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Abstract: With the widespread availability of cell-phone recording devices, source cell-phone
identification has become a hot topic in multimedia forensics. At present, the research on the
source cell-phone identification in clean conditions has achieved good results, but that in noisy
environments is not ideal. This paper proposes a novel source cell-phone identification system
suitable for both clean and noisy environments using spectral distribution features of constant Q
transform (CQT) domain and multi-scene training method. Based on the analysis, it is found that
the identification difficulty lies in different models of cell-phones of the same brand, and their tiny
differences are mainly in the middle and low frequency bands. Therefore, this paper extracts spectral
distribution features from the CQT domain, which has a higher frequency resolution in the mid-low
frequency. To evaluate the effectiveness of the proposed feature, four classification techniques of
Support Vector Machine (SVM), Random Forest (RF), Convolutional Neural Network (CNN) and
Recurrent Neuron Network-Long Short-Term Memory Neural Network (RNN-BLSTM) are used to
identify the source recording device. Experimental results show that the features proposed in this
paper have superior performance. Compared with Mel frequency cepstral coefficient (MFCC) and
linear frequency cepstral coefficient (LFCC), it enhances the accuracy of cell-phones within the same
brand, whether the speech to be tested comprises clean speech files or noisy speech files. In addition,
the CNN classification effect is outstanding. In terms of models, the model is established by the
multi-scene training method, which improves the distinguishing ability of the model in the noisy
environment than single-scenario training method. The average accuracy rate in CNN for clean
speech files on the CKC speech database (CKC-SD) and TIMIT Recaptured Database (TIMIT-RD)
databases increased from 95.47% and 97.89% to 97.08% and 99.29%, respectively. For noisy speech
files with seen noisy types and unseen noisy types, the performance was greatly improved, and most
of the recognition rates exceeded 90%. Therefore, the source identification system in this paper is
robust to noise.

Keywords: source cell-phone identification; additive noise; CQT; CNN; multi-scene training;
noise robustness

1. Introduction

With the development and advancement of digital multimedia and Internet technologies, a variety
of powerful and easy-to-operate digital media editing software has emerged, bringing new problems
and challenges to the availability of collected data–multimedia security issues. Recording device
identification is a branch of multimedia forensics technology, and has research significance. Compared
with recorders, cameras, DVs, etc., mobile phones are more popular and convenient. More and more
people are using mobile phones to collect the scenes they hear, and even use the recording file as
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evidence before courts or other law enforcement agencies. Therefore, source cell-phone identification
is a hot topic for many forensic researchers.

In recent years, source cell-phone identification has achieved great research results. In the
beginning, many researchers used cepstral coefficients or features based on cepstral coefficients as the
fingerprint of the device. C. Hanilci et al. [1] extracted the Mel frequency cepstral coefficient (MFCC)
from the recording file as a device-distinguishing feature, and 14 different models of cell-phones
were evaluated in the experiment. The closed-collection recognition rate reached 96.42% using
SVM classifiers. In a follow-up study, C. Hanilci et al. [2] used SVM to compare MFCC, linear
frequency cepstral coefficient (LFCC), Bark frequency cepstral coefficient (BFCC) and linear predictive
cepstral coefficient (LPCC). Their comparison covered various kinds of feature optimization, including
feature normalization, cepstral mean normalization, cepstral mean and variance normalization,
and delta and double-delta coefficients. The experimental results showed that while baseline MFCCs
outperformed other types of features, work of both cepstral mean and variance normalization
yielded superior performance for LPCCs (with only slightly better results than MFCCs). In addition,
C. Kotropoulos et al. [3] extracted MFCC from any recorded speech signal at a frame level. The MFCC
from each recording device trained a Gaussian Mixture Model (GMM) with diagonal covariance
matrices. A Gaussian super vector (GSV) is derived by concatenating the mean vectors and the main
diagonals of the covariance matrices that is used as a template for each device. The best identification
accuracy (97.6%) was obtained by the Radial Basis Functions neural network. The above cell-phone
source recognition directly processes the original recording file. Since the silent segment contains the
same device information as the original speech files, and is not affected by factors such as speaker
emotion, voice, intonation and speech content, some researchers began to extract features from the
silent segment to characterize the recording device. C. Hanilci et al. [4] extracted MFCC and LFCC
features from the silent segment. The results showed that the MFCC features have the highest
recognition rate under SVM, and the recognition rates were 98.39% and 97.03%, respectively, on the
two databases.

In addition to the cepstral coefficients, power-normalized cepstral coefficient (PNCC) gradually
entered the field of source cell-phone identification. Zou et al. [5] used the Universal Background
Model of Gaussian Mixture Model (GMM-UBM) classifier to compare MFCC and PNCC in terms
of source cell-phone recognition performance. Experiments showed that MFCC is more effective
than PNCC. The recognition rates of the two databases reached 92.86% and 97.71%, respectively.
Wang et al. [6] extracted an improved PNCC feature from the silent segment, which uses long-term
frame analysis to remove the influence of background noise. GMM-UBM was set as the baseline
system, which was improved by two-step discriminative training. The experimental results indicated
that the average accuracy for 15 kinds of devices was 96.65%.

Although these features have also achieved good results in the field of source cell-phone
identification, most of these cepstral coefficients are constructed based on the perception characteristics
of the human ear. Researchers hope to find features that can characterize the inherent characteristics
of the device and use them as a fingerprint for the device. Some scholars have begun to extract
features directly from the spectrum of the Fourier transform domain as distinguishing features of
mobile phones. C. Kotropoulos et al. [7] proposed a new source cell-phone identification algorithm,
which uses the sketches of spectral features (SSFs) as an intrinsic fingerprint. By applying a
sparse-representation-based classifier to the SSFs, identification accuracy exceeded 95% on a set
of 8 telephone handsets from the Lincoln-Labs Handset Database. Jin et al. [8] proposed a method for
extracting the noise of the recording device from the silent segment. The spectral shape features and
spectral distribution features were extracted from the device noise. The features obtained by combining
the two features were the best, and recognition rates reached 89.23% and 94.53%, respectively, for the
two databases. Qi et al. [9] obtained the noise signal by de-noising using the spectral subtraction
method and used the Fourier histogram coefficient of the noise signal as the input for the deep model
classifier. In comparing the recognition effects of three different deep learning classifiers—SOFTMAX,
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Multilayer perceptron (MLP) and CNN—CNN performed well, and the voting model combined with
multiple classifiers had the best effect, with a recognition rate reaching 99%. Recently, Luo et al. [10]
proposed a new feature—the band energy difference feature—which is obtained by processing the
difference between the energy values of the Fourier transform of the speech file. This feature not only
has low computational complexity, but it is also highly distinct for different mobile devices. It reached
an accuracy of over 96% using SVM.

Although most source cell-phone identification systems have good accuracy, they have certain
limitations. The objects they identify are almost clean speech files (nearly no environmental noise).
Few studies have considered noise attacks. In actual life, the speech files that need to be identified are
usually recorded in a variety of different noisy environments, and the environmental noise affects the
accuracy of recognition. Therefore, the identification of the source cell-phone in a noisy environment is
more realistic and challenging. Based on this, this paper proposes a source cell-phone identification
algorithm suitable for noisy environments. This algorithm uses the spectrum distribution feature of
the constant Q transform domain as the device fingerprint, and uses the multi-scene training method
to train the CNN model for source cell-phone identification.

The rest of paper is set out as follows: Section 2 analyzes the differences of speech files recorded
by different brands of cell-phone and different models of cell-phone from the same brand; Section 3
presents the spectrum distribution features of the CQT domain proposed in this paper by device
difference analysis and two traditional features—MFCC and LFCC; four kinds of classifiers and a
cell-phone source identification algorithm flow chart are introduced in Section 4; Section 5 describes
the construction process of the basic speech databases and the noisy speech databases; and Section 6
gives the experimental results. Lastly, we conclude this paper in Section 7.

2. Device Difference Analysis

A spectrogram is a visual representation of the spectrum of a speech signal which changes with
time. In order to study the differences between speech files recorded by different cell-phones in
different frequency bands, Figure 1 shows short-term Fourier transform (STFT) domain spectrograms
of speech files recorded by the same speaker simultaneously with 8 cell-phones in a quiet office
environment. As can be seen from the figure, the spectrograms of speech files recorded by different
brands of cell-phones vary greatly. For example, HuaweiMate7’s energy is rapidly reduced near
0.7 kHz, but the decrease of Mi4 is near 1 kHz. The energy distribution of other bands’ cell-phones and
the frequency band of sudden changes in energy are also different. However, for different models of
the brand Apple, the spectrograms are very similar.

To analyze the frequency difference of different models of cell-phones from the same brand,
Figure 2 plots the spectrograms of speech files recorded by different models of Apple cell-phones.
Although the four images are very similar, with a rapid energy change at around 1.5 kHz, there are
still some differences. For example, the iPhone 6 has lower energy in the 0–1.5 kHz band than the other
three phones. The iPhone 5 and iPhone 6s have distinct peaks in energy at around 1.2 kHz and 1 kHz,
respectively, and the other two phones do not.

According to the above, different brands of cell-phones have large differences and are easy to
distinguish. Therefore, the key to source cell-phones identification lies in the identification of different
models of cell-phones of the same brand. That is to say, the identification of cell-phones depends on
whether it is possible to distinguish well between differences in the middle and low frequencies in the
recording equipment.
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3. Feature Extraction

3.1. Spectral Distribution Features of the CQT Domain

Based on the analysis of the difference in the spectrogram from the Fourier transform (STFT)
domain of the speech files recorded by different cell-phones in Section 2, the difference between
different brands is obvious and the similarity between different models of the same brand is high,
with subtle differences only in the middle- and low-frequency bands. This paper chooses to construct
features from the constant Q transform (CQT) domain that can effectively distinguish different
recording devices. Compared with STFT with a fixed time-frequency resolution, CQT has a higher
frequency resolution at low frequencies and a higher time resolution at high frequencies. To capture
these variations in the spectrogram in the CQT domain, this paper selects the spectral distribution
features to describe the characteristics of the spectrum.

The calculation process of the spectral distribution features of the CQT domain is given below.
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(1) If the time domain signal of a speech files is x(n), and the frequency domain signal after the CQT
is XCQT(k), XCQT(k) is defined by:

XCQT(k) =
Nk

∑
n=1

x(n)wNk(n)e
−j2π fk

fs
n (1)

where k = 1, 2, ..., K is the frequency bin index; fs is the sampling rate; fk is the center frequency
of bin k, which is exponentially distributed and is defined as

fk = f1 × 2
k−1

B (2)

where B is the number of bins per octave, f1 is the center frequency of the lowest frequency bin
and is computed according to:

f1 =
fmax

2(K−1)/B
(3)

fmax =
fs

2
(4)

wNk(n) is a window function (Hanning window); from high frequency to low frequency, with the
increasing frequency resolution, the time resolution will gradually be sacrificed. Therefore,
the window length Nk varies with k and is inversely proportional to k, namely:

Nk =
fs

fk
×Q (5)

The Q-factor is a constant independent of k and is defined as the ratio of the center frequency to

the bandwidth: Q = fk
BWk

= fk
fk+1−fk

=
(

2
1
B − 1

)−1
.

(2) For the frequency value Xi(k) of the i-th frame at the kth frequency point, the amplitude Yi(k) of
Xi(k) is computed as follows:

Yi(k) = Xi(k)× XI(k) (6)

(3) Spectral distribution features:

SSF(k) =
1

Tk

Tk

∑
i=1

InYi(k) (7)

where Tk represents the total number of frames of the speech in the kth frequency band,
k = 1, 2, . . . , K. Therefore, for a speech file, its spectral distribution features comprise a 1 × K
vector. K is set as 420 in this paper.

3.2. Traditional Features (MFCC, LFCC)

Almost all of the features in cell-phone source recognition are extracted from the Fourier transform
domain of the speech signal. The most popular features for recognition systems are the MFCC and
LFCC. Their extraction procedure is shown in Figure 3. Firstly, the speech signal is divided into
overlapping frames, and each frame is windowed using an appropriate window function. Then,
the power spectrum is computed using the fast Fourier transform (FFT), which is then smoothed with a
bank of triangular filters whose center frequencies are uniformly spaced on the different scales. Finally,
logarithmic filter bank outputs are converted into features by taking the discrete cosine transform
(DCT). In this paper, we use 30 millisecond frames with a 15 millisecond overlap and a Hamming
window. For every speech file, the dimensions of MFCC and LFCC are both set to 24.

The difference between MFCC and LFCC lies in different frequency scale to locate triangular
filters. MFCC uses a Mel-frequency scale, but the triangular filters are linearly spaced for LFCC.
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4. Classifiers and Algorithm Introduction

4.1. SVM

The Support Vector Machine (SVM) is a supervised learning classification algorithm for solving
the two-class problem. Its basic model is to find the best-separated hyperplane in the feature space,
so that the positive and negative sample intervals on the training set are as large as possible. SVM can
be used to solve linear problems, and it can also be used to solve nonlinear problems after introducing
a kernel method. For the n-classification problem in this paper, n × (n − 1)/2 SVM classifiers are
integrated for classification, and the kernel function selects the Gaussian kernel.

4.2. RF

When Random Forest (RF) is used as a classifier, it is an integrated classification algorithm that
relies on the voting choices of multiple decision trees to determine the final classification result. RF has
two characteristics, sample randomness and feature randomness, ensuring that there is no over-fitting
phenomenon when classifying Sample randomness means that if the training set size is x, for each
decision tree, training samples (also for x) are randomly and regressively extracted from the training
set using the bootstrapping method. Feature randomness means that when training the nodes of
each decision tree, the features used are randomly selected from all the features according to a certain
proportion. By calculating the amount of information contained in each feature, the feature with the
highest classification ability is selected for node splitting. In this paper, the CART algorithm is used to
generate the decision tree, and the Gini index is used as the criterion for selecting the optimal feature
and the splitting point.

4.3. CNN

Convolutional Neural Network (CNN) is a multi-layer neural network consisting mainly of
a convolutional layer, a pooling layer, a nonlinear activation layer, and a fully connected layer.
The nonlinear modeling capability of CNN makes it an excellent classifier. The CNN network structure
adopted in this paper is shown in Figure 4. As you can see, it uses dropout, which is a regularization
method to prevent overfitting. The basic idea of dropout is to randomly drop out some neurons during
the training of the deep learning network. The model can be made more robust because it does not
rely too much on local features (because local features are likely to be discarded). This paper uses the
method of random gradient descent when training the CNN model.
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4.4. RNN-BLSTM

Recurrent Neuron Network (RNN) is a neural network that models sequence data. The network
memorizes previous information and applies it to the calculation of the current output. That is,
the nodes between the hidden layers are no longer connectionless but connected. In addition, the input
of the hidden layer includes not only the output of the input layer but also the output of the hidden
layer at the previous moment. Long Short-Term Memory Neural Network (LSTM) is a special type
of RNN that is more advantageous than basic RNN in sequence generation and sequence tagging.
Each node in the RNN–LSTM hidden layer is represented by an LSTM structure compared to a
normal RNN model with a basic node. The one-way RNN–LSTM only models the forward sequence,
which means that the latter sequence cannot affect the modeling of the previous sequence. If the entire
sequence in the positive and negative directions can be used at the same time, the accuracy of the
model should be improved. Therefore, RNN-BLSTM is selected to classify different recording devices.
The specific network framework used is shown in Figure 4.

4.5. Multi-Scene Training Recognition Systems

In this paper, the multi-scene training method is used to enhance the noise robustness of the
source cell-phone identification system. The specific flow chart of this system is shown in Figure 5.
The traditional single-scenario training method only uses clean speech files to extract the distinguishing
features of the device, and then uses those features to establish a recognition model. When the
multi-scene training method is used to build the model, the training set not only has clean speech files
but also noisy speech files containing different noise types and different noise intensities. This model
can learn the effect of noise on the differences in speech recorded by different recording devices,
making the model more robust.
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5. Databases Construction

5.1. Basic Speech Databases

In the experiment, we used 24 cell-phones from 7 brands to research source cell-phone recognition,
and their specific information is as shown in Table 1. To make the experimental results comparable,
we used two different basic speech databases, the TIMIT Recaptured Database (TIMIT-RD) and the
CKC speech database (CKC-SD) [11], to investigate the performance of our cell-phone recognition
system under different conditions. They were built using the cell-phone devices of Table 1.

TIMIT-RD is a speech database comprising speech files ripped from the TIMIT [12] database,
and these speech files include 1600 speech samples of 160 people (half each for men and women)
which were played back through a high-fidelity speaker (PhilipsDTM3500, manufacturer: Philips
Investment Co., Ltd., Zhongshan, China) in a quiet office environment. For each cell-phone, we used
800 utterances for training and the remaining 800 utterances for testing. The CKC-SD database is a
second database constructed by recording speech spoken by 12 speakers (half of which were male)
in a quiet office environment. All cell-phones were placed in a circular arc around the speaker for
simultaneous recording. Each speaker recorded two speech segments with a duration of more than
5 min, based on a normal speech rate and intonation. One speech segment was fixed content, and each
person’s recorded content was the same. The other section used the form of question and answer,
and the content recorded by each person was different. Half of the recording (5 min), which was
segmented into 3 s long chunks, was used to train each phone, and the remaining 5 min portion was
segmented into 3 s long chunks for testing.

Table 1. Cell-phone list.

Class ID Brand Model Class ID Brand Model

H1
HTC

D610t A1

iPhone

iPhone 4s
H2 D820t A2 iPhone 5
H3 One M7 A3 iPhone 5s
W1

Huawei
Honor6 A4 iPhone 6

W2 Honor7 A5 iPhone 6s
W3 Mate7 Z1

Meizu
Meilan Note

O1
OPPO

Find7 Z2 MX2
O2 Oneplus1 Z3 MX4
O3 R831S M1

Mi

Mi 3
S1

Samsung
Galaxy Note2 M2 Mi 4

S2 Galaxy S5 M3 Redmi Note1
S3 Galaxy GT-I8558 M4 Redmi Note2

5.2. Noisy Speech Databases

To study the robustness of the source cell-phone identification system in noisy environments,
different types of noises at a variety of signal-to-noise ratios need to be added to the two basic speech
databases to simulate the actual noise scene. When adding noise to the underlying databases, we used
the filtering and noise addition tool (FaNT, version), which is an open-source tool that follows ITU’s
noise addition and filtering. The noise signal was selected from five noise types—white noise, babble
noise, street noise, cafe noise and Volvo noise—in the NOISEX-92 noise database, and for each type of
noise, three signal-to-noise ratio (SNR) levels, i.e., 0 dB, 10 dB and 20 dB were considered. Therefore,
each basic speech database constituted 15 noisy databases with different noise intensities and different
types of noise. The reasons for choosing these five types of noise are as follows: (1) the energy
of white noise is evenly distributed over the frequency components. Although it rarely represents
the actual situation, it is a commonly used noise when studying robust speech processing methods;
(2) Babble noise is one of the most difficult types of noise in speaker applications with multiple
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speakers, which occurs every day in any crowded place; (3) Streets, cafe and Volvo noises are other
types of noise that often occur in our daily lives.

6. Experiments

6.1. Experimental Setup

For the multi-scene training recognition system used in this paper, the types of speech files
included in the training set and the test sets are as follows:

Train: clean, white (0,10,20 dB), babble (0,10,20 dB), street (0,10,20 dB).
Test: clean, white (0,10,20 dB), babble (0,10,20 dB), street (0,10,20 dB), cafe (0,10,20 dB),

Volvo (0,10,20 dB).
The training set used in the training phase includes not only clean speech files in the basic speech

database, but also three noisy speech files with three signal-to-noise ratio (SNR) levels of white, babble,
and street noise types in the noisy speech database. When testing the model trained in the training
set, 16 test sets are used, each of which includes one type of speech file, 10 of which comprise the
clean speech file and 9 different noisy speech files with different noise types and noise intensities that
were in the training set (seen noisy speech); the remaining 6 test sets are noisy speech files for the two
noise types that were not in the training set (unseen noisy speech). This is advantageous for detecting
whether the model established by the multi-scene training is universal; that is, whether it can conduct
effective source cell-phone recognition on the speech files of the unseen noisy scenarios.

6.2. Parameter Setup

When the CQT converts the time domain signal of the speech file into the frequency domain,
K determines the accuracy of the frequency domain information of the speech signal, so the magnitude
of K has a certain influence on the recognition performance. As shown by Equation (3):

K =

⌊
B× log2

fmax

f1

⌋
(8)

OCT =

⌊
log2

fmax

f1

⌋
(9)

where bxc represents the largest integer less than or equal to x, OCT is the number of octaves (generally
an integer less than or equal to 9), and B is the number of frequency points per octave (generally about
100). So the size of K is determined by B and OCT.

Figure 6 shows that the performance of the spectral distribution features of different OCT values
when B is 100. The accuracy of the device recognition experiments are compared by using two
traditional classifiers—SVM and RF, respectively—on the CKC-SD database. It can be seen from the
figure that different OCT values have similar effects on the recognition of different test sets under the
two traditional classifiers. As the OCT value increases, the accuracy of the noisy speech files containing
white noise and babble noise gradually increases, but that of the speech files containing Volvo noise
drops sharply, and the remaining speech types are not significantly affected, except for cafe noise.
Considering the complexity of the algorithm and the influence of different OCT values on the accuracy
of different noise types, the OCT value is set to 7.
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Figure 7 shows the comparison of different B values for the influence of device recognition
when the OCT value is 7. Experiments were carried out using two traditional classifiers—SVM and
RF—on the CKC-SD database. From the figure, with an increase in B value, there is little effect on the
recognition of clean speech files and noisy speech files containing seen noise types, and the recognition
rate of speech files containing unseen noise types is only slightly improved. In short, the value of B has
little effect on the accuracy of source identification, so we choose 60 as the value of B. Therefore, the K
value is 420 (7 × 60) in the paper. For a speech file, number of its spectral distribution features is 420.Information 2018, 9, x FOR PEER REVIEW  10 of 17 
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6.3. Comparison of Features

To compare the influence of the proposed features and traditional features on the performance of
source cell-phone recognition, Figure 8 plots the accuracy of four features—MFCC, LFCC, SSF (STFT)
and SSF (CQT)—on different test sets under SVM. As can be seen from the figure, these four features
have a good recognition effect on clean speech files, but with the addition of noise, the accuracy
decreases, and the performance gets worse with increasing noise intensity. Secondly, for the same
noise intensity, the recognition of seen noisy speech files is significantly better than the unseen noisy
speech files. The recognition rate of the traditional features—MFCC and LFCC—for noisy speech
files decreases sharply with the increase in noise intensity; the situation is even worse for the unseen
noisy scenarios, where the highest accuracy is only 80%, and the lowest accuracy is 24%. Therefore,
the traditional features are poorly robust to noise. The performance of SSF (STFT) features is generally
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worse than the traditional features, but it is superior to traditional features in the case of strong noise
intensity. The SSF (CQT) feature is more robust than the other features. It is obviously better than
MFCC, LFCC, and SSF (STFT) for clean speech and seen noisy speech files, with an accuracy higher
than 70%. However, the recognition effect of the unseen noisy speech files does not change significantly
compared with the other features. For weak noise intensity, the accuracy is slightly improved, while for
high noise intensity, the accuracy is reduced.
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In general, the SSF (CQT) feature is significantly superior to the other features as the device
fingerprint. The MFCC, LFCC and SSF (STFT) features are extracted from the STFT domain, while SSF
(CQT) is derived from the CQT domain. Therefore, the frequency domain information obtained by
using different time-frequency transform methods of speech signals is different, leading to a difference
in accuracy. CQT is more suitable for source cell-phone recognition than the STFT.

Tables 2 and 3, respectively, show the specific classification results of the MFCC and SSF (CQT)
features on the clean test set from CKC-SD. In the tables, AL is the actual device model in which the
speech files are recorded, and PL indicates the predicted device model. It can be seen from Table 2
that the average accuracy of MFCC for the 24 devices is 92%. The overall performance of MFCC is
good, but the accuracy varies greatly for different device models. The recognition rate of Meizu and
Xiaomi is almost 100%. The recognition rate is the lowest for two models (D610t, D820t) of HTC, at 56%
and 79%, respectively. Like Huawei and Apple, three models of HTC are also misjudged within the
brand. The misclassification of Xiaomi and Samsung is mainly misjudged within the brand, but also
includes a small number of misjudgments outside the brand. It can be seen from Table 3 that the
average accuracy of SSF (CQT) for 24 devices is 98%, which is 6 percentage points higher than that of
MFCC. This feature is almost perfect for the recognition of Meizu, Xiaomi, OPPO and Samsung brands.
The wrong scores for HTC, Huawei, and Apple are misjudgments within the brand, and the accuracy
is improved compared to MFCC.

Table 4 shows the classification results of MFCC and SSF (CQT) features for different brands on
different test sets. Regardless of whether examining the clean speech test set or the noisy speech test
set containing white noise, the SSF (CQT) feature improves the accuracy for each brand compared
to the MFCC. This confirms that the high resolution of the low-middle frequency band in CQT can
improve the recognition performance of different models of cell-phones of the same brand.

The above experimental results and analysis indicate that: SSF (CQT) can be used to determine
the unique identity information of a specific model of device, and can effectively identify the recording
equipment for both clean speech files and noisy speech files.
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Table 2. Specific classification results of MFCC for the clean test set (%).

PL (Predict Label)

AL H1 H2 H3 W1 W2 W3 A1 A2 A3 A4 A5 Z1 Z2 Z3 M1 M2 M3 M4 O1 O2 O3 S1 S2 S3

H1 0.56 0.44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
H2 0.21 0.79 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
H3 0.04 0.05 0.91 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
W1 0 0 0 0.97 0 0.03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
W2 0 0 0 0.05 0.83 0.12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
W3 0 0 0 0.10 0 0.89 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.01 0 0
A1 0 0 0 0 0 0 0.88 0 0.04 0.08 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A2 0 0 0 0 0 0 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A3 0 0 0 0 0 0 0.03 0 0.85 0.12 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A4 0 0 0 0 0 0 0.33 0 0.11 0.56 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A5 0 0 0 0 0 0 0 0 0 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0
Z1 0 0 0 0 0 0 0 0 0 0 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0
Z2 0 0 0 0 0 0 0 0 0 0 0 0 1.00 0 0 0 0 0 0 0 0 0 0 0
Z3 0 0 0 0 0 0 0 0 0 0 0 0 0 1.00 0 0 0 0 0 0 0 0 0 0
M1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.00 0 0 0 0 0 0 0 0 0
M2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.00 0 0 0 0 0 0 0 0
M3 0 0 0 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0.99 0 0 0 0 0 0 0
M4 0 0 0 0 0 0 0 0 0 0 0 0 0 0.01 0 0 0 0.83 0.15 0 0 0.01 0 0
O1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.01 0 0 0 0.99 0 0 0 0 0
O2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.00 0 0 0 0
O3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.00 0 0 0
S1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.04 0 0 0 0.01 0 0 0.95 0 0
S2 0 0 0 0.01 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.98 0
S3 0 0 0 0 0 0 0 0 0 0 0 0.08 0 0.02 0 0 0 0 0 0 0 0 0 0.90
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Table 3. Specific classification results of SSF (CQT) for the clean test set (%).

PL (Predict Label)

AL H1 H2 H3 W1 W2 W3 A1 A2 A3 A4 A5 Z1 Z2 Z3 M1 M2 M3 M4 O1 O2 O3 S1 S2 S3

H1 0.87 0.13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
H2 0.14 0.86 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
H3 0 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
W1 0 0 0 0.97 0.02 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
W2 0 0 0 0.01 0.96 0.03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
W3 0 0 0 0 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A1 0 0 0 0 0 0 0.98 0 0.02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A2 0 0 0 0 0 0 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A3 0 0 0 0 0 0 0.05 0 0.92 0.02 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0
A4 0 0 0 0 0 0 0.04 0.04 0 0.92 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A5 0 0 0 0 0 0 0 0 0 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0
Z1 0 0 0 0 0 0 0 0 0 0 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0
Z2 0 0 0 0 0.01 0 0 0 0 0 0 0 0.99 0 0 0 0 0 0 0 0 0 0 0
Z3 0 0 0 0 0 0 0 0 0 0 0 0 0 1.00 0 0 0 0 0 0 0 0 0 0
M1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.00 0 0 0 0 0 0 0 0 0
M2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.00 0 0 0 0 0 0 0 0
M3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.00 0 0 0 0 0 0 0
M4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.00 0 0 0 0 0 0
O1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.00 0 0 0 0 0
O2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.00 0 0 0 0
O3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.00 0 0 0
S1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.00 0 0
S2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.00 0
S3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.00
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Table 4. Classification results of MFCC and SSF (CQT) for different brands.

Brands
Clean White_0dB

MFCC SSF (CQT) MFCC SSF (CQT)

HTC 75.33% 91.00% 49.17% 70.33%
Huawei 89.67% 97.67% 68.83% 77.17%
iPhone 85.80% 96.40% 36.10% 56.70%
Meizu 100% 99.67% 33.31% 69.50%

Mi 95.50% 100% 31.13% 85.25%
OPPO 99.67% 100% 31.00% 82.83%

Samsung 94.34% 100% 43.33% 71.67%

6.4. Comparison of Classifiers

Figure 9 compares the performance of SSF (CQT) under four different classifiers. It can be seen
from the figure that the traditional SVM and RF classifiers have an almost identical recognition effect
for clean speech files, but there are differences for noisy speech files. The classification effect of RNN
on the clean speech test set and the noisy speech test sets with white noise, babble noise, and street
noise is significantly worse than that of the traditional classifiers, but the recognition effect in unseen
noisy speech is better than the traditional classifiers, especially for Volvo noise, where the highest
accuracy shows an increase of about 20%. Surprisingly, the accuracy of CNN on the 16 test sets is
higher than that of the other three classifiers, especially for the speech test set of unseen noisy scenarios,
the performance of which is greatly improved. In the test sets of cafe and Volvo noise with different
noise intensities, most of the accuracies are higher than 90%, with the lowest accuracy also being
greater than 70%.
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Therefore, the performance of the deep-learning CNN classifier is very prominent, not only
maintaining a good performance on clean speech files, but also having a good recognition effect on
15 kinds of noisy speech test sets. Even if the training concentration does not include these speech
files with cafe noise and Volvo noise, CNN can also distinguish recording devices from noisy speech
files containing these two kinds of noise, and can achieve accuracy comparable to that for seen noisy
speech. Therefore, CNN is more suitable for source identification in noisy environments.

6.5. Comparison of Single-Scene and Multi-Scene Training

To verify the effectiveness of the multi-scene training method, Table 5 compares the performance
of single-scene and multi-scene training methods on the two databases CKC-SD and TIMIT-RD,
respectively. The features and classifiers use SSF (CQT) and CNN, respectively. It can be seen from
the figure that when the testing speech consists of clean speech files, the recognition rate of the
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multi-scene training algorithm is higher than that for the single-scene algorithm in the two databases,
indicating that if noisy speech files are added to the training set, the recognition effect will be improved.
Secondly, when the testing speech files consist of noisy speech, the accuracy of the multi-scene training
recognition algorithm is greatly improved for the two speech databases compared to the single-scene
training method, especially for high-intensity noisy speech, the accuracy of which can be increased by
up to 60%.

Table 5. Comparison of accuracy of single-scene and multi-scene training.

Test Data Sets
Single Multiple

CKC-SD TIMIT-RD CKC-SD TIMIT-RD

Seen Noisy Scenarios
clean 95.47% 98.89% 97.08% 99.29%

white_20dB 54.80% 58.80% 95.35% 96.31%
white_10dB 36.11% 35.11% 91.25% 91.99%
white _0dB 18.50% 16.50% 82.79% 84.57%

babble_20dB 76.71% 77.71% 96.35% 97.54%
babble 10dB 49.92% 50.92% 94.79% 96.03%
babble_0dB 26.77% 29.77% 88.85% 90.23%
street_20dB 97.86% 98.86% 96.85% 98.44%
street_10dB 86.27% 87.27% 96.50% 97.40%
street_0dB 54.81% 52.81% 94.13% 93.47%

Unseen Noisy Scenarios
cafe_20dB 88.33% 89.99% 95.81% 96.56%
cafe_10dB 56.25% 61.25% 92.04% 94.63%
cafe_0dB 30.75% 27.75% 73.90% 76.43%

volvo_20dB 92.33% 93.33% 96.35% 96.34%
volvo_10dB 71.98% 76.98% 94.30% 92.21%
volvo_0dB 45.75% 46.75% 85.06% 88.06%

The multi-scene training recognition algorithm using the features proposed in this paper and the
CNN classifier not only achieves a good performance in the seen noise-scene speech files, but also
has considerable accuracy in the unseen noise-scene speech files. Therefore, training the model
using the multi-scene training method can solve the carrier mismatch problem of the single-scene
training method.

6.6. Comparison of Different Identification Algorithms

To comprehensively evaluate the source cell-phone identification algorithm proposed in this paper,
we compare the recognition algorithm from the Reference [10] and this paper’s recognition algorithm
using multi-scene training method and testing on our speech databases. The number of training
and test speech files is the same as that used in this article. Recognition algorithm of Reference [10]
extracted the sub-band energy difference feature as a distinguishing feature, which is obtained by
performing differential processing on the power value of the original speech file after Fourier transform
and uses SVM as a classifier. Their parameter settings are consistent with Reference [10].

Table 6 is a comparison of the accuracy of the source cell-phone identification of the algorithm
presented in Reference [10] and the algorithm proposed in this paper. It can be seen from the table that
the two algorithms are almost equivalent in performance for clean speech files, but for noisy speech
files, this paper’s algorithm is superior to the algorithm presented in Reference [10], especially for
noisy speech of unseen noise type.
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Table 6. Comparison of accuracy of different algorithms

Test Data Sets
This Paper Reference [10]

CKC-SD TIMIT-RD CKC-SD TIMIT-RD

Seen Noisy Scenarios
clean 97.08% 99.29% 97.04% 98.69%

white_20dB 95.35% 96.31% 89.60% 88.60%
white_10dB 91.25% 91.99% 84.29% 82.82%
white _0dB 82.79% 84.57% 76.62% 72.46%

babble_20dB 96.35% 97.54% 92.29% 92.73%
babble 10dB 94.79% 96.03% 88.46% 87.98%
babble_0dB 88.85% 90.23% 79.73% 78.40%
street_20dB 96.85% 98.44% 96.19% 96.69%
street_10dB 96.50% 97.40% 95.38% 95.73%
street_0dB 94.13% 93.47% 89.81% 89.90%

Unseen Noisy Scenarios
cafe_20dB 95.81% 96.56% 79.74% 79.31%
cafe_10dB 92.04% 94.63% 63.73% 66.46%
cafe_0dB 73.90% 76.43% 25.19% 26.27%

volvo_20dB 96.35% 96.34% 64.32% 74.17%
volvo_10dB 94.30% 92.21% 32,92% 46.94%
volvo_0dB 85.06% 88.06% 17.85% 27.54%

7. Conclusions

Currently, all source cell-phone identification algorithms use cepstral coefficients, features based
on cepstral coefficients, or extract features directly from the spectrum of the Fourier transform domain
as the distinguishing feature of the mobile phone. They have good performance, but the recognition
objects of source cell-phone recognition are almost always speech files recorded in a quiet environment
(can be considered as no scene noise). When the speech file contains scene noise, the performance
of the source cell-phone recognition algorithm drops sharply, and as the noise intensity increases,
the recognition becomes worse and worse, so the noise robustness of these algorithms is poor.
Considering that speech files that need to be recognized usually contain scene noise, and that the
traditional recognition algorithm has poor noise robustness, this paper proposes a source cell-phone
recognition algorithm suitable for noisy environments that has very good recognition performance for
clean speech files and noisy speech files. It has strong noise robustness.

Through analysis, this paper finds that the difference between different brands of cell-phones
is mainly at high frequency, and the difference is obvious, and is easy to distinguish. However,
cell-phones of different models of the same brand only have slight differences in the middle and
low frequencies, which are difficult to distinguish. Therefore, the algorithm extracts the spectrum
distribution feature of the CQT domain of the speech file as the device fingerprint. When the CQT
converts the speech time domain signal to the frequency domain, the frequency resolution increases
from high frequency to low frequency, such that the low-frequency information amplifies the slight
differences between different models of cell-phones of the same brand, and enhances the recognition
of different models of mobile phones of the same brand. The features of the traditional recognition
algorithm are extracted from the Fourier transform domain. Fourier transformation uses a fixed
frequency resolution, and the representation of the low-frequency information of speech is less accurate
than CQT. Secondly, the multi-scene training method adopted in this paper can not only improve the
accuracy of clean speech files, but can also improve the performance for noisy speech files with seen
noise types. Despite this, the recognition performance for noisy speech files with unseen noise types is
not improved. Finally, this paper uses CNN (deep learning classifier) as a classifier. Compared with the
machine learning classifier used in the traditional source recognition algorithm, it not only improves
the recognition of clean speech files and noisy speech files with seen noise types, but also greatly
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improves the recognition rate of noisy speech files with unseen noise types. The most important point
is that the recognition effect of noisy speech files with unseen noise types is equivalent to noisy speech
files of seen noise types. Therefore, the algorithm proposed in this paper is much more robust than
traditional source cell-phone recognition algorithms.

Nevertheless, in high-intensity noise environments, the proposed algorithm cannot distinguish
the equipment well, and does not consider the distinction between individual recording devices of the
same brand and model.
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