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Abstract: Multivariate time series data, which comprise a set of ordered observations for multiple
variables, are pervasively generated in weather conditions, traffic, financial stocks, etc. Therefore, it is
of great significance to analyze the correlation between multiple time series. Financial stocks generate
a significant amount of multivariate time series data that can be used to build networks that reflect
market behavior. However, traditional commercial complex networks cannot fully utilize the multiple
attributes of stocks and redundant filter relationships and reveal a more authentic financial stock
market. We propose a fusion similarity of multiple time series and construct a threshold network with
similarity. Furthermore, we define the connectivity efficiency to choose the best threshold, establishing
a high connectivity efficiency network with the optimal network threshold. By searching the central
node in the threshold network, we have found that the network center nodes constructed by our
proposed method have a more comprehensive industry coverage than the traditional techniques to
build the systems, and this also proves the superiority of this method.

Keywords: multivariate time series; fusion similarity; connectivity efficiency; threshold determination;
complex network; central node

1. Introduction

In the real world, a large number of systems can be described by complex networks [1–4].
The financial market is naturally a complex system, and the economy and financial systems have a
self-organized complexity [5]. Many studies have shown that complex networks have been successfully
used to describe financial systems [6]. From a different point of view, people put forward much
network construction arithmetic [7–9]. In the U.S. stock market, the power-law of the degree
distribution [10] in the minimum spanning tree (MST) has been observed [11]. The minimum
spanning tree and hierarchical tree are also used to study the topology of correlation networks
among major currencies [12,13] and financial crisis [14]. Kwapień et al. [15] introduced a family
of q-dependent minimum spanning trees (qMSTs) that are selective for cross-correlations between
different fluctuation amplitudes and different time scales of multivariate data. Djauhari et al. [16]
introduced a set of optimality criteria and proposed the process of selecting the optimal MST. Through
the analysis of the planar maximally-filtered graphs (PMFG) of the portfolio of the 300 stocks traded,
Tumminello et al. [17] confirmed that the selected stocks composed a hierarchical system progressively
structuring as the sampling time horizon increases. The method of correlation networks has been
applied to the structural transition of financial systems during a crisis in a local market [18]. In the
Tehran stock market and the DJIA, a scale-free threshold network in a restricted threshold has been
observed [19]. Longfeng Zhao et al. [20] found some long-duration edges that serve as the backbone
of the stock market during crises. Huang Weiqiang et al. [21] used the threshold method (traditional
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method) to construct Chinese stock-related networks and then studied the structural properties and
topological stability of the net.

In common cases, the information on parts of the dynamical system is expressed in the form of
time series, and time series analysis is a classic means of data analysis [22]. Recently, there has been a
growing industry in the application of complex network theory to carry out time series analysis [23,24].
The time series firstly is transformed into networks and then analyzed with various complex network
tools [25–28]. Shirazi et al. [29] demonstrated that the time series can be reconstructed with high
precision by means of a simple random walk on their corresponding networks. The interaction of
financial markets naturally constitutes a complex system in which the stock data are a multivariate
time series (MTS) [30] of information in each part of the complex system. RN Mantegna [31] mapped
the financial market as a network, the vertices of which are stocks and the edges between vertices are
the relationships of shares. Kazemilari et al. [32] constructed a multivariate correlation network of
stocks where each of them was represented by a multivariate time series, and vector correlation was
used to measure the similarity among multivariate time series in the stock network.

Although networks based on price fluctuations can help us understand the complex correlations
between stocks, the direct conversion implicitly assumes the Markov property (first-order dependency)
and loses important information about dependencies in the raw data. Besides, the stock market
constructed with the volatility relationship of the closing price data ignores other attributes of the
stock, which are the multivariate time series. In real life, simple price fluctuations do not support a
series of other data, such as trading volume, and the impact of stock fluctuations cannot effectively
pass this effect on to related stocks. Therefore, the stock price fluctuation network constructed by the
closing price time series cannot fully portray the interoperability between the time series itself and
make full use of the stock’s multi-attribute information.

Due to the limitations of the stock price index correlation threshold network, we will introduce
and improve a new method of building a stock network. First of all, we select a representative multiple
sub-time series from a multi-stock time series and convert each sub-time series into a Gramian angular
field (GAF) [33] grayscale image. We then merge multiple GAF grayscale images into MGAF color
images and construct a multivariate stock network by calculating image similarity. Finally, we find
that the network established by our method has a high connectivity efficiency, and the central node has
wider industry coverage than the network constructed by the stock price index correlation threshold
method. Next, we will introduce the network construction method in detail and give the empirical
research and results in the summary.

2. Image Fusion Network Construction Method

In this section, we will introduce how to construct complex networks using multivariate time
series. The process is as shown in Figure 1.
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Figure 1. Architecture of our proposed method. The whole process of our method contains five steps.
(1) Selected representative sub-time series to form a new multivariate time series (MTS). (2) Converted
sub-time series to a Gramian angular field (GAF) grayscale image. (3) Fused multiple grayscale images
into a color image. (4) Added nodes to the complex network. (5) Determined edges between nodes by
the similarity between fused images.

2.1. Feature Selection

An MTS contains a set of ordered observations at a discrete time for multiple variables. To reduce
the amount of computation while retaining as much information as possible, we use the Pearson
correlation coefficient to perform feature selection on MTS. The Pearson correlation coefficient between
each subsequence of multiple time series Xi is as Equation (1).

ρxi ,xj =
cov

(
Xi, Xj

)
σxi σxj

(1)

where Xi is the sequence of the i-th attribute of the time series X, σxi is the standard deviation of Xi and
cov

(
Xi, Xj

)
is the covariance of the Xi and Xj. The elements ρxi ,xj are restricted to the interval [−1, 1],

where ρxi ,xj = 1 defines perfect correlation and ρxi ,xj = −1 corresponds to perfect anti-correlation.
ρxi ,xj = 0 corresponds to uncorrelated pairs of stocks.

2.2. Imaging Multivariate Time Series and Similarity Calculation

The GAF [33] converts time series Xi = (xi1, xi2...xin) into grayscale images. The GAFs provide
a way to preserve temporal dependency, since time increases as the position moves from top-left to
bottom-right. The GAFs contain temporal correlations because G(i,j||i−j|=k) represents the relative
correlation by superposition of directions for time interval k. In contrast, GAFs are essentially grayscale
images that represent only the time series of a single attribute. Considering many time series, such as
stocks, have multiple attributes, we propose that multiple GAFs be defined as Equation (2).

MGAFm =
m

∑
i=1

wi · Gi = w> · G (2)

where Gi is an n× n pixel GAFs image converted from subsequence Xi and wi is the fusion weight
corresponding to the grayscale image Gi. MGAFm is an image fused by m GAF images.

In the construction of correlation threshold networks, we often need to know the size of the
differences between individuals and then evaluate the similarity between individuals. Through
the method described above, we converted each stock into an image. Then, we calculated the
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image similarity to determine the network edge. Fortunately, the structural similarity (SSIM [34])
is excellent in image similarity. The structural similarity index defines the structural information
from the perspective of image composition as a property that reflects the structure of the object in the
scene independently of the brightness and the contrast and models the distortion as a combination
of the three different factors of brightness, contrast and structure. The mean value is used as the
estimate of brightness; the standard deviation is used as an estimate of contrast; and the covariance is
used as a measure of the degree of structural similarity. We use Equation (3) to evaluate the overall
image similarity.

MSSIM
[
Mi, Mj

]
=

1
N

N

∑
n=1

SSIM
[
Min, Mjn

]
(3)

where the images Mi and Mj are divided into N sub-images in the same manner.
Suppose Si = (Si1, Si2, · · · ) represents stock i, where Si1 represents the closing price sequence

and Si2 represents the turnover rate sequence. S1, S2, S3 and S4 are four different stocks, and we
can see the different correlation of these stocks in Figure 2. For the stock Pearson cross-correlation
methods that usually only focus on the closing price of a stock [21], S3 and stock S1 have the same
absolute value of the Pearson similarity of stock S3 and stock S2. GAF images take into account the
time dependence of time series, and stock S3 and stock S1 have the different MSSIM of stock S3 and
stock S2. The MSSIM of stock S3 and stock S1 is 0.308; the MSSIM of stock S3 and stock S2 is 0.265.
Considering only the closing price of the stock, the MSSIM of stock S3 and stock S4 is 1.0. The MSSIM
of stock S3 and stock S4 is 0.832, taking into account the stock closing price and turnover rate. With the
appropriate thresholds, the fused image of the stock can distinguish the previous one, while the
traditional method [21] cannot distinguish this. This is the advantage of converting a multivariate time
series into a fused image.

2.3. The Connection Efficiency

In order to understand the features of the similar structure of financial stocks better, we establish
the stocks’ associated networks (SAN) using complex network theory. To observe the network attributes
under different thresholds in a more intuitive way, we define the connection efficiency in addition
to the common network global attributes such as the average clustering coefficient [35], the average
efficiency [36], density and the fraction of the coverage.

Network density can be used to characterize the degree of a respective edge between nodes in the
network. It is defined as Equation (4).

D =
2m

n (n− 1)
(4)

where n is the number of nodes and m is the number of edges in the network.
In an undirected graph G, vi and vj are connected if there is a path from vertex vi to vertex vj.

A maximally-connected subgraph of an undirected graph G is called a connected component of G.
The ratio between the maximum number of connected component nodes and the number of stocks in
a network is then defined as the fraction of the coverage of the network, that is Equation (5).

F =
Smax

|V| , S = {|Vi| , Vi ⊂ V} (5)

where V is the collection of stocks in a network and Vi is the collection of the connected component of
a stock network.

The connection efficiency can be used to characterize the strength of edge connection nodes.
According to Equation (6), if we want to maximize the connection efficiency, we need to the fraction of
the coverage (F) of the network as much as possible and minimize the network density (D). Looking
back at Equations (4) and (5), we will build a network whose edges link all nodes as much as possible
without making the edges too dense. In other words, we use fewer edges to get more nodes to access
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the network. The higher the connection efficiency, the stronger the ability of the edge to connect to
the node. This means that, compared to the previous network construction methods, the connected
edges found by our proposed method are more important, and the relationship between stocks is
more significant.

CE = F− D (6)

where D is the network density and F is the fraction of the coverage of the network.

Figure 2. Correlation of time series and images. (A) X1, X2 and X3 represent different time series;
G1, G2 and G3 are GAF images converted from the time series X1, X2 and X3, respectively. S1 is a
multivariate time series in which the first element is X1 and the second element is X2. Similarly, S2,
S3 and S4 are multivariate time series, respectively. M1 and M2 are MGAF images converted from
S3 and S4, respectively. (B) Only use the first element of S1, S2 and S3. In this situation, the Pearson
similarity of S1 and S3 is 0.389 and S2 and S3 are the same. (C) In previous methods, the MSSIM of the
corresponding GAF image of S1 and S3 was 0.308, and the MSSIM of the corresponding GAF image
of S2 and S3 was 0.265. The MSSIM of the corresponding GAF image of S3 and S4 was 1.0. (D) Taking
the first and second elements of S3 and S4 into consideration, the MSSIM of the corresponding MGAF
image of S3 and S4 is 0.832.

3. Results and Discussion

3.1. Data

The data used in this article were from the Tushare Financial Data Interface (http://tushare.
org/). The selected data included the CSI 300 constituent stocks for 100 trading days from 30 March
2017 to 22 August 2017. As some stocks suspended, we preprocessed the data and finally left the
transaction data in 279 stocks. Financial indicators included open (open price), high (highest price),
close (close price), low (lowest price), volume (volume), price_change (change), p_change (%Chg),
ma5 (five-day average price), ma10 (10-day average price) ma20 (20-day average price), v_ma5 (5-day
average volume), v_ma10 (10-day average volume), v_ma20 (20-day average volume) and turnover
(turnover rate).

3.2. The Network Overview

We calculate the Pearson correlation coefficient between the stocks’ properties. Through Figure 3,
we can see that the attributes are roughly divided into three groups, so we choose m = 3.

http://tushare. org/
http://tushare. org/
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Figure 3. The correlation between the various attributes of the stock. The color from light to dark in the
figure indicates the Pearson similarity from small to large. The deeper the color, the greater the similarity.
In the figure, open, high, close, low, ma5, ma10 and ma20 have a large correlation. We chose the close
to represent other highly-relevant attributes. In the same way, we choose p_change and turnover
representing the p_change, price_change and volume, turnover, v_ma5, v_ma10, v_ma20, respectively.

The MGAF3 formula is as Equation (7).

MGAF3 =
3

∑
i=1

wi · Gi = w> · G (7)

where G = (G1, G2, G3) is the GAF image converted from ups and downs, closing price and the
turnover rate respectively and w> = (0.299, 0.587, 0.114)> is the fusion weight. We used the default
parameter values that the RGB image converted to the grayscale image as fusion weights, but this
is not limited to this kind of weight. One can modify the weights according to one’s needs to get
different results.

Then, we calculated the image similarity MSSIM and established SAN models with different
thresholds. Then, we selected the appropriate threshold network as a representative, as shown in
Figure 4. The size of each node depends on the degree of the node.
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Figure 4. The image fusion network. Each node in the network corresponds to a stock. The edge
indicates that the correlation between the two stocks corresponding to the fused image is greater than
or equal to 0.3, which is roughly the threshold corresponding to the maximum value of the connection
efficiency in Figure 6. The size of the node represents the degree of the node. The larger the node,
the greater the degree of the node.

3.3. Threshold Selection

For building a correlation threshold network, how to choose a reasonable threshold is the key.
At present, the threshold is determined based on a comparison of attributes between different threshold
networks; or the threshold is set based on relevant expert experience. To explore how to determine
the threshold of the network, we constructed the fibers with different thresholds of 0.01 to 0.86 and
statistics; the global properties of the system by each limit are shown in Figure 5. From the local
features of the network, the role of nodes in the system is very different. A few critical nodes played
a leading role in the operation of the network. We compared the node centrality of the system
within the threshold interval and ranked the first ten nodes according to their centrality, as shown in
Tables 1 and 2.

From Figure 5, we can see that as the threshold increases, the network density, the average
clustering coefficient, etc., are continuously decreasing. We can imagine that when the threshold is too
small, there is an edge between almost all nodes, which is equivalent to a complete graph. However,
when the limit is too large, almost all nodes are isolated. To reduce redundant edges and incorporate
all nodes into the network as much as possible, we defined the connection efficiency and chose the
limit that maximized the connectivity efficiency as the network’s threshold. As shown in Figure 6,
we see that the connection efficiency rises steeply within the threshold interval, reaching a rapid drop
after a rare extreme.
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Figure 5. The network global attributes’ map with the thresholds. (A) shows the results of the proposed
method. (B) shows the results of the stock price index correlation threshold method [21] (traditional
method). The purple, blue, green and orange curves in the graph represent network density, efficiency,
clustering coefficient and the fraction of the coverage of the network, respectively.

Table 1. Degree centrality in the image similarity stock network.

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
000623 601099 601099 601099 601099 601958 601958 601958 600118 601390
000031 000166 601866 601866 601866 601866 000166 000166 600030 601958
000166 000623 000166 000415 601958 600118 601555 600999 601390 300027
601099 601881 000415 601958 000415 000166 600118 601688 601958 600219
001979 000157 002500 600118 600118 601099 600999 600030 600340 300251
601881 002736 600118 002500 000166 601555 601788 601390 600999 600999
600585 600221 600958 000166 600219 600219 600482 601788 601688 601766
600340 000415 601881 600583 002500 600482 600030 600118 601818 601997
000008 600118 600583 600038 600482 600030 000060 600837 300027 600919
000157 601866 601958 600958 600038 000415 601866 601555 600219 601998

Table 2. Degree centrality in the Pearson stock network.

0.1 0.2 0.3 0.35 0.4 0.45 0.5 0.6 0.7 0.8
601555 000166 000686 000686 000686 000686 000686 601555 601555 601788
002736 000686 000166 000166 000166 601555 601555 601788 601788 000686
000166 002736 000157 601555 601555 000166 000166 002736 002736 601555
600369 000783 601555 600909 002500 601163 601099 000686 600030 600909
000686 002500 600369 000157 601163 002500 002736 000783 600999 601375
600909 601555 002500 002500 600369 601099 600999 600030 000686 601186
600958 000157 600909 601099 002736 600369 601788 000166 000166 000783
601099 600369 601099 002736 601099 600909 600369 601198 000783 601881
002470 600498 002736 600369 000157 601375 002500 600999 002500 000166
600030 002081 601881 601163 603858 002736 000783 601099 600369 601390
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Figure 6. The connectivity efficiency of the proposed method and the traditional method.
The connectivity efficiency, the strength of the edge connection nodes, is defined as Equation (6).
The connection efficiency is a convex function with respect to the threshold. The connection efficiency
increases first as the threshold increases and then decreases after the maximum value is obtained.

From the table, we can get that the first row in the table represents the threshold, and each
column in the table shows the node code with a larger degree centrality at this threshold. Observing
the table horizontally, we have found that no matter how the threshold changes, there are always
some nodes that are always more central nodes, which are more important nodes. Looking at the
table longitudinally, we find that some thresholds contain fewer important nodes, whereas some
thresholds contain more important nodes. We think that the threshold contains a greater number
of important nodes, that it is more appropriate it is and that we want it to be more so. In order to
facilitate the observation of the frequency of stocks, we mark the stocks in the table in red, purple,
green, blue and white in order of frequency. From the table, we can see that the high-order nodes of
the network constructed by our method tend to have a threshold of 0.3. Similarly, high-order nodes of
a network built by the stock price index correlation threshold method (traditional method) tend to
have a threshold of 0.4. Concerning Figure 6, Tables 1 and 2, we can conclude that when the value
of connectivity efficiency is more significant, the number of high-frequency center nodes increases,
and when the connection efficiency reaches a maximum value, the number of high-frequency center
nodes is the highest. This shows that the network constructed near the maximum of the connectivity
efficiency can better characterize the relationship between stocks, and from the side, our defined
threshold selection criteria, the connectivity efficiency, can help us to select the appropriate threshold.
Moreover, as can be seen from Figure 6, the effectiveness of the network constructed by the method
proposed by us is higher overall than the traditional method. However, as can be seen from Tables 1
and 2, the number of network high-frequency center nodes constructed by this method is generally
lower than the traditional method. This means that the network we have built uses fewer edges to
achieve higher connection efficiency and better reflects the indispensable interaction between stocks.

In addition, we also found that the vast majority of the stocks (000166, 000686, 601555, 600369,
002736, 601099, 002500, 600909, 000783) of nodes with relatively high degrees of the network
constructed by traditional methods belong to the financial industry. The stocks (600118, 601958,
000166, 601866, 601099, 000415, 600482, 600219) corresponding to the nodes with higher networks
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moderately constructed by our method belong to the communication equipment, mining industry,
financial industry, transportation logistics and non-ferrous metals, metals, shipping equipment, leasing
and commerce, respectively. This has important implications for our study of the relationship between
different industries in the entire stock market. Although the model presented in this paper has achieved
good experimental results, there are still some shortcomings. Because of the calculation of image
similarity, the algorithm is not efficient. What is more, the system is an undirected network, which
does not reflect the typical asymmetric interactions in the real world.

4. Conclusions

This paper selects the characteristics of multivariate stock sequences, converts the critical attribute
sequences into grayscale images to compose color images and calculates the similarity between images.
In fact, we proposed a way to calculate the correlation of multivariate time series. We treat the stock
as a node, consider the relationship between the shares corresponding to the images as a continuous
edge and build a stock network based on different thresholds. Furthermore, we define the connectivity
efficiency to choose the best limit and establishing a high connectivity efficiency network with the
optimal network threshold. By searching the central node in the threshold network, we have found that
the network center nodes constructed by our proposed method have a more comprehensive industry
coverage than the traditional techniques to build the systems, and this also proves the superiority of
this method. Creating a directed net and popularizing our algorithm model in more realistic systems
will be our future research direction.
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