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Abstract: Web page clustering is an important technology for sorting network resources. By extraction
and clustering based on the similarity of the Web page, a large amount of information on a Web
page can be organized effectively. In this paper, after describing the extraction of Web feature words,
calculation methods for the weighting of feature words are studied deeply. Taking Web pages as
objects and Web feature words as attributes, a formal context is constructed for using formal concept
analysis. An algorithm for constructing a concept lattice based on cross data links was proposed
and was successfully applied. This method can be used to cluster the Web pages using the concept
lattice hierarchy. Experimental results indicate that the proposed algorithm is better than previous
competitors with regard to time consumption and the clustering effect.
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1. Introduction

In the era of big data, due to the massive amount of data in the network, the difficulty of getting
the correct information is greatly increased. More and more people are beginning to realize the
importance of network resource standardization and reorganization. Web clustering technology has
attracted a lot of attention as an important part of network resource management. It is mainly used in
the fields of data extraction, knowledge discovery, data mining, and information fusion [1]. Similar
Web pages are grouped into one category by extracting and clustering the similarity of these Web pages.
Because of the large capacity and dynamic nature of the network, Web page clustering is more difficult
and complicated than ordinary text clustering [2]. At present, most studies on Web page clustering
have been based on text, link structure or hybrid clustering. Oren Etzioni and Oren Zamir [3] explored
the clustering of Web pages, and found that users are often forced to screen the list of files returned by
the search engine, which makes it hard to retrieve information. They then proposed a new algorithm to
construct suffix trees based on the Web abstract by studying the clustering of Web pages; the clustering
was more effective when using this algorithm. In addition, Mecca et al. [4] proposed a new Web page
clustering algorithm in 2006, which not only directly analyzes the results returned by search engines,
but also obtains the entire Web page by analyzing the fragment content of the results.

The Formal Concept Analysis (FCA) represents the relationship between objects and attributes,
and is used widely in data mining, e-commerce, personalized navigation, text clustering, semantic Web,
search engines, and so on. Sun introduced an information management system for data mining by
integrating ontology and FCA in e-commerce [5]. Hitzler applied FCA in a semantic web [6]. Shen et al.
proposed an intelligent search engine in which the information retrieval model is based on the formal
context of FCA and is integrated with a browsing mechanism for such a system based on the concept
lattice [7]. Freeman and White suggested that network data could take the form of a square-actor in an
actor-binary adjacency matrix, where each row and each column in the matrix represents a social actor.
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They used a Galois Lattice to represent network data [8]. Although there are many algorithms for FCA
clustering with larger feature sets and larger data sets, the results are not satisfactory. Clustering based
on FCA still has some limitations. For example, there are too many concepts; the scale of the concept
lattice is too large; the computation is large and complex; and the process of generating a complete
Hasse diagram is difficult.

The purpose of this paper is to study a web page clustering method based on formal concept
analysis. The contributions of this paper are as follows:

• Propose a bi-directional maximum matching word segmentation method based on a Chinese
word segmentation method and propose a word weighting scheme based on term frequency.

• Propose a ListFCA algorithm based on the study of different types of concept lattice construction
algorithms. The ListFCA uses a more efficient method to traverse the header list based on cross
data link when constructing concept lattices, which makes it easier to generate the Hasse graph
corresponding to the concept lattice.

The rest of the paper is organized as follows. The related works and the classic algorithm for
constructing the concept lattice is discussed in Section 2. In Section 3, we preprocess the Web page
and propose a more efficient header list traversal method for the construction of concept lattices.
The experiments are shown in Section 4 to verify the efficiency of the ListFCA. The conclusion of the
paper is in Section 5.

2. Related Work

2.1. The Background of FCA

In the 1980s, Wille proposed FCA and introduced its mathematical definition and related
theories [9]. In this method, the binary relationship between objects and attributes is analyzed,
the formal context is constructed, and finally a concept lattice is constructed based on the formal
context. Due to the effective description of data and data relationships, FCA has become a powerful
tool in rule extraction and data analysis.

FCA is a formalized description of concepts (i.e., an ontology). The intension of a concept is
the set of attributes belonging to the concept, and the extension of a concept is the set of objects that
contain the concept [10]. In FCA, we use all the attributes and objects to construct formal contexts,
and these contexts are usually in the form of a cross table. In this cross table, objects are represented by
rows, and attributes are represented by columns, while the intersection of the mth row and the nth
column represents the mth object with the nth attribute [11,12]. Clustering based on the FCA method
contains four steps. First, the data sets are pretreated and a feature item is extracted from a data
element, which is represented by a feature item. Then, a formal context is constructed by taking data
elements as objects and feature items as attributes. Next, the concept of formal contexts is extracted,
and the concept lattice of the formal contexts is constructed. Finally, a Hasse diagram with a high
degree of visualization can be generated.

2.2. Related Algorithms for Constructing Concept Lattice

Among FCA-related applications, the core content is constructing a formal context and then
generating the corresponding concept lattice. The algorithms for constructing the concept lattice are
mainly divided into three types: batch construction algorithm, incremental construction algorithm and
parallel construction algorithm [13].

2.2.1. The Batch Algorithm

The Batch algorithm is a kind of early construction algorithm. Based on the different ways of
constructing the lattice, they can be divided into three categories, including top-down, bottom-up,
and enumeration [14]. In the top-down method, the top node is constructed first, and then it proceeds
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downwards layer by layer. The Bordat algorithm [15] is one of the classic algorithms. In the bottom-up
method, the bottom node is constructed first, and then it expands upward, such as in the Chein
algorithm [16]. The enumeration method is based on a given data set, and all nodes are enumerated
according to a certain order, such as Ganter algorithm [10]. The father-child relationships between
concepts and all the concept lattices can be obtained in the batch algorithm. However, it is difficult to
generate Hasse diagram.

We introduce the Bordat algorithm [15] as a proposition. At first, the top node concept is
constructed which has empty intension or has only one element, and its extension is all sets of
object in formal context. Secondly, all the sub nodes of the top node are calculated, each of their direct
sub nodes is also calculated one by one. Finally, these steps are repeated until there are no sub nodes.

2.2.2. The Incremental Algorithm

In the Incremental algorithm, the lattices are computed by adding objects or attributes of a given
context one by one. Godin algorithm is one of the classic algorithms. The incremental algorithm can
avoid redundant nodes and work with dynamic datasets. It has the ability to construct concept lattices
for dynamic formal context. Because of the superior temporal performance, most of the concept lattice
systems are based on this method.

We introduce the Godin algorithm as a proposition [17]. Godin algorithm scans every node in
the original concept lattice and estimates which category the node belonged, then the corresponding
operation is taken according to different categories.

2.2.3. The Parallel Algorithm

The Parallel algorithm falls into two categories. The first one involves the partition of the
formal context, so that the sub context can be processed in parallel when constructing concept lattice.
The other one involves improving serial algorithm, so that it can be parallelized. In the Parallel
algorithm, the complex parent-child relationships between concepts can be obtained, and the concept
of dynamic formal context can be extracted. It has great advantages in dealing with complex and
huge data sets. However, in most parallel construction algorithms it is difficult to produce a complete
lattice structure, and Hasse diagram cannot be generated. Therefore, it is not suitable for the study in
this paper.

3. The ListFCA Algorithm

3.1. Web Data Cleaning

Before constructing the concept lattice, the Web page needs to be preprocessed. The Web page
generally contains a large number of HTML tags in the source file. The HTML tags can provide a lot of
information and structure information of the Web pages, but there is much useless information in the
HTML tags.

3.1.1. Disturbance Cleaning

The organization and format of Web content are different from the plain text. The text content
of Web page does not exist alone in the Web source file [18]. Instead, the text content is nested in
the HTML tags. The different contents can be added with different tags so that it can be displayed
in different styles. Through the analysis of the Web page contents, we find that some contents have
no relation to the content of Web page itself [19]. Those contents are useless for clustering even
increases the complexity of the algorithm and becomes interference. The interference generally covers
most of the content except the text, such as various pictures, advertisements, borders and so on.
More of the interference come from the source codes, include some page rule information, page style
information, page function information etc. Removing the interference is necessary. Different contents
are usually wrapped in different tags in the source file, which is very helpful for the identification of
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interference [20]. The interference exists in the interference item tags, and the information in the tags
should be filtered out.

Through several Web page analyses, we have developed the interference item tags shown
in Table 1 [21].

Table 1. Tag of Interference Item.

Tag

<ALT>
<BR>

<IMG>
<TABLE>
<STYLE>

<APPLET>
<FORM>
<META>

<SCRIPT>
<LINK>

3.1.2. Tag Weighting

The tags appear in pairs in Web pages. After removing the interference in the Web page,
the unfiltered tags are different in content. Through the analysis of several Web instances, the contents
of different tags have different levels of importance. Thus, the different weights should be given to
the tags. In this way, the contents of the tag have the same weight as the tag, and the feature words
are contained in the corresponding contents [22]. For example, the <TITLE> tags have higher weight
values while the tags such as <H4> are not important and have lower weight values. In this section,
a higher frequency tag is developed in the Web page and the relative value of the corresponding
weight is shown in Table 2 [23].

Table 2. Weighting of Page Tag.

Tag Weight Tag Weight

<TITLE> 5 <H2> 3
<EM> 4 <H3> 2

<STRONG> 4 <H4> 2
<B> 3 <DT> 3

<BIG> 3 <A> 3
<H1> 4 <UL><OL> 3

Web page preprocessing is an important foundation work in Web clustering. A Web page is
represented as a set of feature words through preprocessing and is very useful for simplifying Web
page clustering. We need to segment the Web pages, calculate the word weight and extract the feature
in preprocessing.

In this paper, we used the bi-direction maximum matching word segmentation method [24].
The rules are as follows:

The algorithm has an ability of eliminating ambiguities, and it can also effectively solve the flaws
of the segmentation algorithm based on dictionary in ambiguity recognition, which ensures the speed
of word segmentation.

• If the number of the result words in forward or the reverse maximum matching is different,
then take the fewer words as the correct result;

• If the number of the result words is the same, there is no ambiguity, then return to any one as
a result.
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After segmenting Web page into words and removing stop words, the term frequency (TF) was
used as the primary basis to calculate the weights. The formula for calculating term frequency is
as follows:

t fk = ∑
j∈J

β j × t fkj (1)

where t fk indicates the term frequency of the kth character in a Web page; J represents a collection
of label categories; β j represents the weight of j class label; t fkj represents the term frequency of the
feature word k in the j class label.

The term weight uses normalization method [25]. The formula is as follows:

w(tk) =
t fk

∑N
n=1 t fn

(2)

where N represents the number of term frequencies;
N
∑

n=1
t fn represents the total term frequency of a

Web page; w(tk) represents the kth term weight in this Web page.
Since the word weight has been calculated, we could sort the feature words by weight in

descending order in feature extraction and select the top m feature words with maximum weight
values as the dimension of the Web feature vector to represent the Web page.

3.2. Web Formal Context Construction

According to the related knowledge of formal context, we could define the formal contexts of
multiple Web pages:

Definition 1. For a triple K = (G, M, I,), where G = {g1, g2, g3, . . . gi} denotes a set of objects;
M =

{
m1, m2, m3, . . . mj

}
denotes a set of attributes; and I ∈ G × M is a binary relation between these

two sets; where the symbol × denotes Cartesian product. Then the triple K is defined as the formal context of the
Web page [26,27].

Based on the definition of the formal context of the Web page given above as well as the formal
context definition in formal concept analysis, set P is the collection of Web pages, set M is the collection
of feature words that can represents Web pages. For any Web page p ∈ P and any feature words
m ∈ M, if Web page p contains feature m, then (p, m) ∈ R. For example, we set the formal context as
K = (P, M, R), P = (1, 2, 3, 4) as the collection of Web page, M = (m1, m2, m3, m4, m5) as the collection
of feature words.

Table 3 shows a simple Web formal context. In the table, a single Web page is represented by a
row and a feature word is represented by a column [28]. The “×” at the intersection between rows
and columns indicates that the Web page of this line has the feature word of this column. The Hasse
diagram corresponding to the formal context can be obtained as shown in Figure 1. we number the
concepts in the concept lattice of Figure 1 as 1© to 8©.

Table 3. Weighting of Page Tag.

m1 m2 m3 m4 m5

1 × × ×
2 × × × ×
3 × ×
4 × ×
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Figure 1. The Hasse graph corresponding to Table 3.

In Web page clustering studies, in order to emphasize the commonalities of the Web pages,
the feature words with high frequency in Web documents should be highlighted. In addition, when the
number of pages is large, if a feature word appears only on one page, the word should be considered a
special case and not be chosen as an attribute for clustering. When building the formal context of Web
pages, we should first filter out the words that appear only on one page (the frequency of the page
d fk = 1; when the number of pages continue to increase, we can consider enlarging filtration threshold
d fk). Thus, the purpose of simplifying the concept lattice can be achieved.

3.3. The Construction Process of the Cross Data Link

As is shown below in Figure 2, a node consists of four fields: row, col, down, and right. The row
field is used to store the superconcept. The col field is used to store the subconcept. The down field
points to the next node of this column. The down field of the last concept node in each column is
empty, which indicates the end of the column. In addition, the right field points to the next concept
node in the line, the right field of last concept node in each line is also empty, indicating the end of
the line.
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The construction process of the cross data link is as follows:

• Step 1. The concept preprocessing: We iterate through the concepts, and sort them in ascending
order based on their number of intensions. If the number of intensions is the same, we sort the
concepts by lexicographic order.

• Step 2. Creating the link header: We create a new node based on the definition of the node
structure and empty the row field and col field of the node.

• Step 3. Creating the row headers and the column headers: All the col field in row header nodes
and all the row fields in column header nodes are emptied. For each row, the row field of ith
header node stores the ith concept and for each column, the col field of ith header node stores the
ith concept. The down field of the i − 1th row header node points to the ith row header node,
and the last down field is empty. The right field of i − 1th column header node points to the ith
line node, and the last right field is empty.
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• Step 4. Constructing nodes based on subconcept-superconcept relations: If the superconcept is
numbered as x and the subconcept is numbered as y, we can insert a new node in the xth row and
the yth list. Then the superconcept is stored in the row field of the new node, and the subconcept
is stored in the col field. The down field of the new node points to the next node in this column
and the right field points to the next node in this row. If it does not have a next node, we empty
its down field or right field.

As an example of the concept in the formal context in Table 3, a cross data link is created with the
above method (the “0” indicates that the row field or the col field is empty).

• Step 1. Ordering the eight concepts in Figure 1 based on the number of intentions as 1© to 8©.
• Step 2. Creating the total header and setting the row field and the col field to “0”.
• Step 3. Creating the row headers and list heads; all col field of the row headers are set to “0”,

the row field stores concepts from 1© to 8©, the down field points to the next node, and the last
one is empty. All the row fields of the column headers are set to “0”, the col field stores concepts
from 1© to 8©, the right field points to the next node, and the last one is also empty.

• Step 4. Inserting the concepts in Figure 1. Concepts 2© and 3© are direct subconcepts of the concept
1©. A node is inserted at the first row and the second column. Concept 1© is stored in the row

field and concept 2© is stored in the col field in this node. Then a node is inserted in the first row
and the third column. Concept 1© is stored in the row field and concept 3© is stored in the col field
in this node. The right field and the down field point to the next node. This process is repeated
for all the other nodes.

Through the above four steps, we can get the cross data link, as shown in Figure 3.
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3.4. Construction Algorithm of the Concept Lattice Based on a Cross Data Link

We introduce an algorithm for constructing the concept lattice based on a cross data link and take
the added object as an example. We iterate through the column header, judge the type of concept in
the concept lattice, and then perform different operations.
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Definition 2. For a formal context K = (P, M, R), the corresponding concept lattice is L(K), if a new concept
p is added, based on the relationship between the concept in L(K) and the attributes {p}′ of the new object,
the types of the concepts stored in the col field of the column header will be divided into three categories:

1. For a concept (A, B) ∈ L(K), if B ⊆ {p}′, the concept is an updating concept, and the extension of this
concept will be updated.

2. For a concept (A, B) ∈ L(K), if B 6= ∅ and B ∩ {p}′ = ∅, the concept is an invariant concept, and no
operation is required.

3. For a concept (A, B) ∈ L(K), if B ∩ {p}′ = H 6= ∅ and the intension of any concept in L(K) not equal
to H and for any superconcept (A2, B2) of concept (A1, B1), B2 ∩ {p}′ 6= H is established, the concept is
a generation concept, and the new concept will be created.

If the concept is a generation concept, the following operations are performed:

• Step 1. Insert a new header node at the end of the row header and the column header. The row
field of the new row header node and the col field of the new column header node are set to be
the new concept.

• Step 2. Insert the new node at this column and the new line. The col field of the new node is
consistent with the col field of this column, and the new concept is stored in the row field in the
new node.

• Step 3. We need to determine the relationship between the direct superconcept set A in the col
field in the new node and the direct superconcept set B in the new concept. The results are divided
into two cases: one is where set A has an intersection set C with set B. In this situation, we delete
the nodes in this column where the row field concept belongs to set C. Another situation is where
set A and set B have no intersection, in which case no operation is required.

• Step 4. We simply insert new nodes based on set B; the number of new nodes is equal to the size
of set B. The row field in the new nodes stores each concept in set B, and the col field in the new
nodes stores the new concepts.

In accordance with the above algorithm, we add a new object “5” in Figure 1, with attributes m4

and m5. This is represented by {5, (m4, m5)}. We first iterate through the column header storing the
concepts from 1© to 8©. The concepts are divided into 3 types in accordance with Definition 2.

1. Concepts 2©, 4©, 6©, 7© are invariant concepts. No operation is required.
2. Concepts 1©, 3© are updating concepts. We add the new object “5” to the extension of

these concepts.
3. Concepts 5©, 8© are generation concepts. We create the new concepts 9© and 10 and,

taking concept 9© as an example, the following operations are performed:

• Step 1. Insert a new header node at the end of row header and column header.
• Step 2. Insert a new node at the 5th column and the 9th row. Concept 5© is stored in the col

field of the new node and concept 9© is stored in the row field of the new node.
• Step 3. The relationship between the direct superconcept of concept 5© and concept 9© have

no intersection.
• Step 4. Insert a new node at the 9th column and the 1st row, because the direct superconcept

of concept 9© is concept 1©. Concept 9© is sotred in the col field of the new node and concept
5© is stored in the row field of the new node.

The new cross data link is shown in Figure 4, the new nodes are indicated by bold boxes.
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and superconcepts. The algorithm considers the case of multiple direct superconcepts and has a
wider applicability.

4. Experiments

4.1. The Evaluation of the Clustering Effect

Among the clustering methods, some are based on distance, some are based on density, etc. Due to
the difference between the methods, there is no uniform evaluation index. Evaluation methods for
clustering include methods such as the Standard IR method [29], the Merge-then-cluster method [29]
and the user evaluation method. The method used in this paper contains three indexes for evaluating
the clustering results, and is adopted based on the Standard IR method.

4.1.1. Cluster Label Readability

The cluster label readability refers to the proportion of readable labels in all labels, the higher the
proportion is, the better the readability is. The formula is as follows:

CLR =
u
l

(3)

where CLR represents cluster label readability; u represents the number of labels which have better
readability; l represents the total number of labels.

4.1.2. Cluster Content Coverage

Cluster content coverage refers to the proportion of all initial documents in the clustering results.
The formula is as follows:

CCC =
o
s

(4)

where CCC represents content coverage; o represents the number of documents in the clustering result;
s represents the number of initial documents.

4.1.3. Cluster Overlap

Cluster overlap refers to the proportion of the total number of documents that is repeated in the
clustering results. The formula is as follows:

CO =
c− s

c
(5)

where CO represents cluster overlap; c represents the total number of documents in the cluster labels.

4.2. Efficiency Verification

We analyzed the time efficiency of the algorithm through experiments. First of all, in order to
obtain the experimental data sets, we used Java to generate a random “0 1” matrix of scale 300 × 20,
We set the probability as 30% (i.e., the “1” in the proportion of matrix), and divide 400 object sets into
10 groups. To evaluate the time efficiency, we carried out experiments using the ListFCA algorithm
as proposed in this paper, and the improved linked list algorithm and the Godin algorithm based on
the references. Then we recorded the time consumption after each group calculation; the results are
shown in Figure 6.
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We set the probability to 40%, with the other parameters remaining unchanged, and then recorded
the time consumption; the results are shown in Figure 7.
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4.3. Experiment and Analysis

To control the scale of the experiment, we first used a search engine to cluster the Web data of
the search results for a keyword in the experiment in order to enhance the correlation of experimental
Web data. “computer”, “physics” and “environment” were used as the keywords, and 40 pages were
selected for clustering. Then, we selected the first 5 feature items representing the Web page based on
their weight during preprocessing of the Web page. The attributes of Web frequency equal to 1 were
eliminated in the formal contexts. Taking the “computer” keyword as an example, we finally obtained
the Hasse diagram shown in Figure 8.

In the above result, every node in the Hasse graph can be seen as a class of clustering result.
They are repeatedly divided into different classes because of different combinations of attributes.
Web page clustering based on formal concept analysis is very effective for querying simple or rich and
ambiguous information. To show that the clustering method is effective and feasible, we compared the
results of ClusterFCA [30] with a typical clustering method based on formal concept analysis. Similarly,
“computer”, “physics” and “environment” were used as the keywords of the search, and 40 pages
were selected for clustering; we intercepted the second layers and the third layers of the index value to
compare; the results are shown in Figure 9.
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From the comparison of the index values of the two methods, we can conclude that the readability
of the cluster labels in the method introduced in this paper is higher than that of the other method.
The cluster overlap is slightly lower than the ClusterFCA method, and the cluster coverage ratio of the
ListFCA is much higher than the ClusterFCA method. Based on the above comparison, the ListFCA is
proven to be more effective, and it has advantages in cluster content coverage.

5. Conclusions and Future

In this paper, we firstly studied a method of Web page clustering based on formal concept analysis.
Then, we researched the preprocessing methods of Web pages and proposed a bi-directional maximum
matching word segmentation method. Thirdly, through the study of different types of weighting
algorithms, we found a new computing scheme based on term frequency. Finally, by studying the
construction of concept lattices, we proposed a new concept lattice construction algorithm based on
cross data link and verified its effectiveness. Using this algorithm, the Hasse graph corresponding to
the concept lattice can be easily generated. The method of Web page clustering based on formal concept
analysis has a high degree of visualization, rich content, and is characterized by overlapping clustering.

This paper has achieved a more efficient clustering performance through clustering Web pages
based on FCA. However, the following properties still need to be further explored:
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• Although the structure of Web pages is different from ordinary text, some research results of text
classification and text clustering can also be used in Web page clustering. We should consider
applying existing research results in other fields to Web clustering.

• The concept lattice is the core content of formal concept analysis, and there is still much room
for improvement in the study of its construction algorithm. We can optimize the concept lattice
construction algorithm based on a cross linked list in order to reduce the traversing times while
maintaining the concept lattice with an increase or decrease in the number of objects.
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