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Abstract: Coronavirus disease 2019 (COVID-19) was declared as a global pandemic by the World
Health Organization (WHO) on 12 March 2020. Indonesia is reported to have the highest number
of cases in Southeast Asia. Accurate prediction of the number of COVID-19 cases in the upcoming
few days is required as one of the considerations in making decisions to provide appropriate rec-
ommendations in the process of mitigating global pandemic infectious diseases. In this research,
a metaheuristics optimization algorithm, the flower pollination algorithm, is used to forecast the
cumulative confirmed COVID-19 cases in Indonesia. The flower pollination algorithm is a robust and
adaptive method to perform optimization for curve fitting of COVID-19 cases. The performance of the
flower pollination algorithm was evaluated and compared with a machine learning method which is
popular for forecasting, the recurrent neural network. A comprehensive experiment was carried out
to determine the optimal hyperparameters for the flower pollination algorithm and recurrent neural
network. There were 24 and 72 combinations of hyperparameters for the flower pollination algorithm
and recurrent neural network, respectively. The best hyperparameters were used to develop the
COVID-19 forecasting model. Experimental results showed that the flower pollination algorithm
performed better than the recurrent neural network in long-term (two weeks) and short-term (one
week) forecasting of COVID-19 cases. The mean absolute percentage error (MAPE) for the flower
pollination algorithm model (0.38%) was much lower than that of the recurrent neural network model
(5.31%) in the last iteration for long-term forecasting. Meanwhile, the MAPE for the flower pollination
algorithm model (0.74%) is also lower than the recurrent neural network model (4.8%) in the last
iteration for short-term forecasting of the cumulative COVID-19 cases in Indonesia. This research
provides state-of-the-art results to help the process of mitigating the global pandemic of COVID-19
in Indonesia.

Keywords: COVID-19; forecasting; flower pollination algorithm; recurrent neural network

1. Introduction

COVID-19 was declared as a global pandemic by the World Health Organization
(WHO) on 12 March 2020. It is an ongoing pandemic and as of 19 January 2021, more than
95.5 million cases have been confirmed, with more than 2.03 million deaths attributed to
COVID-19 across 190 countries around the world [1,2]. The coronavirus was first identified
in December 2019 in Wuhan, China. COVID-19 has spread globally, with America, Europe,
and countries in Asia reporting high numbers of cases. The government of China quickly
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implemented policies such as lockdown, physical distancing, mandatory masks, and
quarantine to mitigate the spread of the virus. China has successfully controlled the
pandemic rapidly and effectively, but many countries around the world are still struggling
to control the spread of the virus. The virus spread to Southeast Asia on 13 January 2020,
when a 61-year-old woman from Wuhan tested positive in Thailand [3]. Indonesia, a
country with a population of 273 million, is the worst-hit nation in the region, with a rapid
increase in cases since the first case reported in March 2020.

In the beginning, the COVID-19 pandemic has not only disrupted the normal way
of life of the community, business, and government operations, but also the economy.
COVID-19 has affected all levels of society and all areas of life. Hospitals and doctors are
struggling to provide care for the COVID-19 patients, and businesses are affected due to
lockdowns. The COVID-19 pandemic has also forced many activities to be carried out
online, and new standard operating procedures (SOPs) were enforced by the government to
ensure safety protocols for the public and for business operations. The COVID-19 pandemic
is also causing an economic recession. The governments of many countries are allowing
some economic movement while still enforcing strict health safety protocols for the public
and business owners to follow. In any health disease crises, prediction of the number of
cases is of utmost importance because it helps the relevant authorities to take strategic
actions to mitigate the effect of the rise in numbers or control the spread of the disease.

Accurate forecasts are needed to provide useful information in the process of mitigat-
ing the global pandemic infectious disease. Thus, forecasting the number of COVID-19
cases in the upcoming few days will be most useful for considerations in making decisions,
including the provision of personal equipment (PPE), preparation of economic policies,
preparation of health facilities, lockdown policies, and opening of schools or businesses.

Currently, there are two approaches to forecasting COVID-19 cases. The first approach
is forecasting COVID-19 using mathematical and statistical models. The mathematical and
statistical model approach requires knowledge of epidemiology and statistical assumptions
regarding the distribution of the data. Mathematical and statistical model approaches
include the autoregressive integrated moving average (ARIMA) [4–6], seasonal ARIMA
(SARIMA) [4], the susceptible-infected-recovered (SIR) model [5,7], the logistic growth
model [7], and the Richards model, which is an extension of a simple logistic growth
model [8].

The second approach is forecasting COVID-19 using artificial intelligence. One of the
artificial intelligence approaches is machine learning. Machine learning is a computational
method with sophisticated algorithms which can learn the pattern of data to solve forecast-
ing problems. Some machine learning forecasting algorithms for forecasting COVID-19
include multi-layer perceptron, random forest, support vector regression, the Elman neural
network [9–11], and the recurrent neural network (RNN) [9,10,12,13]. Sahid et al. [9] con-
cluded that RNN outperformed support vector regression and ARIMA. Hao et al.’s [10]
experimental results showed that RNN is more suitable for the prediction of the cumulative
confirmed cases compared to death and cured cases.

RNN utilized network architecture which is suitable for processing sequential data.
Qiu, Wang, and Zhou [14] applied RNN with long short-term memory (LSTM) architecture
and attention mechanism for stock price forecasting. Uras et al. [15] applied RNN with
LSTM architecture for Bitcoin closing price forecasting. Yao and Guan [16] applied RNN
with an improved LSTM for natural language processing. RNN is also widely applied for
speech recognition [17] and to solve fuzzy non-linear programming [18]. Hewamalage,
Bergmeir, and Bandara’s [19] experimental studies concluded that RNN is a good algorithm
for obtaining reliable forecasts.

Another artificial intelligence approach for forecasting is a metaheuristics optimization
algorithm. The flower pollination algorithm (FPA) is a robust and adaptive metaheuristics
optimization algorithm which is inspired by how flower pollination occurs. The FPA
solves the balance of global and local search and uses Lévy flight distribution for bet-
ter global search performance. The FPA is a method that aims for optimization. The
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FPA outperformed other nature-inspired methods such as the genetic algorithm and par-
ticle swarm optimization [20]. The FPA has been deployed to estimate transportation
energy demand [21], to forecast Organization of the Petroleum Exporting Countries (OPEC)
petroleum consumption [22], to forecast electricity energy consumption [23], and to solve
combined economic and emission dispatch problems [24]. FPA was created by Yang [20] in
2014 and has been reported to perform better than other metaheuristic algorithms.

In this paper, the FPA was used to determine the optimal coefficients of the variables
in the forecasting function of cumulative confirmed COVID-19 cases in Indonesia. In
other words, the FPA was used to perform optimization for curve fitting of cumulative
confirmed COVID-19 cases. We compare the performance of the FPA with a machine
learning method which is popular for forecasting, the recurrent neural network (RNN).
Experimental results showed that the FPA performed better than the RNN in long-term
(two weeks) and short-term (one week) forecasting. This research provides state-of-the-art
results to help the process of mitigating the global pandemic of COVID-19 in Indonesia.
This paper is structured as follows: after this introduction, the second section covers related
works on forecasting COVID-19 cases. This is followed by the explanation of the data and
the methodology in the third and fourth section. The results and discussion are presented
in the fifth section, and the conclusion is provided in the last section.

2. Related Works

In this section, some related works related to forecasting of COVID-19 cases are
presented. As explained in the first section, there are two approaches on forecasting
COVID-19 cases. The first one, the mathematical and statistical model approach, is pre-
sented here [4–8,25,26].

Mishra et al. [4] applied the ARIMA, SARIMA, and Prophet model to forecast the
cumulative deaths, cumulative cases, and new cases of COVID-19 in India. The model was
used to forecast the COVID-19 cases for next 15–20 days starting on 1 September 2020.

Abuhasel, Khadr, and Alquraish [5] applied SIR and ARIMA models to analyze and
forecast the daily COVID-19 cases in the Kingdom of Saudi Arabia. The deterministic SIR
model was applied to analyze the COVID-19 spread in Saudi Arabia, while the ARIMA
model was used to forecast the daily COVID-19 cases. The two models were applied to the
daily data from March 3 until 30 June 2020.

Ali et al. [6] applied the ARIMA model to forecast the cumulative confirmed cases,
recovered cases, and deaths in Pakistan from COVID-19. The training data to develop the
ARIMA model were from 27 February until 24 June 2020, and then the ARIMA model was
used to forecast the next 10 days (25 June 2020 to 4 July 2020).

Malavika et al. [7] developed mathematical model approaches to forecast COVID-19
in India. The SIR models were applied to forecast the maximum number of active cases
and peak time, the logistics growth curve model was applied for short-term prediction
and the time interrupted regression model was used to analyze the effect of lockdown and
other policies. The models were used to forecast the COVID-19 epidemic in India by the
end of May 2020.

Zuhairoh and Rosadi [8] applied the Richards model, which is an extension of a simple
logistic growth model, to forecast daily cases of COVID-19 in South Sulawesi Province,
Indonesia. In addition to forecasting, the objective of this research was to predict when this
pandemic would reach the peak of its spread, and when it would end. The data used in
this paper were compiled as of 24 June 2020.

Anastassopoulou et al. [25] developed a mathematical model approach to estimate
the fatality ratio (death rate) and recovery case ratio based on time series of positive case
data, death rate, and recovered cases from COVID-19 in Hubei, China. The model was
based on data distribution from Middle East respiratory syndrome (MERS) and severe
acute respiratory syndrome (SARS) cases that occurred previously. The model was applied
to forecast the COVID-19 cases by the end of February 2020.
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Petropoulos and Makridakis [26] applied a simple time series model from the expo-
nential smoothing family to forecast the global number of positive cases, the number of
deaths, and the number of patients who have been cured of COVID-19 infection. The model
was used to forecast the COVID-19 cases from February until March 2020.

The second approach in forecasting the COVID-19 cases is using artificial intelligence,
especially machine learning methods [9–13]. Shahid, Zameer, and Muneeb [9] applied
four different machine learning methods and the well-known ARIMA method to forecast
the confirmed cases, recovered cases, and death cases in 10 major countries affected by
COVID-19. The machine learning methods were RNN with bidirectional LSTM (Bi-LSTM)
architecture, RNN with LSTM architecture, RNN with gated recurrent unit (GRU) archi-
tecture, and support vector regression (SVR). The data used in this research were from
22 January until 10 May 2020 for training, and from 11 May until 27 June 2020 for testing.
The RNN model outperformed the SVR and ARIMA for forecasting COVID-19. The models’
ranking, from the best to the worst performance, was: RNN Bi-LSTM, RNN LSTM, RNN
GRU, SVR, and ARIMA.

Hao et al. [10] applied three machine learning methods to forecast the cumulative
confirmed cases, cumulative deaths, and cumulative cured cases in Wuhan, Hubei Province,
China. The machine learning methods were the Elman neural network, RNN-LSTM, and
support vector machine (SVM). The data used in this research were from 23 January 2020
to 6 April 2020. Based on the experimental results, the RNN-LSTM model is more suitable
for the prediction of the cumulative confirmed cases compared to death and cured cases.

Balli [11] applied four different machine learning time series methods to forecast the
weekly cumulative confirmed COVID-19 cases for the United States of America (USA),
Germany, and the world. The machine learning methods were linear regression, multi-layer
perceptron, random forest, and support vector machine. The data used in this research were
from between 20 January and 18 September 2020. The data consist of weekly cumulative
confirmed cases for 35 weeks. SVM outperformed other methods for forecasting the
COVID-19 cases.

Hawas [12] developed an RNN to forecast the data of COVID-19′s daily infections in
Brazil. The training data to develop the RNN model were from 7 April until 6 May 2020,
and then the RNN model was used to forecast the next 54 days (7 May 2020 until 29 June
2020). In this research, there were two alternative timesteps used for the RNN, 30 and 40.

Shastri et al. [13] developed an RNN to forecast the confirmed cases and death cases
of COVID-19 in India and USA. In this research, variants of LSTM architecture of RNN are
developed, including stacked LSTM, bi-directional LSTM, and convolutional LSTM. The
data of confirmed cases used in this research, for both India and USA, were from 7 February
until 7 July 2020, while the data of death cases for India were from 12 March until July 2020,
and for USA were from 26 February until 7 July 2020. The training data constituted 80% of
the total, while the validation data were 20%.

In the COVID-19 research area, machine learning was used for another task beside
forecasting. Machine learning has been applied to COVID-19 patient data. Zoabi et al. [27]
used gradient-boosting machine model built with decision-tree base-learner for prediction
of COVID-19 positive case based on symptoms while Kim et al. [28] evaluated several
machine learning models to predict the need for intensive care. Recently, Ahmad et al. [29]
proposed Shallow Single-Layer Perceptron Neural Network (SSLPNN) and Gaussian
Process Regression (GPR) model for classification and prediction of confirmed COVID-19
cases. Elzeki et al. [30] proposed a computer-aided model using deep learning to classify
positive COVID-19 based on Chest X-ray image data.

The results of closely related works are summarized in Table 1. In this research, a meta-
heuristics optimization algorithm, the FPA, is used to forecast the cumulative confirmed
COVID-19 cases in Indonesia. The FPA is a robust and adaptive method to perform opti-
mization for curve fitting of COVID-19 cases. The performance of the FPA was evaluated
and compared with a machine learning method which is popular for forecasting, the RNN.
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Table 1. Summarization of closely related works.

Authors Methods Forecasting of COVID-19 Cases Results

Mishra et al. [4] ARIMA, SARIMA,
and Prophet model.

The cumulative deaths,
cumulative cases, and daily

confirmed cases in India.

The best root-mean-square error (RMSE)
of forecasting for the cumulative cases

from 23 August 2020 to 1 September 2020:
82090.21.

Abuhasel, Khadr,
and Alquraish [5] SIR and ARIMA models. The daily confirmed cases in the

Kingdom of Saudi Arabia.
The best RMSE of forecasting for the next

10 days: 341.

Ali et al. [6] ARIMA model.
The cumulative confirmed cases,

recovered cases, and deaths
in Pakistan.

The best RMSE of forecasting for the
cumulative confirmed cases from 25 June

2020 till 4 July 2020: 413.9.

Petropoulos and
Makridakis [26]

A simple time series model
from the exponential

smoothing family.

The global number of cumulative
positive cases, the number of

deaths, and the number of
recovered cases.

The absolute percentage error of forecasting
for the cumulative confirmed cases:

a. 01/02/2020 till 10/02/2020: 388%;
b. 11/02/2020 till 20/02/2020: 7.7%;
c. 21/02/2020 till 01/03/2020: 6.2%;
d. 02/03/2020 till 11/03/2020: 12.1%.

Zuhairoh and Rosadi [8] The Richards model.
The daily confirmed cases in

South Sulawesi Province,
Indonesia.

They provided the prediction that the
peak of the COVID-19 pandemic in South
Sulawesi Province, Indonesia, would be
the middle of June 2020 until the end of

July 2020, with 10,000–12,000 cases
per day.

Shahid, Zameer, and
Muneeb [9]

RNN with bidirectional LSTM
(Bi-LSTM) architecture, RNN
with LSTM architecture, RNN

with GRU architecture, support
vector regression, and ARIMA

method.

The confirmed cases, recovered
cases, and death cases in 10 major

countries.

The best RMSE of forecasting for the daily
confirmed cases from 11 May 2022 to

27 June 2022 (48 days):

a. China: 180.63;
b. Italy: 3612.81;
c. USA: 273,851.39.

Hao et al. [10] Elman neural network,
RNN-LSTM, and SVM.

The cumulative confirmed cases,
cumulative deaths, and

cumulative cured cases in Wuhan,
Hubei Province, China.

The best MSE of forecasting for the
cumulative confirmed cases from

24 March 2022 to 6 April 2022: 0.0320.

Balli [11]
Linear regression, multi-layer

perceptron, random forest, and
support vector machine.

The weekly cumulative confirmed
cases in USA, Germany,

and the world.

The best RMSE of forecasting for the
weekly cumulative cases from 24 May
2022 to 18 September 2022 (17 weeks):

a. Germany: 329,196;
b. USA: 9.531,6776;
c. Global: 25,825.8366.

Hawas [12] RNN. The daily confirmed cases
in Brazil.

R2 of forecasting for the daily confirmed
cases from 7 May 2020 to 29 June 2020:

0.665.

Shastri et al. [13]
RNN (stacked LSTM,

bi-directional LSTM, and
convolutional LSTM).

The daily confirmed cases and
death cases in India and USA.

The best MAPE of forecasting for the daily
cases from 8 June 2020 to 7 July 2020:

a. India: 2.17;
b. USA: 2.00.

3. Data

This research used cumulative daily cases data from Indonesia, which are available
publicly from the Ministry of Health, Indonesia at https://kawalcovid19.id/ (accessed on
11 February 2021). Firstly, this research used data compiled since the first case reported
in March 2020. This research used data from 2 March 2020, the date of the first reported
case, until 24 August 2020. The data from that period are used for training and validation
of models to determine the appropriate hyperparameters. After validation, the next step is
testing. A detailed explanation related to the partition of training, validation, and testing
data is explained in Section 4.4. The pattern of cumulative COVID-19 cases in Indonesia is
presented in Figure 1.

https://kawalcovid19.id/
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4. Methods
4.1. Forecasting Using Flower Pollination Algorithm

The flower pollination algorithm (FPA) is a nature-inspired metaheuristic algorithm
proposed by Yang [20]. The FPA is based on the flower pollination process of flowering
plants. Flower pollination can occur by self-pollination or cross-pollination. Self-pollination
refers to pollination that occurs from a different flower, or from the same flower, of a single
plant. When there is no reliable pollinator available, it is usually aided by wind. Self-
pollination is also referred to as abiotic pollination. Cross-pollination, on the other hand,
refers to pollination from a flower of a different plant. Cross-pollination is aided by a
pollinator, such as bees, bats, birds, and flies, who can fly a long distance. The pollinators
may demonstrate as Lévy flight behavior. They jump or fly with distance steps that
obey Lévy distribution. Cross-pollination is also referred to as biotic pollination. Cross-
pollination is considered to be global pollination, while self-pollination is considered to be
local pollination.

There are four rules for the FPA, based on the above flower pollination process of
flowering plants:

1. Rule 1—biotic, cross-pollination, or pollination between flowers is global pollina-
tion following Lévy Distribution. This first rule is represented mathematically in
Equation (1), where xt

i is the pollen i or solution vector xi at iteration t, g∗ is the
current best solution found among all solutions at the current iteration, and L(π) is
the strength of the pollination (step size). Lévy flight is used to mimic it; therefore,
L(π) is derived from a Lévy distribution with a value greater than 0. Lévy distribution
is represented in Equation (2). Lévy distribution uses the standard gamma function
Γ(π), which is valid for large steps s > 0.

xt+1
i = xt

i + γL(λ)
(
xt

i − g∗
)
, (1)

L ∼ λΓ(λ)sin(πλ/2)
π

1
s1+λ

, (s� s0 � 0), (2)

2. Rule 2—abiotic, self-pollination, or pollination of flowers from the same plants. Local
pollination is represented mathematically in Equation (3). xt

j and xt
k are two pollens

of the same plant but from different flowers. ε is a random value from a uniform
distribution in range [0,1].

xt+1
i = xt

i + ε
(

xt
j − xt

k

)
, (3)
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3. Rule 3–flower constancy or equivalent to a reproduction probability proportional to
the likeness of the two flowers involved is often developed by the pollinators.

4. Rule 4—a probability P ∈ [0, 1] is used to switch between local pollination and
global pollination.

In this study, the FPA was used to forecast cumulative cases of COVID-19. The FPA
was used to obtain the best solution g∗ from the set of solutions x. Each x consists of
a multilinear regression coefficient θl , where l = 1, 2, . . . , N and bias θ0 to predict the
cumulative daily cases of COVID-19 for day D′T based on the previous N days, so that
x = {θ0, θ1, θ2, . . . ., θN}. The θl will be used as sum-product for DT−l and then the results
are summed by θ0. Formally, the multilinear regression in this research is represented in
Equation (4):

D′T(x) = θ0 + ∑n
l=1 θl · DT−l , (4)

The objective function for each solution x is to minimize the difference between
predicted cumulative case D′T and actual cumulative case DT . In this research, root-mean-
square error (RMSE) is used to measure the difference. RMSE is presented in Equation (5),
where m is equal to the length of the time series record:

RMSE(x) =

√√√√ m

∑
i=1

(
D′i(x)− Di

)2

m
, (5)

Based on the objective function that has been determined, the fitness function for each
solution to be evaluated is represented mathematically in Equation (6). The best solution
for each generation is g∗, and will be used as the final solution:

f itness(x) =
1

RMSE(x) + 1
, (6)

For each generation t, n solutions as a population are generated. From initial gener-
ation t0, the best solution in the population will be stated as g∗. In generation t, where
t = 1, 2, . . . , MaxGeneration, if there is one solution that is better than g∗, that solution
will replace the existing g∗. The alteration of g∗ is performed iteratively in each generation;
therefore, a dynamic approach is required. The solutions in generation t are formed from
the pollination of the solutions in generation t− 1 (either global pollination or local pollina-
tion, as stated in Equations (1) and (3), respectively). The switch between global or local
pollination in generation t is controlled by switch probability P, as stated in Rule 4.

4.2. Forecasting Using Recurrent Neural Network

The second method applied is the recurrent neural network (RNN). RNN is a kind of
neural network architecture which is suitable for processing sequential data. The advantage
of the RNN architecture is that it is more flexible and can be attuned according to the
number of sequences in input or output. The RNN uses iterative function cycles to store
information [31]. The RNN architecture is constructed in a form such that the network will
remember the previous information and apply it to calculate the current output. In the RNN,
the nodes between the hidden layers are connected periodically, and the hidden layer’s
input includes not only the output of the input layer, but also the output of the hidden
layer at the last time, thus RNN can preserve, learn, and record historical information in
sequence data [32].

The RNN has a similar forward pass process to that of a multilayer perceptron with a
single hidden layer. The difference lies in the fact that RNNs accept activations from both
the current external input and also the hidden layer activations from previous timesteps [31].
As shown in Figure 2, the structure of the RNN includes the input layer, hidden layer,
output layer, the weights of input layer to hidden layers, the weights of hidden layers



Computation 2022, 10, 214 8 of 19

to output layers, and learnable weights for the previously hidden state. These recurrent
connections serve to pass values over timestep or sequence.
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With this architecture, the current output in the RNN depends on the previous state.
In a simple RNN, hidden units will receive the input in the current state and the output
from the previous hidden state. The current hidden unit and the output can be defined
mathematically in Equations (7) and (8), respectively:

ht = σ(W1xt + W2ht−1 + b), (7)

ot = W3ht + b2, (8)

For Equation (7), ht is the hidden state and xt is the input at the current timestep. W1
is the learnable weight from the input layer to the hidden layer, while W2 are learnable
weights for the previously hidden state’s input. σ is an activation function and b1 is the bias
for the hidden layer. The activation function σ can be switched depending on the situation.
The purpose of using the activation function is to ensure that the model is a non-linear
machine. Common activation function choices are sigmoid, tanh, and ReLU functions. For
Equation (8), ot is the output state, ht is the hidden state, W3 is the learnable weight from
hidden layer to the output layer, and b2 is the bias for the output layer.

The complete sequence of hidden activations can be calculated by starting at the first
timestep and then recursively applying Equation (7), incrementing time at each step. For
the initially hidden unit at the start of the timestep, the value of the previously hidden state
unit can either be manually adjusted to a certain value or set to zero. It is known that RNN
stability and performance can be improved by using non-zero initial values. As for the
weights, the norm is to randomize the weight without known information about the data.
However, they can be set to particular values to help avoid overfitting [31].

In neural networks, the error of the prediction with respect to the target is calculated
after the output is obtained. This error is normally in the form of a partial derivative of a
differentiable loss function, where the derivative with respect to the weights can be used to
improve the weights. There are two well-known algorithms that can be used to calculate
the loss derivatives for RNNs: real-time recurrent learning (RTRL) and backpropagation
through time (BPTT). BPTT is known to be simpler and more efficient in computation
time, particularly since its process is similar to normal backpropagation in the neural
network [31].

In this research, the data of cumulative COVID-19 daily cases are represented sequen-
tially. Each sequence consists of data from the previous N. This sequence will be fed to
RNN architectures to predict the cumulative COVID-19 cases of day D′T . The experiments
are conducted using several combinations of hyperparameters, such as the number of
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hidden layers, the dimension of neurons, learning rates, and dropout ratio, to attempt to
determine the best model with minimum RMSE. ReLU is used as the activation function
and Adam is used as the optimizer.

4.3. Model Performance Measurement

In order to measure the performance of the forecasting model, two performance mea-
surements are used in this research, which are root-mean-square error (RMSE) and mean
absolute percentage error (MAPE). RMSE is represented mathematically in Equation (5).
The smaller the RMSE values are, the more accurate the forecasting model is; conversely,
the larger the RMSE values are, the more inaccurate the model is [33]. RMSE value is
the error number, which doesn’t provide any information about the percentage of error
compared to the actual value. Meanwhile, MAPE is a widely used evaluation metric for
forecasting methods presenting the percentage of error. MAPE is represented mathemati-
cally in Equation (9), where At is actual value, Ft is forecast value, and n is the length of
time series recorded.

MAPE =
1
n

n

∑
t=1

∣∣∣∣At − Ft

At

∣∣∣∣, (9)

The code of both forecasting models, the FPA and RNN, are available to be accessed
publicly at http://ugm.id/covidforecasting (accessed on 29 November 2022). The code is
written in Python programming language.

4.4. Training, Validation, and Testing Data

This study involved two phases, which are Phase 1: Development of FPA and RNN
Model, and Phase 2: Evaluation of the Forecast Performance of the FPA and RNN Model
Developed in Phase 1.

In Phase 1: Model Development, the data period is from 2 March 2020, to 10 July 2020.
The dataset from 2 March 2020, to 10 July 2020, is divided into a ratio of 80:20; 80% for
training data and 20% for validation data. Therefore, the training data are from 2 March
2020, to 4 June 2020, while the validation data are from 15 June 2020, to 10 July 2020,
represented in Table 2. The validation process is carried out to determine the appropriate
hyperparameters for the model.

Table 2. Period for developing the FPA and RNN.

Sample Period

Training (n = 105) 2 March–14 June 2020
Validation (n = 26) 15 June–10 July 2020

In Phase 2: Model Evaluation, after the appropriate hyperparameters for the FPA and
RNN model are obtained, the testing process is conducted. The FPA and RNN model is
tested for short- and long-term forecast of the cumulative COVID-19 cases. We refer to some
references [4–6,10,26] conducting forecasting for the next 7–14 days. Therefore, we used
one-week forecast for the short-term and two-week forecast for the long-term forecasting.

1. Long-term forecast, which forecasts the cumulative cases of COVID-19 over the next
14 days (2-week forecast);

2. Short-term forecast, which forecasts the cumulative COVID-19 cases for the next
7 days (1-week forecast).

In order to obtain more comprehensive results of the performance of the models, the
testing (forecast) process is conducted in several rounds or iterations. Long-term testing is
conducted in 5 iterations, while short-term testing is conducted in 10 iterations. The model
is updated with the relevant training data in each iteration using the hyperparameters
defined in the validation sample in Phase 1. Table 3 presents the period of training data

http://ugm.id/covidforecasting
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and testing data for long-term testing, while Table 4 presents the period of training data
and testing data for short-term testing.

Table 3. Period for long-term testing (forecast).

Iteration Types of Data Period

Iteration 1
Training Data 2 March–15 June 2020
Testing Data 16 June–29 June 2020

Iteration 2
Training Data 2 March–29 June 2020
Testing Data 30 June–13 July 2020

Iteration 3
Training Data 2 March–13 July 2020
Testing Data 14 July–27 July 2020

Iteration 4
Training Data 2 March–27 July 2020
Testing Data 28 July–10 August 2020

Iteration 5
Training Data 2 March–10 August 2020
Testing Data 11 August–24 August 2020

Table 4. Period for short-term testing (forecast).

Iteration Types of Data Period

Iteration 1
Training Data 2 March–15 June 2020
Testing Data 15 June–22 June 2020

Iteration 2
Training Data 2 March–22 June 2020
Testing Data 23 June–29 June 2020

Iteration 3
Training Data 2 March–29 June 2020
Testing Data 30 June–6 July 2020

Iteration 4
Training Data 2 March–6 July 2020
Testing Data 7 June–13 July 2020

Iteration 5
Training Data 2 March–13 July 2020
Testing Data 14 July–20 July 2020

Iteration 6
Training Data 2 March–20 July 2020
Testing Data 21 July– 27 July 2020

Iteration 7
Training Data 2 March–27 July 2020
Testing Data 28 July–3 August 2020

Iteration 8
Training Data 2 March–3 August 2020
Testing Data 4 August–10 August 2020

Iteration 9
Training Data 2 March–10 August 2020
Testing Data 10 August–17 August 2020

Iteration 10
Training Data 2 March–17 August 2020
Testing Data 18 August–24 August 2020

5. Results and Discussion
5.1. Hyperparameter

The validation process is conducted to obtain appropriate hyperparameters for the
FPA and RNN model. The experiments engage several combinations of hyperparameters
and choose the best one, providing the model with minimum RMSE. As explained in
Section 4.4., the training data is from 2 March 2020, until 14 June 2020, while the validation
data is from 15 June 2020, until 10 July 2020.

The combinations of hyperparameters for the FPA and RNN model are:

1. FPA Model:

a. Length of the input timestep: 5 or 7;
b. Switch probability between global pollination or local pollination: 0.3, 0.5, or 0.8;
c. Population size (number of generated solutions): 50, 100, 150, or 200.

2. RNN Model:

a. Length of the input timestep: 5 or 7;
b. Dimension of neurons in LSTM cell: 10, 30, 50;
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c. Learning rates: 0.001 or 0.01;
d. The number of hidden layers: 1 or 2;
e. Dropout ratio for each hidden layer: 20%, 50%, or no dropout.

In total, there are 24 combinations of hyperparameters for the FPA and 72 combinations
of hyperparameters for the RNN. The best hyperparameters will be used in the testing
process. For the RNN model, we use one and two hidden layers. Deeper RNN architecture
required more data for training. In our research, the training data are limited enough
(105 days). Therefore, if we use three or more hidden layers for the RNN, the model will
have high possibility to be trapped in overfitting and it may not provide better results.

5.2. Results and Performance Analysis

The experiments of the validation process used 24 hyperparameter combinations for
the FPA and 72 hyperparameter combinations for RNN in order to determine the best
hyperparameters for this forecasting model. Based on the observation of the RMSE value
for each generation, the number of generations to run the FPA is 100. The RMSE value for
100 generations reached convergence. While the number of epochs to run RNN is 1000, the
RMSE value at 1000 epochs also reached convergence.

The complete 96 experiment results of the validation process are presented in Sup-
plementary Tables S1 and S2, while the best hyperparameters, with the lowest RMSE
values, are:

1. FPA Model:

a. Length of the input timestep: 5;
b. Switch probability between global pollination or local pollination: 0.3;
c. Population size (number of generated solutions): 100;
d. RMSE value: 292.66.

2. RNN Model:

a. Length of the input timestep: 7;
b. Dimension of neurons in LSTM cell: 10;
c. Learning rate: 0.01;
d. The number of hidden layers: 1;
e. Dropout ratio for each hidden layer: no dropout;
f. RMSE value: 502.95.

These parameters were then used to generate the FPA and RNN model for the test-
ing process. In this validation process, the RMSE value from the FPA model (292.66) is
significantly lower than that of the RNN model (502.95).

5.2.1. Long-Term Forecasting

There are two types of testing processes: (1) long-term forecasting for 5 iterations
(different time periods); and (2) short-term forecasting for 10 iterations (different time
periods). In this testing process, two performance measurements are calculated, RMSE
and MAPE.

The long-term forecasting results are explained in this section, while the short-term
forecasting is explained in the next section. The results for long-term forecasting are
presented in Table 5. The FPA and RNN models are not overfitted, because the MAPE
value for testing data is lower than the training data for all iterations. The FPA model has
the lowest MAPE in the last iteration.
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Table 5. Long-term forecasting results.

Iteration Data
FPA RNN

RMSE MAPE (%) RMSE MAPE (%)

Iteration 1
Training Data 185.80 4.12 177.35 2.57
Testing Data 289.05 0.45 567.92 1.11

Iteration 2
Training Data 394.88 7.74 760.54 10.91
Testing Data 997.16 1.07 1802.61 2.62

Iteration 3
Training Data 431.61 9.50 632.57 4.62
Testing Data 1927.70 2.10 4639.33 4.93

Iteration 4
Training Data 550.55 10.90 1082.42 5.03
Testing Data 752.77 0.53 2459.13 2.13

Iteration 5
Training Data 562.86 7.09 1620.60 6.98
Testing Data 621.37 0.38 7715.96 5.31

Figure 3 represents a bar chart of RMSE for long-term forecasting in testing data.
Figure 4 represents a bar chart of MAPE for long-term forecasting in testing data. Based
on Table 5 and the clustered bar chart in Figure 3, the RMSE value of training and testing
provided by the FPA model is lower than that of the RNN model for all iterations. It can be
observed in Table 5 that the MAPE is higher for the FPA for the training sample at iteration
1, 3, and 4. However, the MAPE for the testing sample is lower for the FPA model compared
to the RNN model, which has high MAPE values, as shown in Table 5 and Figure 3. This
shows that the FPA provided more reliable long-term forecasts.
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In total, until the last iteration (iteration five), we have training data consisting of
169 records (2 March 2020 until 17 August 2020). After we observed the forecasting results,
it was determined that the RNN model provides more accurate forecasting in the beginning
of training data (day 1–50), but less accurate in the following days. In contrast with the
RNN model, the FPA model provides more accurate forecasting results than the RNN
starting at day 51. The MAPE value represents the proportion between the error and
the actual numbers. The RNN model provides more accurate forecasting results in the
beginning, when training data contain less than 10,000 cumulative cases, but provides less
accurate forecasting results in the following days, when training data contains more than
10,000 cumulative cases, reaching a total of 140,000 cases on the last day. For this reason,
the RNN model has a higher RMSE value but lower MAPE value than the FPA model for
iteration 3, 4, and 5 of the training data. The FPA model provides more accurate forecasting
after learning, for some iterations; therefore, the FPA model provides a lower RMSE value
but a higher MAPE value than the RNN model in training data. The RNN model requires
more data for training. Unlike the training data, the testing data for each iteration only
consists of 14 days. The next analyses will focus on forecasting results of testing data.

Figure 5 represents the trend for the actual data and long-term forecasting results
using the FPA for each iteration. The x-axis represents the date and the y-axis represents
the cumulative COVID-19 cases. The actual number of cumulative COVID-19 cases are
represented with a blue line (real), the forecasting result for iteration 1 is represented with
a red line (testing 1), iteration 2 is represented with a yellow line (testing 2), iteration 3
is represented with a green line (testing 3), iteration 4 is represented with an orange line
(testing 4), and iteration 5 is represented with a black line (testing 5).
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The RMSE and MAPE value for testing data in iteration 3 are the highest compared to
other iterations. As we can see from Figure 5, the forecasting in iteration 3 (testing 3) learns
the pattern from iteration 1 and iteration 2. The trend of data in iteration 3 has a steeper
slope than the previous iterations. This may be the reason why the error value in iteration 3
is the highest one.

Figure 6 presents the trend of actual data and forecasting results for the RNN model.
The forecasting results of the FPA model are better than those of the RNN model. This is
also confirmed with the RMSE and MAPE results in Table 4, which shows that the overall
RMSE and MAPE values of the FPA model are lower than those of the RNN model. The
RNN model is a deep neural network which requires more data for training. The FPA
model is better than RNN for long-term forecasting.
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5.2.2. Short-Term Forecasting

The results for short-term forecasting are presented in Table 6. The FPA model has
lower RMSE for both training and testing data for all iterations except iteration 7 (RMSE
for the FPA is higher than for the RNN). On the other hand, the RNN model, overall, has
lower MAPE for training data, except iteration 7. The FPA has lower MAPE for testing
data, except at iteration 7. These results show the RNN model may be overfitted in the
iterations where MAPE is higher in testing than the training sample. Overfitting occurs
when the performance of the model is good for the training but not the testing data.

Table 6. Short-term forecasting results.

Iteration Data
FPA RNN

RMSE MAPE (%) RMSE MAPE (%)

Iteration 1
Training Data 372.30 4.57 1612.35 3.79
Testing Data 1179.31 0.74 7240.29 4.80

Iteration 2
Training Data 167.45 5.49 582.25 7.92
Testing Data 195.66 0.30 1878.50 3.64

Iteration 3
Training Data 172.18 3.31 148.22 3.37
Testing Data 346.66 0.48 306.01 0.39

Iteration 4
Training Data 189.55 5.72 508.51 4.50
Testing Data 735.18 0.82 1331.62 1.75

Iteration 5
Training Data 243.84 5.76 627.81 2.59
Testing Data 739.52 0.88 2467.42 2.89

Iteration 6
Training Data 651.86 14.74 1031.12 5.51
Testing Data 2184.86 2.22 3277.67 3.41

Iteration 7
Training Data 477.98 10.00 542.96 5.69
Testing Data 1589.29 1.34 221.98 0.13

Iteration 8
Training Data 395.56 6.41 1166.66 2.91
Testing Data 1228.22 0.99 5895.64 4.85

Iteration 9
Training Data 260.75 3.03 285.52 2.24
Testing Data 373.41 0.21 622.63 0.42

Iteration 10
Training Data 372.30 4.57 1612.35 3.79
Testing Data 1179.31 0.74 7240.29 4.80

Based on Table 6, the RMSE value of training data for iteration 4, 5, 6, 7, 8, 9, and 10
provided by the FPA model is lower than the RNN model, but the MAPE value provided
by the FPA model is higher than the RNN model. This is the same as what occurred for the
long-term forecasting. The RNN model provides more accurate forecasting results in the
beginning, when training data contain less than 10,000 cumulative cases, but provides less
accurate forecasting results in the following days, when training data contains more than
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10,000 cumulative cases, reaching a total of 140,000 cases on the last day. For this reason,
the RNN model has a higher RMSE value but lower MAPE value than the FPA model
for iteration 4,5,6,7,8,9, and 10 in training data. The FPA model provides more accurate
forecasting after learning for some iterations; therefore, the FPA model provides lower
RMSE value but higher MAPE value than the RNN model in training data.

Figure 7 represents a bar chart of RMSE for short-term forecasting in testing data.
Figure 8 represents a bar chart of MAPE for short-term forecasting in testing data. Figure 9
represents the trend for the actual data and short-term forecasting results of the FPA model
for each iteration. The x-axis represents the date, and the y-axis represents the cumulative
COVID-19 cases. The actual number of cumulative COVID-19 cases are represented with a
blue line (real), the forecasting result for iteration 1 is represented with a red line (testing 1),
iteration 2 is represented with a yellow line (testing 2), iteration 3 is represented with a
green line (testing 3), iteration 4 is represented with an orange line (testing 4), iteration 5
is represented with a brown line (testing 5), iteration 6 is represented with a purple line
(testing 6), iteration 7 is represented with a gray line (testing 7), iteration 8 is represented
with a dark blue line (testing 8), iteration 9 is represented with a pink line (testing 9) and
iteration 10 is represented with a black line (testing 10).
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Based on Figures 7–9, as with long-term forecasting, the FPA model for short-term
forecasting has the highest RMSE and MAPE value for testing data in iteration 6, which is
iteration 3 for long-term forecasting. The trend of data in iteration 6 has a steeper slope
than the previous iterations. The MAPE value for testing data in iteration 7 provided by the
FPA model (1.34 %) is higher than that of the RNN model (0.13%). The FPA model learned
a new pattern of data in iteration 6, with a steeper slope; therefore, the FPA model has the
highest MAPE in iteration 6 (2.22%). The MAPE decreases in iteration 7 (1.34%) and in the
next iterations. This does not occur in long-term forecasting. The FPA model can learn a
new pattern of data better in long-term forecasting, which is the training data updated for
2 weeks.

Figure 10 represents the trend of actual data and forecasting results for the RNN model.
Based on Figure 8, the highest MAPE value is in iteration 8, which is confirmed with the
forecasting result in Figure 10 (testing 8). The forecasting results of the RNN model for the
long-term model are better than for the short-term model. The training model in the RNN
may not be adequately up to date with the addition of 1 week of data for each iteration.
The RNN could not calculate the pattern of the data with the addition of only a few data
(1 week of data).
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Overall, the forecasting results of the FPA model are better than the RNN model, both
for long-term forecasting and short-term forecasting. The FPA model is better than the
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RNN model in the presence of limited training data. The RNN model requires more data
for training and to learn the pattern of data. The FPA model is better than the RNN model
for forecasting the cumulative COVID-19 cases in Indonesia.

6. Conclusions

In this research, we presented forecasts of the cumulative COVID-19 cases in Indonesia
using the FPA, a natured-inspired algorithm, to determine the optimal coefficients of the
variables in the forecasting function of COVID-19 cases. We compared the performance of
the FPA with a machine learning method which is popular for forecasting, the RNN. Several
comprehensive experiments were conducted to determine the optimal hyperparameters for
the FPA and RNN. The best hyperparameters were used to develop a model for forecasting.
Long-term and short-term forecasting were conducted using different iterations with data
added as more cases were reported. The FPA model has lower MAPE value than the RNN
model for both long-term and short-term forecasting. These results show that the FPA
model is better than the RNN model for forecasting cumulative COVID-19 cases. The FPA
model was able to provide more reliable forecasts. This research provides state-of-the-art
results to aid the process of mitigating the global pandemic of COVID-19 in Indonesia. In
future, this forecasting model will be extended for COVID-19 active cases and deaths. Then,
the forecasting results will be provided online and updated each day by developing an
online dashboard for users; therefore, it will be more useful.
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MAPE Mean absolute percentage error
MERS Middle East respiratory syndrome
OPEC Organization of the Petroleum Exporting Countries
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ReLU Rectified linear activation function
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RNN Recurrent neural network
RTRL Real-time recurrent learning
SARIMA Seasonal ARIMA
SARS Severe acute respiratory syndrome
SIR Susceptible-infected-recovered
SOP Standard operating procedures
SVM Support vector machine
SVR Support vector regression
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