identification of COVID-19 Patients for Ventilator Support

Early prediction of COVID-19 patients who are at risk of deterioration can reduce the
risk of mortality and help hospitals to manage their resources. Varzaneh et al. [15] proposed
an AI-based model for early prediction of intubation in COVID-19-hospitalized patients,
using several ML algorithms such as the decision tree (DT), support-vector machine (SVM),
k-nearest neighbor (KNN), and multilayer perceptron (MLP) for the classification. However,
the feature selection was performed using a bioinspired technique, i.e., the horse herd
optimization algorithm (HOA). The study achieved an accuracy of 0.938 by integrating DT
and HOA. However, the dataset contains only 13% of patient samples for the intubation
class. Furthermore, the study has identified that in the current dataset some significant
paraclinical attributes are missing.

However, Zhang et al. [16] proposed a DL-based model to identify the at-risk COVID-
19-hospitalized patients for the mechanical ventilator (MV) after 24 h. The significance of the
study is that all relevant patient data such as laboratory results, medications, demographic
information, signs and symptoms, and all clinical procedures were used. For the data
imputation, the attention method was used. Furthermore, a comparison was made among
the ML and DL models, and it was found that the proposed DBNet outperformed with an
AUC (area under the curve) of 0.80 and an F1 score of 0.798. However, the study produced a
good outcome and utilized patient samples from multiple hospitals, but conversely, needed
huge attributes.

Similarly, Aljouie et al. [17] utilized different ML techniques to predict mortality and
identify ventilator requirement for COVID-19-hospitalized patients. The study used pa-
tients’ clinical data, laboratory results, comorbidity, and CXR findings. Feature selection
was performed with ReliefF, while extreme gradient boosting (XGB), random forest (RF),
SVM and logistic regression (LR) were used for classification. Similar to the other studies,
the dataset suffers from a class imbalance; therefore, several data-augmentation techniques
were applied. The study found that CXR data are more significant in predicting ventilatory
support as compared to comorbidity, lab results, and other demographic features. A highest
AUC of 0.87 and a balanced accuracy of 0.81 were achieved using the features selected
from ReliefF, classification with SVM, and data augmentation with random undersampling.
Similar to Aljouie, Bae et al. [18] also performed a study that predicted ventilator support
and mortality of COVID-19-hospitalized patients using CXR and radiomic features. How-
ever, the study only utilized radiomic data. Furthermore, the number of patient samples
in the study was few compared to Aljouie et al.’s study. Latent discriminant analysis
(LDA), RF, quadrant discriminant analysis (QDA), and the DL model were used for the
classification. They found that the DL model with radiomic features produced an AUC of
0.79, a sensitivity of 0.71 and a specificity of 0.71, respectively. The study was multicenter,
but the number of samples was lower.

Furthermore, Balbi et al. [19] used LR for identifying patients that required ventilator
support using CXR, demographic, clinical, and laboratory data. The objective was to
identify the significance of the features and found that along with CXR, patients’ medical
history and other vitals have significantly enhanced the prediction. Conversely, another
study [20] utilized CXR for predicting MV support using the DenseNet121 model. The
significance of the study is that the patients that require MV were identified 3 days before
the event. The model achieved an accuracy of 0.90, and a sensitivity and specificity of 0.86
and 0.84, respectively. The study was only limited to CXR for the prediction. Integration of
other clinical data at admission might improve the performance of the model.

2.2. AI-Based Studies to Predict Early Mortality in COVID-19 Patients

Similar to the proposed study, Aljouie et al. [17] and Bae et al. [18], proposed a model
for two tasks, i.e., mortality and ventilator support prediction for COVID-19-hospitalized
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patients. In the first study, the author utilized different categories of data and found that
comorbidity alone can help in predicting the mortality of COVID-19 patients. However,
in the second study, CXR and radiomic data were used and found that the integration of
radiomic data improved the early prediction of mortality. Aljouie et al. [15] achieved an
AUC of 0.83 and a balanced accuracy of 0.80 using RF. Meanwhile, in Bae et al.’s study [18],
the DL model achieved an AUC of 0.83, sensitivity of 0.79, and specificity of 0.74. As
previously discussed, the number of patient samples in Aljouie et al. was larger than that
of the Bae et al. study; furthermore, the study also utilized different types of patient data
such as clinical, comorbidity, demographic, and CXR.

Pourhomayoun and Shakibi [21] developed different ML models such as SVM, ANN,
DT, RF, KNN, and LR for the prediction of mortality in COVID-19 patients. The study
utilized a dataset from demographically different countries and a huge number of samples
as compared to the previous studies mentioned in the literature review. However, the
dataset contained huge number of missing values. They achieved an accuracy of 0.89 using
ANN. In addition, Khan et al. [22] made a comparison between the ML and DL algorithms
to predict mortality in COVID-19 patients using the dataset proposed in Pourhomayoun
and Shakibi [21]. They found the significance of the DL method in the early prediction of
mortality as compared to the ML algorithms. The DL model achieved enhanced results,
with an accuracy of 0.97, a sensitivity of 0.97, and a specificity of 1. Furthermore, the
number of features used to train the model was also reduced in the study [22].

Moreover, a study was performed to predict mortality among COVID-19 patients who
are in severe condition [23]. The study aimed to identify the risk factors based on different
categories of patient data such as clinical, demographic, comorbidity, laboratory tests,
radiological data, etc. The study was performed using a small sample size of 150 patients
in Romania. The LR model was used for the classification. The study found that D-dimmer,
C-reactive protein (CRP), and high heartbeat are the most significant mortality predictors
for COVID-19 patients. Furthermore, a correlation was found between these features and
patients that needed ICU addition and ventilation. The study identified the limitation that
some of the patients in the dataset were in severe condition due to late hospitalization.

Similarly, Pezoulas et al. [24] utilized the EAI concept to identify patients at risk of ICU
and mortality among COVID-19 patients, using several ML models such as the gradient
boosting (GB) algorithm for classification. Experiments were conducted using 214 patients
and used clinical, demographic, comorbidity, and lab results. They achieved an accuracy of
0.79 and 0.81 in predicting mortality among COVID-19 patients in ICU.

Recently, a study was made by Moulaei et al. [25] to compare the performance of
different ML techniques to predict mortality using data at the time of admission to hospital.
The dataset contained the patients’ clinical, demographic, and laboratory results. A total
of 54 features were initially selected from the dataset. Using the genetic algorithm (GA),
38 features were selected. Several ML models such as XGB, RF, MLP, KNN, NB, reinforce-
ment learning, and J48 were used for classification. They were found to outperform, with
an accuracy of 0.95, sensitivity of 0.90, and specificity of 0.95. Nevertheless, the study has
achieved significant results and used a dataset with a sample of 1500 patients. However,
the dataset suffers from a huge imbalance due to the fact that the mortality probability in
COVID-19 patients is not high. Furthermore, the dataset was collected from one center.

Nevertheless, most of the previously mentioned studies have successfully utilized
ML and DL for the early identification of mortality and ventilation support in COVID-19
patients. However, some of the studies have utilized a very limited dataset size. The largest
open-source dataset that can be utilized for the prediction of mortality and ventilation
support was proposed by Aljouie et al. [17]. Another benefit is that it does not only contain
radiological data but also contains patients’ clinical, demographic, and laboratory results
and comorbidities. Therefore, in the current study, we utilize the data introduced in
Aljouie et al.’s study. Most of the previous studies utilized ML and DL learning; however,
in the current study we will use the concept of EAI to identify the risk factors that contribute
to the identification of COVID-19 patients at risk of mortality and ventilator support. To
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the best of the authors’ knowledge, there is so far only one study (Pezoulas et al. [24]) that
has implemented EAI for the prediction of mortality. In the proposed study, we will aim to
produce a model with a better outcome compared with the baseline study. Furthermore,
we will also attempt to produce the outcome in a more interpretable format using EAI.

3. Materials and Methods

The study was performed using Python ver. 3.9.7. The libraries used during the
implementation were Tensor Flow Keras ver. 2.5.2, Dalex ver. 1.4.1, Matplotlib ver. 3.4.3,
Sklearn ver. 0.24.2, Pandas ver. 1.3.4 and NumPy ver. 1.19.5. Several sets of experiments
were conducted to determine the significance of different categories of attributes in the
early prediction of mortality and identification of at-risk patients who require ventilator
support. The study mainly consisted of two objectives: to predict the patients who will
need ventilatory support and to predict the mortality of the patients. Therefore, we carried
out experiments with three cases defined in Table 1. The first case predicted mortality,
while cases 2 and 3 predicted ventilator support for COVID-19-hospitalized patients. For
each case, three sets of experiments were performed using the full-feature set, with selected
features using the EAI feature importance method for all three cases. Meanwhile, the third
experiment for case 1 was performed using only the comorbidity feature and for cases 2
and 3 only CXR features were used. These features were used to further investigate the
findings made by Aljouie et al. [17]. They found that mortality in COVID-19 patients could
be predicted using the comorbidity feature, while CXR functions could be used to predict
ventilatory support.

Table 1. Distribution of patient samples per category for cases 1, 2, and 3.

Class Attribute Cases Target Class No of Samples Selected Features Total Number
of Samples

Vital Status Case 1

Deceased 136

Platelet_count, age, Hgb,
WBC, CXR_zone_11, gender,

CXR_zone_12, MCV,
CXR_zone_9, MCHC,

CXR_zone_10, CXR_zone_5,
CXR_zone_8, T2D,

CXR_zone_1, CXR_zone_2,
CXR_zone_6, CXR_zone_4,

CKD, Asthma

1513

Alive 1377

Ventilator Support
Status

Case 2

Mechanical
Ventilator (MV)

184 Platelet_count, age, Hgb,
WBC, MCV, MCHC,

CXR_zone_6, CXR_zone_1,
gender, asthma, CXR_zone_3,

T2D, CXR_zone_11,
CXR_zone_4, HTN,

CXR_zone_12, CXR_zone_9,
CAD, CXR_zone_10,

CXR_zone_5
1508

Noninvasive
Ventilation (NIV) 111

No Ventilatory
Support (NVS) 1213

Case 3

Ventilatory
Support (VS) 295

Platelet_count, WBC,
CXR_zone_9, CXR_zone_11,

age, Hgb, gender,
CXR_zone_12, MCHC,

CXR_zone_1, MPV, MCH,
CXR_zone_5, CKD,

CXR_zone_4, CXR_zone_10,
CXR_zone_8, MCV, HTN,

T2D

No Ventilatory
Support (NVS) 1213
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3.1. Exploratory Dataset Analysis

The study was conducted using retrospective data from COVID-19-hospitalized pa-
tients in the Kingdom of Saudi Arabia (KSA). The dataset was introduced and used in the
study by Aljouie et al. [17]. The dataset consists of 5739 patient demographics, clinical
and laboratory investigations, and CXR findings. Moreover, the dataset includes two
target attributes, namely patient outcome (deceased or alive) and ventilatory support. The
inclusion criteria for the patient sample included in the current study correspond to those
of Aljouie et al. to find the mortality and ventilatory support dataset. Table 1 shows the
number of samples per category for case 1 (target class vital status (deceased, alive)), case 2
(ventilatory support status (mechanical ventilator (MV), noninvasive ventilation (NIV) and
no ventilator support (NVS)) and case 3 (ventilation support status (ventilation support
(VS) and no ventilation support (NVS)). Five values were missing in the ventilator support
status attribute, so they were removed in cases 2 and 3.

The dataset contains demographic features (gender, age), laboratory results from
complete blood count CBC (hematocrit, hemoglobin, mean corpuscular hemoglobin con-
centration (MCHC), mean corpuscular hemoglobin (MCH), mean corpuscular volume
(MCV), mean platelet volume (MPV), red blood cells (RBC), Platelet count, red cell distri-
bution width (RDW), white blood cells (WBC), and radiological findings and comorbidity
(cancer, coronary artery disease (CAD), hypertension (HTN), asthma, chronic obstructive
pulmonary disease (COPD), type II diabetes mellitus (T2D), liver cirrhosis (LC), chronic
hepatitis B (CHB), chronic hepatitis C (HCV) and chronic kidney disease (CKD)). Age and
all CBC attributes are numeric, while the remaining attributes are categorical. The CXRs are
annotated in twelve zones, as shown in Figure 1. Initially the CXR is divided in two upper
(A) and lower zone (B) and also the junction (C). Then these zones are further divided
into twelve zones which indicate the points where the radiologist assign severity levels.
The zone attributes consist of three possible values (0–2) indicating the severity of ground
glass opacity (GGO). Zero indicates the absence of GGO. Ultimately, the dataset contains
35 predictors and 2 class attributes.
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Furthermore, for the exploratory analysis of the dataset, the age attribute was dis-
cretized by applying equal-width binning. The minimum patient age in the dataset was 19
and the maximum age was 107. A bin length of 10 was used, with the first bin range being
[19–29), [29–39) and so on. The number of bins was 9. Figures 2 and 3 represent the age
distribution of the patients according to their ventilation status and vital status. As seen in
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Figure 2, the huge number of patients that need MV support were in the range of 50–59.
However, for most of the age ranges, the number of patients for the other two categories,
i.e., noninvasive ventilator (NV) and no ventilator (NO) was similar. Correspondingly,
for the mortality prediction, the maximum number of survived patients was in the range
of [49–59). However, the number of deceased patients was high, in the range of [69–79),
as shown in Figure 3. The mean age of the patients in the dataset was 54.83. Similarly,
Figure 4 indicates the distribution of comorbidity in patients according to their ventilator
support status, while Figure 5 indicates the distribution of comorbidity according to the pa-
tient’s outcome, i.e., deceased or alive. The dataset contains the sample of the hospitalized
COVID-19 patients, and it can be seen from Figures 4 and 5 that the most common chronic
diseases are hypertension and Type II diabetes. The dataset contains a huge number of male
samples as compared to female samples. Furthermore, Figure 6 represents the correlation
of CBC attributes.
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3.2. Deep Learning Model

In the last decades, DL models have been extensively used and investigated for various
prediction tasks. Instead of using handcrafted features and then applying the traditional
ML technique, DL models are better able to understand and learn complex patterns from
the data. These models are feedforward and contain three main layers, i.e., the input layer,
hidden layers, and the output layer. The input layer is used to obtain data from the source
and provide it to the model for further processing, the hidden layers are mainly used to
collect the complex pattern from the data, and the output layer is used to classify the data.
The backpropagation technique is used to update the weights of the model using a gradient
descent algorithm.

Gradient descent is a first-order derivative function used for optimization in DL. The
function measures the effect of parameter values on model performance. The gradient
descent equation is shown below:

y = x− γ∇ f (x) (1)

where y represents the current outcome, x represents the true values, and f (x) represents
the predicted outcomes. The negative sign indicates the reduction in GD, and γ represents
the gradient factor, also known as the learning rate. The GD function aims to reduce the
cost function, i.e., f (w, y) and achieve the local minima. It is an iterative function and is
represented as

∇ f (x) =
ϑ

ϑθx
x(θ0, θ1) (2)

Based on the aim of the study, we performed three set of experiments. In the proposed
study, three deep learning models were developed with slight variations in the input and
output layers, based on the number of features for the input and the number of class
labels. We used three sets of data as input to the models (full features, selected features,
and comorbidity features). The full-feature set size was 34, the input layer was defined
with 34 neurons, and the selected-feature set size was 9, so the input layer was designed
with 9 neurons, and the comorbidity-feature set size was 10, so the input layer contained
10 neurons. In addition to this output class, we have 2 output requirements, binary
and multiclass i.e., 3 classes. Therefore, the structure of the output layer was modified
accordingly: for binary classification, we used 1 neuron in the output layer, while for
3 classes, we used 3 neurons in the output layer.

The structure of the model includes 13 layers. The 12 layers were hidden layers with
1024, 1024, 512, 512, 256, 256, 128, 128, 64, 64, 32, and 32 neurons. Rectified linear unit
(ReLU) was used as the activation function for the hidden layers, while dropout layers
with a rate of 20% were added after two consecutive hidden layers in order to avoid model
overfitting. Sigmoid and softmax activation functions were used at the output layer to
perform binary and multiclass classification, respectively.

The equation for the ReLU is

ReLU(x) = max(0, x) (3)

ReLU activation function is used to deal with negative values. If the input is negative,
the output is zero, and thus the neuron does not participate in model processing for that
particular epoch. This makes the neural network sparser and more efficient. Meanwhile,
the sigmoid equation is mentioned below:

Sigmoid(x) =
1

1 + e−x (4)
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The sigmoid function provides the model with a value that is between 0 and 1. This is
useful because we can use the resulting value as a probability for a particular class.

softmax
(→

z
)

i
=

ezi

∑K
j=1 ezi

(5)

where
→
z is the input vector for the softmax function, zi is elements of the input vectors,

ezi is the standard exponential function applied to each element, and K represents the
number of classes. The softmax function turns a vector of K into values between 0 and 1.
These values are considered as probabilities.

The DL model was optimized using the Adam optimizer [26]. Model configurations
include the Adam optimization algorithm with a learning rate of 0.001. Moreover, the loss
was calculated using binary and categorical cross entropy, and the accuracy metric was
used to evaluate the model’s accuracy. To train the model, we used 200 epochs with a batch
size of 128. The structure of the model is shown in Figure 7.
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3.3. Explainability of the Proposed Model

An Agnostic modeling approach was used to incorporate the interpretability of the
proposed model without compromising the model’s performance. This method is not
model-specific; it interprets the model’s behavior without considering the internal logic of
the model [27]. In the current study, Shapley was used to find the average impact of the
attributes on model performance. Figure 8 shows the mean (SHAP) value for mortality
prediction; Figure 9 shows the mean (SHAP) value for predicting patients requiring ventila-
tory support (case 2 multi-class); Figure 10 indicates the mean (SHAP) value for predicting
patients who require ventilator support (case 3 binary class).
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Furthermore, the interpretability was further enhanced by using the induced decision
tree for case 1, case 2, and case 3. Figures 11–13 present the decision tree for all three
cases. Experiments were also conducted for all the three cases using DT and is included
in Tables A1–A3 in Appendix A. The performance of DT is investigated because it is an
interpretable model. But sometimes due to the tradeoff among the interpretability and
model performance, as seen in the appendix the result of DT is not significant.
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3.4. Evaluation Measures

The performance of the proposed model was compared using balanced accuracy,
sensitivity, specificity, Youden index, and area under the curve (AUC). There are several
evaluation measures that can be used for investigating the performance of the classifi-
cation algorithms. Among these measures, some of the measures are highly influenced
by class distribution, such as accuracy, precision, and recall [28]. Therefore, the unbal-
anced class problem uses measures such as balanced accuracy, AUC, and Youden index.
Correspondingly, balanced accuracy and AUC are also used in the baseline study.
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Sensitivity (SN) represents the true positive rate of the model and is calculated using
the following equation:

SN =
sum(correctly predicted positive class)

sum(positive class samples in the dataset)
(6)

Specificity represents the true negative rate and is calculated using the equation below:

SP =
sum(correctly predicted Negative class samples)

sum(negative class samples in the dataset)
(7)

As can be seen from Equations (6) and (7), the above measures are not affected by
class distribution.

Similarly, balanced accuracy is the mean of the sensitivity and the specificity:

Balanced Accuracy =
SP + SN

2
(8)

Likewise, the Youden index (YI) is one of the measures used specifically to deter-
mine the effectiveness of the diagnostic test. It evaluates the discriminative power of the
diagnostic test. It is computed using the equation below:

Youden Index = SP + SN− 1 (9)

The YI values range from 0–1. A smaller value indicates poor diagnostic capability,
while a value closer to 1 indicates the significance of the test.

Furthermore, the model discriminative power is further validated using AUC. As
is the case with the Youden index, the value of AUC also ranges from 0–1, with a value
closer to zero indicating poor performance and a value closer to 1 indicating significant
performance of the model.

4. Results

This section presents the results for all three cases that predict mortality and ventilator
support in COVID-19 patients. Furthermore, the dataset suffers from an imbalance, which
is why data-sampling techniques were applied, such as SMOTE with oversampling and
SMOTE with undersampling. A k-fold cross-validation technique with a value of k equal
to 10 was used to partition the data for all experiments. In the k-fold cross-validation,
the dataset is initially divided into k-segments, where (k − 1) segments are used to train
the model and one segment to test in each iteration. Furthermore, the training segments
were then divided into training and validation sets. The validation set was used for
parameter tuning. Table 2 represents the testing result of the proposed model for case 1,
i.e., to predict the patient’s vital status as surviving or deceased. Similar sensitivity is
achieved using the full- and selected-feature sets with the original dataset without any
data-sampling technique. The highest sensitivity was achieved using the full-feature set
and dataset after SMOTE undersampling. However, for other measures such as specificity,
balanced accuracy, Youden index, and AUC, the highest results were obtained using the
full-feature set after SMOTE with oversampling. A similar AUC was achieved with full and
selected features for SMOTE oversampling with the full-feature set and original dataset
with selected features. Meanwhile, the best overall AUC was obtained using selected
features and with SMOTE oversampling. In the baseline study by Aljouie et al. [17], the
best balanced accuracy of 0.78 and AUC of 0.85 was achieved using LR and oversampling
data with the comorbidity attribute. However, in the proposed study, the highest AUC
achieved was 0.875 and the balanced accuracy was 0.904 using the comorbidity attributes
and the original dataset. We found that after oversampling the dataset, a similar AUC was
achieved using comorbidity attributes.
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Table 2. Result of the proposed model for mortality prediction (Case 1).

Feature Set Technique SN SP Bal-Acc YI AUC

Full Features

Original Dataset 0.990 0.920 0.955 0.910 0.990

SMOTE with Oversampling 0.985 0.988 0.986 0.973 0.998

SMOTE with Undersampling 0.994 0.933 0.963 0.927 0.991

Selected Features

Original Dataset 0.990 0.937 0.964 0.927 0.998

SMOTE with Oversampling 0.979 0.953 0.966 0.933 0.999

SMOTE with Undersampling 0.977 0.924 0.950 0.901 0.974

Comorbidity Features

Original Dataset 0.810 0.940 0.875 0.750 0.904

SMOTE with Oversampling 0.837 0.819 0.828 0.657 0.903

SMOTE with Undersampling 0.830 0.890 0.860 0.720 0.899

Furthermore, experiments were also conducted to identify patients who are at risk
of the ventilator support. Initially the experiments were carried out for the multiclass,
i.e., to predict patients requiring a mechanical ventilator (MV), a noninvasive ventilator
(NV), or no ventilator (NV) using all features, selected features, and CXR features. CXR
features were used because in the baseline study the author found that CXR features can
be used to predict the ventilatory support of COVID-19 patients. Table 3 presents the
performance of the proposed DL model using different-feature sets. The table contains
the testing results. Analogous to case 1, the model produced the best performance with
the full-feature set in this case. It indicates the significance of all the features in predicting
patients for ventilator support. However, in this case, SMOTE with the undersampling
dataset set achieved the best results for all evaluation measures. For mortality prediction
(case 1), a similar AUC was achieved using the full- and selected-feature sets. However,
in this case there was a significant difference in the model AUC using full and selected
features. Furthermore, the baseline study using the CXR feature achieved the highest
results, i.e., balanced accuracy of 0.52 and AUC of 0.76 using XGB and oversampling data.
However, the proposed study outperformed the baseline with a balanced accuracy of
0.838 and an AUC of 0.842 using SMOTE oversampling. We also found that the oversam-
pling technique enhanced performance with CXR features compared to the original and
undersampled datasets.

Table 3. Result of the proposed model for ventilator-support prediction (Multiclass) (Case 2).

Feature Set Technique SN SP Bal-Acc YI AUC

Full Features

Original Dataset 0.815 0.802 0.8085 0.617 0.835

SMOTE with Oversampling 0.837 0.937 0.887 0.775 0.907

SMOTE with Undersampling 0.969 0.989 0.979 0.958 0.981

Selected Features

Original Dataset 0.834 0.821 0.8275 0.655 0.837

SMOTE with Oversampling 0.858 0.915 0.8865 0.773 0.905

SMOTE with Undersampling 0.935 0.912 0.9235 0.847 0.932

CXR Features

Original Dataset 0.712 0.878 0.795 0.592 0.823

SMOTE with Oversampling 0.814 0.862 0.838 0.676 0.842

SMOTE with Undersampling 0.683 0.856 0.7695 0.539 0.773



Computation 2022, 10, 36 16 of 19

Lastly, the experiments conducted for the binary class (ventilator support vs. no
support) were performed to predict which patients would need ventilation. The result of
the proposed model is shown in Table 4 using the test set. Comparable to case 2 (multiclass),
the binary class with the undersampled data and with full features also achieved the best
results. After converting the multiclass to binary class, the performance of the model was
slightly improved. However, there was a significant difference between the full-feature
and different datasets’ results, i.e., original and over- and undersampling. Similarly, a
baseline study also achieved the highest results using undersampling data with a balanced
accuracy of 0.79 and an AUC of 0.82. They found that using XGB with the undersampled
dataset gave the best result to predict whether or not the patient was at the risk of needing
ventilator support. Meanwhile, the proposed study outperformed the baseline study with
an AUC of 0.904 and a balanced accuracy of 0.875 using the original dataset. All results
demonstrate the significance of the proposed model for all three cases.

Table 4. Result of the proposed model for ventilator-support prediction (Binary class) (Case 3).

Feature Set Technique SN SP Bal-Acc YI AUC

Full Features

Original Dataset 0.863 0.806 0.835 0.670 0.959

SMOTE with Oversampling 0.907 0.936 0.921 0.843 0.983

SMOTE with Undersampling 0.972 0.996 0.984 0.968 0.990

Selected Features

Original Dataset 0.936 0.975 0.955 0.911 0.982

SMOTE with Oversampling 0.914 0.963 0.938 0.876 0.958

SMOTE with Undersampling 0.948 0.985 0.966 0.933 0.984

CXR Features

Original Dataset 0.810 0.940 0.875 0.750 0.904

SMOTE with Oversampling 0.837 0.819 0.828 0.657 0.903

SMOTE with Undersampling 0.830 0.890 0.860 0.720 0.899

5. Discussion

Owing to the dynamic clinical indications of COVID-19 and sometimes a sudden dete-
rioration in the condition of moderate-stage patients, it is crucial to develop an automated
model that can preemptively predict which patients are at risk for ventilator support and
mortality. Furthermore, there is a need to provide a model that can provide a reliable
explanation to healthcare professionals. Therefore, in the proposed study, the DL model
was used along with the EAI to predict mortality and ventilator support. Several studies
have investigated the use of demographic features, lab tests, signs and symptoms, and
radiological findings for the prediction. Consequently, demographic, clinical features,
comorbidity, and CXR zone features were used in the proposed study.

Among the demographic features, age and gender were found to be significant feature.
Similarly, ref. [15–18,23] found age as one of the key features for predicting intubation
in COVID-19 patients. However, Bae et al. [18] used radiomics features and two demo-
graphic features (age and gender) to predict mortality and ventilator support. The radiomic
scores were assigned by experienced radiologists, who found that radiomic features greatly
enhanced the performance of the algorithms. Furthermore, Zhang et al. [16] included infor-
mation on medication and found that patients taking medication for respiratory disease and
pneumonia were more likely to end up on a ventilator. Conversely, Balbi et al. [19] found
that some of the patients that were diagnosed as COVID-19-negative with the RT-PCR test,
while the CXR analysis of the patients revealed pneumonia. Similarly, some of the patients
had no significant signs on the CXR but were predicted to be positive using the RT-PCR
test. Nevertheless, they found that CXR attributes can only be used for the prediction if
other features such as SpO2, PaO2, and some other clinical features are available. Likewise,
Kulkarni et al. [20] used the CXR for early detection of COVID-19 patients requiring venti-
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lator support using the DL model, and found that CXR features can be used to perform the
prediction 3 days in advance.

Conversely, [21,22] predict mortality based on demographic, comorbidity, and symp-
toms. Notwithstanding this, the studies provided significant results; however, the studies
lacked some of the significant lab tests and CXR attributes from the dataset. Correspond-
ingly, Aljouie et al. [17] also found that comorbidity alone can predict mortality in COVID-19
patients. In addition, Khan et al. [22] examined three comorbidities (cardiac problems,
diabetes, hypertension) as significant features. However, Pezoulas et al. [24] found that
some lab tests are a significant attribute in predicting mortality, while Moulaei et al. [25]
discovered that shortness of breath and extra oxygen therapy are among the top features to
predict mortality.

Nevertheless, the current study has produced significant results; however, there is
always room for further improvement. The study was conducted with a dataset from
a single center and country. Furthermore, some of the clinical attributes identified as
significant such as CPR, D-dimmer, heartbeat, SpO2, and PaO2, etc. are missing from the
dataset. In order to further validate the performance of the proposed model, it needs to be
experimented with the multicenter dataset, and other features identified as significant in
the previous literature also need to be considered. Correspondingly, the dataset also suffers
from an imbalance due to the low mortality rate among COVID-19 patients. Therefore, the
measures unaffected by class distribution were used in the proposed study. Additionally,
the impact of COVID-19 vaccination must also be considered.

6. Conclusions

To sum up, the current study investigated the application of the DL model to predict
mortality and the need for ventilator support in COVID-19 patients. The dataset includes
COVID-19 patients’ demographic information, laboratory results, comorbidity, and CXR.
To alleviate the data-imbalance issue, the SMOTE data-sampling technique was applied to
both under- and oversampling. Features were selected using the EAI feature importance
technique. The optimization of the DL model was performed using the Adam optimizer.
Several sets of experiments were performed using full features, selected features, and
comorbidity features only to predict mortality, and CXR findings to predict ventilator
support. Experimental results showed that the proposed study outperformed the baseline
study, with a balanced accuracy of 0.98 and an AUC of 0.998 for predicting mortality. When
identifying patients on ventilator support, the model achieved a balanced accuracy of
0.979 and an AUC of 0.981. Furthermore, EAI is used to incorporate interpretability into
the proposed DL model and to identify the impact of attributes on the proposed model’s
performance. Shapley was used to compute the influence of attributes, and an induced
decision tree was used to extract the rules from the model. In particular, the proposed model
can be used as a tool that can assist doctors to predict at-risk patients and aid hospitals
to manage and plan their resources effectively. Conversely, this study can potentially be
extended to examine performance using the multicenter and multicountry dataset. In
addition, some of the significant lab investigation results and COVID-19 vaccinations must
be considered.
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Appendix A. Decision Tree Results

Table A1. Case 1—Decision Tree (Binary-Class, Deceased:0, Alive:1).

Feature Set Technique SN SP Bal-Acc YI AUC

Full Features

Original Dataset 0.884 0.250 0.567 0.134 0.567

SMOTE with Oversampling 0.817 0.752 0.784 0.569 0.784

SMOTE with Undersampling 0.905 0.184 0.544 0.089 0.545

Selected Features

Original Dataset 0.429 0.837 0.633 0.266 0.632

SMOTE with Oversampling 0.812 0.779 0.796 0.592 0.796

SMOTE with Undersampling 0.406 0.831 0.618 0.237 0.619

Comorbidity Features

Original Dataset 0.458 0.858 0.658 0.317 0.658

SMOTE with Oversampling 0.793 0.706 0.749 0.499 0.749

SMOTE with Undersampling 0.444 0.864 0.654 0.309 0.654

Table A2. Case 2—Decision Tree (Multiclass, No_Ventilator:0, NIV:1, MV:2).

Feature Set Technique SN SP Bal-Acc YI AUC

Full Features

Original Dataset 0.415 0.748 0.582 0.163 0.582

SMOTE with Oversampling 0.747 0.874 0.811 0.622 0.811

SMOTE with Undersampling 0.404 0.749 0.577 0.153 0.577

Selected Features

Original Dataset 0.380 0.760 0.570 0.141 0.570

SMOTE with Oversampling 0.769 0.885 0.827 0.655 0.827

SMOTE with Undersampling 0.426 0.744 0.585 0.171 0.586

Comorbidity Features

Original Dataset 0.344 0.653 0.498 -0.003 0.498

SMOTE with Oversampling 0.737 0.868 0.802 0.605 0.803

SMOTE with Undersampling 0.397 0.721 0.558 0.117 0.558

Table A3. Case 3—Decision Tree (Multiclass, No_Ventilator:0, NIV:1, MV:1).

Feature Set Technique SN SP Bal-Acc YI AUC

Full Features

Original Dataset 0.402 0.863 0.633 0.266 0.632

SMOTE with Oversampling 0.758 0.784 0.771 0.543 0.772

SMOTE with Undersampling 0.542 0.833 0.687 0.375 0.688

Selected Features

Original Dataset 0.333 0.846 0.590 0.180 0.591

SMOTE with Oversampling 0.774 0.748 0.761 0.522 0.763

SMOTE with Undersampling 0.581 0.843 0.712 0.423 0.713

Comorbidity Features

Original Dataset 0.458 0.779 0.618 0.237 0.619

SMOTE with Oversampling 0.731 0.744 0.738 0.476 0.738

SMOTE with Undersampling 0.357 0.792 0.574 0.149 0.575
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