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Abstract: The proposed paper is related to a case of study of an e-health telemedicine system oriented
on homecare assistance and suitable for de-hospitalization processes. The proposed platform is able
to transfer efficiently the patient analyses from home to a control room of a clinic, thus potentially
reducing costs and providing high-quality assistance services. The goal is to propose an innovative
resources management platform (RMP) integrating an innovative homecare decision support system
(DSS) based on a multilayer perceptron (MLP) artificial neural network (ANN). The study is oriented
in predictive diagnostics by proposing an RMP integrating a KNIME (Konstanz Information Miner)
MLP-ANN workflow experimented on blood pressure systolic values. The workflow elaborates real
data transmitted via the cloud by medical smart sensors and provides a prediction of the patient
status. The innovative RMP-DSS is then structured to enable three main control levels. The first one
is a real-time alerting condition triggered when real-time values exceed a threshold. The second
one concerns preventative action based on the analysis of historical patient data, and the third one
involves alerting due to patient status prediction. The proposed study combines the management of
processes with DSS outputs, thus optimizing the homecare assistance activities.

Keywords: homecare assistance management; smart health; e-health; telemedicine architecture;
artificial neural network; multilayer perceptron; patient health status prediction; KNIME

1. Introduction

The reengineering of homecare assistance processes represents an important issue about
de-hospitalization. In this direction, resources management platforms (RMPs) could support and
optimize the management of nurse and doctor activities, thus reducing unnecessary costs. A good
way to manage homecare activities and patient analyses is to design a platform embedding the typical
customer relationship management (CRM), enterprise resource planning (ERP), and business process
modelling (BPM) facilities, and an innovative decision support system (DSS). The idea is to improve
a basic RMP platform through the gain of knowledge provided by a DSS based on data-mining
techniques. The knowledge of other important outputs such as key performance indicators (KPIs),
scores of the human resources associated with the homecare assistance processes, and other dashboards
can furthermore improve resource management and the quality of the patient assistance. In particular,
a tailored telemedicine network could facilitate patient control by means of a control room connected
in the cloud with smart sensors used by patients at home. The management of nurses can be optimized

Information 2018, 9, 176; doi:10.3390/info9070176 www.mdpi.com/journal/information

http://www.mdpi.com/journal/information
http://www.mdpi.com
https://orcid.org/0000-0003-1744-783X
http://dx.doi.org/10.3390/info9070176
http://www.mdpi.com/journal/information
http://www.mdpi.com/2078-2489/9/7/176?type=check_update&version=2


Information 2018, 9, 176 2 of 20

by analyzing before critical cases such as chronic cases, historical physiological data, and predictive
results about patient status emerge. This paper presents a case study, thus providing a feasibility study
of a tailored RMP-DSS platform suitable for the management of de-hospitalization processes.

The paper is structured as follows:

• Description of the background concerning tools useful for the RMP-DSS design;
• Design and development of homecare telemedicine architecture and the integrated

RMP-DSS system;
• Design and development of the innovative multi-level DSS system;
• Design, development, and testing of a multilayer perceptron (MLP) artificial neural network

(ANN) able to predict patient status about high-pressure and hypertension conditions;
• Definition of correct procedures suited for MLP ANN data processing;
• Discussions and conclusions.

1.1. Background: Tools and Specifications Useful for RMP-DSS Design

Some researchers [1] have analyzed CRM as a tool suitable for the evaluation of organizational
performance in the health industry. The CRM model is composed of important components such as
top management information, information technology tools, and organizational procedures—all basic
elements useful for resource management of a clinic. The main goals of a CRM health platform are
patient and employee satisfaction [1], which can be achieved by an efficient resource management
platform. Other studies have validated the use of CRM more specifically for healthcare services
embedding DSS tools [2,3]. Moreover, information digitization is increasingly important in the
healthcare area, where it is possible to map different working activities by diagrams having different
functions and roles such as health-related behavior prevention, diagnosis, and therapy [4]. In DSS
healthcare, data mining could provide an added value for the enrichment of the knowledge base of the
healthcare system, diagnosis support, home-based rehabilitation, optimal management of healthcare
processes, optimization of the quality of services, correct allocation of material and non-material
resources, turnover prediction, and definition of new performance indicators based on artificial
intelligence algorithms [5–13]. In healthcare systems, an interesting topic is homecare assistance
by telemedicine [14–16], allowing home assistance through the use of appropriate certified devices
connected to the cloud and able to transmit patient measurements from home to an external structure
behaving as a control room. In this direction, ANN could predict patient physiological status [17],
could be applied for predictive medicine [18], and for the prediction of heart problems [19], suggesting
ANN as a good approach to predict patient health status in DSS. In particular, ANN applied in other
applications exhibited high performances [20], specifically MLP-ANN provided a good match between
experimental and predicted results [21], and good flexibility concerning predictive maintenance and
big data analytics [22].

Examples of data-mining engines implementing ANN could be based on graphical user interfaces
(GUIs) creating objects connected by workflow (Orange Canvas, Rapid Miner, Weka, KNIME Studio [23,24]).
Other data-mining applications that can be integrated into backend and frontend platforms are Keras,
TensorFlow, and Theano [25,26]. A versatile open source tool is KNIME Studio [22–24], which can be easily
adapted to the information systems used in the clinics. This last tool contains different objects behaving as
connectors compatible with different database technologies including big data and objects able to execute
MLP-ANN algorithms.

1.2. RMP-DSS Main Features

The main requirements and tools found to be state-of-the-art are formulated in the architecture of
Figure 1, summarizing the platform specifications and the complete scenario of resource management.
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management platform and is suitable to plan the maintenance of the building structure thus 
reducing maintenance costs and increasing comfort of the clinic. 

• Human resources management module: this module is able to allocate human resources by 
means of a dynamic scheduler indicating activities; the scheduler takes into account the patient 
profiling and the performance of the companies’ operators provided by scorecards; this module 
is also adopted for logistics of nurses and operators. 

• Management module for other resources different from human resources (materials, energy, etc.). 
• Database (DB) system: different MySQL database systems are implemented to collect data from 
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cloud. The researchers focused their attention on hematology and oncology experimentation; the 

Figure 1. Simplified architecture of a resource management platform integrating a data-mining engine
(artificial neural network (ANN) and decision support system (DSS)).

Below are listed the main specifications of the innovative RPM-DSS prototype system listed as
modules:

• CRM module: this module is useful for the optimization of business intelligence (BI) plans by
profiling patients and following management activities.

• Homecare module: a digital sign system is implemented to speed up homecare activities and
visit scheduling.

• Telemedicine module: some certified medical devices are tested on patients at home;
the experimental devices are an ECG (electrocardiogram) device, a spirometer, an infrared
thermometer, a pulse oximeter, a device for hematological analysis, a monitoring device of
multiple parameters, and a sphygmomanometer device.

• Building maintenance management module: this module is integrated into the resource
management platform and is suitable to plan the maintenance of the building structure thus
reducing maintenance costs and increasing comfort of the clinic.

• Human resources management module: this module is able to allocate human resources by means
of a dynamic scheduler indicating activities; the scheduler takes into account the patient profiling
and the performance of the companies’ operators provided by scorecards; this module is also
adopted for logistics of nurses and operators.

• Management module for other resources different from human resources (materials, energy, etc.).
• Database (DB) system: different MySQL database systems are implemented to collect data

from multiple modules and from medical devices; this DB system is interfaced with the
data-mining engine.

• Data-mining engine (ANN): this module is implemented and tested by reading the data of the DB
system; neural networks are applied to predict patient status.

1.3. System Overview: Telemedicine Architecture Integrating RPM-DSS

The proposed telemedicine architecture of Figure 2 integrates the RMP-DSS features listed
in Section 1.2. It represents the evolution of the system architecture studied in Reference [14].
The telemedicine platform proposed in Reference [14] was related to a control room able to read,
in real-time, sensor data measuring physiological data of patients at home and transmitting to the cloud.
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The researchers focused their attention on hematology and oncology experimentation; the system
referred to a basic telemedicine control panel without the implementation of RPM and data-mining
DSS facilities. Figure 2 follows this basic architecture, where the RPM-DSS platform supports the
management of all the services involving patients and human resources in the clinic building and at
home. It is clear from the data flow of Figure 2 that all BPM (business process modelling) and CRM
functionalities can be involved in the process management. The management of the activities could
include internal and external diagnostic services, external consulting, and other services. The proposed
RPM-DSS platform is able to work in a point-to-multipoint network. Each “home point” of the network
behaves as a hub transmitting patient physiological data and receiving other data (i.e., a bidirectional
communication system). The backend system is tailored in order to manage different “home points”
as for a capillary de-hospitalization network, by associating a table for each monitored patient, who is
identified by an ID number. The control room platform visualizes the real-time physiological data
of each patient and other information such as his historical data and their health status predictions.
A multi-level alerting system will activate RPM processes specifically related to the homecare assistance
activities. The proposed architecture also allows for communication by video communication and chat.
All the features of the proposed RPM-DSS system are listed in Table 1, in comparison with the platform
functionalities developed in Reference [14], thus proving that the prototype platform is innovative.
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Table 1. Features and advantages of the RPM-DSS and system proposed in Reference [14].

Functionalities Proposed RPM-DSS System System Proposed in
Reference [14]

Real-time monitoring (smart-sensor data)
√ √

Control panel room linked to patients at
home (point to multi-point connection)

√ √

Wireless sensor (patient data)
√ √

Bidirectional communication system
√

x
High number of supported sensors

√
x

Video chat
√

x
DSS multi-level

√
x

Patient status prediction (MLP-ANN)
√

x
DSS supporting BPM and visits

scheduling
√

x

BPM integration
√

x
CRM integration

√
x

Connection with a big data system
√

x
Mobile device behaving as a router

√
x

Predisposition for cross services
√

x

The main disadvantage of the proposed prototype system is the complexity of managing tickets,
which are enabled automatically by the DSS engine. As this topic is under investigation, the study of
the automatic rearrangement of the visit scheduler as a function of predicted results is presented.

2. Materials and Methods

In this section are described the main tools and frameworks adopted for the development of
the prototype platform. For the implementation of Android and iOS mobile applications on tablets,
which collect data from medical devices, the study adopted the Firemonkey framework with Delphi
XE10 as an integrated development environment (IDE). The control room applied the Codeigniter
framework and Sublime Text as an IDE. The MySQL database (DB backend system) was implemented
by means PyCharm and PhpMyAdmin tools. The CRM integrating the business process modeling
(BPM) functionalities was developed using a Django (Python) platform and PyCharm/Eclipse and
Oxygen/PyDev IDE. A Tablet Rugged IP68 type with Android and connected via Bluetooth and WiFi
modality was used for data transmission linking medical devices. The function of the tablet interface
was to transmit medical data (compatibly with HL7 in Appendix C and ethernet standard protocols)
to a graphic panel of a control room, where the data could be analyzed in real time by a doctor or a
specialist. Concerning a unified modeling language (UML2), different design layouts were developed
using the open source tool UMLet 14.2. KNIME Analytics Platform version 3.5.3 was the tool used
for the implementation of the workflow of MLP-ANN [21,22,27] oriented on health status prediction.
The MLP is a feed-forward artificial neural network model that maps sets of input physiological data of
patients onto a set of appropriate output related to health status prediction. The MLP network consists
of multiple layers of nodes in a structured graph, with each layer fully connected to other layers.
Except for the input nodes, each node was a neuron to process having a nonlinear activation function.
The MLP approach adopts back propagation for training the network. For the training of the MLP,
the neural network model (learner of the model) applied the efficient RProp algorithm [28,29] suitable
for the multilayer feed-forward networks defined in [21,22]: RProp performs a local adaptation of
the weight-updates according to the behavior of the error function. For plotting the analyzed MLP
dataset, the “Chart Style Series” of the graphical dashboard of RapidMiner Studio Version 8.2 was
used. The experimental dataset was increased by adding pseudo-random values (low value variations)
in the first 56 records and in the last 56 records of the dataset input table, for a total of 168 records.
This addition was important in order to create a self-learning ANN, which initially had only few
data available. The KNIME workflow was executed by a laptop having the following characteristics:
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Intel(R) Core(TM) i3-403U CPU, 1.9 GHz, 8 GB RAM, 64 bit operating system. The error bars used for
data post-processing were plotted by means of the Excel error bar function.

3. RPM-DSS Prototype: Design and Implementation

In this section, the results concerning the design and the implementation of the RPM-DSS platform
are discussed.

3.1. BPM and CRM Design: Basic Platform for Resources Management

All processes, documents, and messages are managed by the proposed RPM integrating CRM and
BPM features. The RPM is based on the concept of process managed by a ticket. Ticket means a set of
ordered actions executable sequentially and in parallel with the possibility of conditional jumps from
one action to another one. An action is any atomic operation necessary to carry out a process, such as
filling out a form, answering a question, selecting an article, etc. Each ticket will then be assigned to
a specific actor or group of actors in order to make it operational. By this approach, it is possible to
create models of tickets by designing their structure. Tickets mapped in the system are grouped into
categories in a multilevel tree, so it is possible to easily manage a large number of ticket templates.
Each ticket model is characterized by a particular protocol. The following attributes are common to
all tickets:

• user ticket creator;
• operator who manages the ticket;
• ticket expiration date;
• list of operators/actors;
• ticket roles and access;
• traceability of the information taking into account historical communications of the ticket;
• traceability of the activities performed during the execution of the ticket.

The database of the platform is split into two databases based on the MySQL relational database
management system (RDBMS). A database is used for storing the data related to the ticketing,
and therefore, is dedicated to the management of the various business processes, while the second one is
used by the telemedicine web application in order to store patient information and their physiological
data. The two databases are synchronized through a synchronization component that allows to
orchestrate all the available functionalities. In Appendix A are reported more details concerning
the databases, showing the entity-association diagram of the ticketing service. In Figure 3, a block
diagram representing all the functionalities of the designed RPM-DSS is illustrated. In this diagram,
it is clear how the data-mining engine is interconnected with the company information system; patient
data are processed by neural network algorithm, thus providing more information about patient
status evolution. The data processed by the neural network will optimize the visits scheduling and
the assistance service. The data flow of Figure 3 embeds other process management such as human
resources, warehouse, internal communications, and building maintenance.
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3.2. Artificial Intelligence Engine: Integration in the Homecare Assistance Platform and Health Patient
Predictive Maintenance

The integration of the data-mining engine (i.e., DSS engine implementing MLP ANN) and its
execution processes and accesses are described by the UML (unified modeling language) diagrams of
Figures 4 and 5, indicating the following main actors of the prototype system:

• Health Worker: the worker of the control room of the clinic which controls all patient data;
• Patient: patient at home;
• Health Operator: nurse or other homecare assistance operator;
• Neural Network: main actor of the DSS engine, which is an ANN engine able to predict patient

status by processing historical and testing data.

The function of the Health Worker (see Figure 4) is to read real-time patient data and to execute the
DSS engine which will process data stored in a MySQL system according to the generation of automatic
alerts. The Health Worker can plan or modify the visit agenda of the Health Operators, basing their
decision on the outputs generated by the DSS. The patient will transmit physiological data by a mobile
app interfaced with a backend system; this mobile app can also connect operators to the system
with the purpose of supervising activities. The data sent by the mobile app are stored in the MySQL
database and then processed by the DSS engine. Possible trends or individual anomalous values are
automatically detected by the system, which alerts the medical staff of the clinic (Control Room).

According to human resources management processes, the Health Worker can access the visits
planning agenda by checking the DSS outputs and patient alert signals (see Figure 5). Moreover,
they can plan the patient measurements and analyze their care path. The visits agenda can vary
dynamically, being modified by the control room operator. The new visit will be traced by a structured
ticket. Finally, this actor can visualize reports related to automatic or manual measurement acquisition
of medical devices managed by the patients or by the Health Operators.
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3.3. Sensors Integration for Telemedicine Homecare Control Panel System and DSS System

The architecture in Figure 2 illustrates the studied telemedicine architecture allowing remote
assistance by means of a server connected to a tablet behaving as a router. The patients are assisted
at home by means of medical devices connected to the same tablet and able to transmit data to a
cloud system by means of a properly designed backend interface. Each cluster of medical devices
is associated with a patient located in a house and identified by an ID. The single patient could use
alone the devices or can be assisted. The control room panel also has the functionality to collect all
the performed measurements into the DB prototype system. The tablet can be adopted also for a
videoconference function, thus improving a bidirectional data flow from patient to clinic. The red
dashed lines in Figure 2 indicate the regions concerning the implemented prototype architecture.
The proposed design shows that patient data can travel to different locations, and can be controlled by
a control panel able to control also other departments of the clinic, external rooms, or others specialist
locations. This system could support the internal logistics of the clinic and activate different cross
services. The backend platform interface is also able to store measured data into the DB system.
The records of the DB are related to the patient being monitored. Moreover, by means of the control
room interface, it is possible to manage the patient’s information and access the display of historical
data as:

• data related to the last 12 h;
• data related to the last 24 h;
• data relating to the whole period of monitoring or for periods defined by the doctor.

Through the general menu it is also possible to:

• add a new patient;
• associate to a patient an identification code (id number);
• manage the tablet connectivity.

Figure 7 illustrates the layout of the developed control room panel. The realized web interface is
able to select the patient and the related tablet enabled for the measurements (the tablet is identified
by an ID code), and the “Synoptic” command provides, as output, real-time graphs of the connected
devices (the sampling time can be set to 5 s, 10 s, 1 min, 10 min, and 1 h). During the real-time patient
monitoring, the panel will switch on an alert in the case of an exceeded threshold. This real-time
alerting represents the first level of the DSS system (DSS level 1).Information 2018, 9, x FOR PEER REVIEW  10 of 20 
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The control room panel of Figure 7 is linked to different medical devices associated with each
patient being monitored. In Table 2 are reported some tested medical devices.

Table 2. Medical devices implemented for homecare assistance.

Device Functionality Connectivity

Pulse oximeter Blood oxygen saturation, pedometer,
heartbeat Bluetooth

ECG mobile One channel ECG Bluetooth
Spirometer Respiratory function Bluetooth

Sphygmomanometer Blood pressure, heartbeat Bluetooth
Infrared thermometer Body temperature ◦C Bluetooth

Device of multiple parameters Heartbeat, external and internal body
temperature, SpO2, NIBP, 5-channel ECG Ethernet/WiFi

Hematological device Hematological analysis Ethernet

In Appendix D is reported an example of a procedure validating sensor measurements in a
homecare assistance activity.

The data of the MySQL DB of the platform can be migrated into another DB system able to collect
historical patient data of multiple patients. This last system can be big data such as the Cassandra DB.
The collection of several types of data is important for the learning of the ANN algorithms; more data
will enable the model to learn efficiently by decreasing the prediction error. Figure 8 illustrates the
complete DSS architecture structured in three main levels. This scheme follows architecture studied
in predictive maintenance approaches adopted in other application fields concerning prediction of
machine break-down [30]. The DSS level 1 consists of the alerting process provided by the real-time
monitoring of the patient through the control room panel allowed by the real-time monitoring function.
This level uses the MySQL DB of the prototype platform. The observation of many alert conditions of
level 1 induces the system to enable DSS level 2, having the function to correct the visits planning for a
preventative action by avoiding critical situations. The DSS level 2 works with the DB of the platform.
Finally, DSS level 3 is based on an MLP-ANN algorithm having the function to predict patient health
status by processing historical data and real-time ones. The DSS level 3 can utilize data of the DB
platform or big data system containing massive historical physiological data. The data migration from
the DB of the platform to the big data platform is managed by cron (php script) which periodically
updates the patient data bank.Information 2018, 9, x FOR PEER REVIEW  11 of 20 
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3.4. Experimental Dataset and MLP ANN Predictive Results

The experimental physiological dataset is made by different attributes such as heart rate (HR),
mean arterial pressure (MAP), systolic (SYS) (mmHg), and diastolic (DIA) (mmHg) signals, concerning
measurements performed during two months (measurements acquired in different 36 days for a
total of 168 records for each attribute). We observe that the MAP is the average blood pressure in a
cardiac cycle, and it represents the average pressure imposed on the patient’s arterial walls. Map can
be estimated using this formula: map = diastolic pressure + (1/3) × pulse pressure. In Figure 9 are
illustrated graphically the attributes of the experimental dataset.
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Concerning systolic and diastolic blood pressure, Table 3 was obtained from the American Heart
Association and shows the categories of hypertension for adults above 18 years old. This table is useful
for the determination of the risk thresholds of the DSS.

Table 3. Systolic and diastolic blood pressure risk classification.

Category Systolic (mmHg) Diastolic (mmHg)

Hypotension <90 <60
Normal 90–119 60–79

Stage 1 hypertension 130–139 80–89
Stage 2 hypertension >140 >90
Hypertensive crisis ≥180 ≥120

The experimentation focused on systolic values by applying the KNIME workflow of Figure 10.
The proposed workflow is suited for data pre-processing and data processing implementing an MLP
ANN algorithm. Different objects, named nodes, are connected in order to execute the training and the
testing phases. Below are described the function of each object:

• Input node (node 1): the input data are loaded in the local repository in order to be pre-processed
by means of an Excel Reader (XLS) node by a MySQL DB connector, or by a Phyton Source Node
connecting the Cassandra big data system.
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• Normalizer (node 2): this node normalizes the values of the numeric columns of the systolic
values; the normalization represents the data pre-processing necessary to equilibrate data on an
unique scale, thus reducing data dispersion and errors during the followed data process.

• Partitioning (node 3): the input table is split into two partitions (i.e., row-wise), e.g., train and test
data. The two partitions are available at the two output ports.

• RProp MLP Learner (node 4): RProp performs a local adaptation of the weight-updates according
to the behavior of the error function.

• Multilayer Perceptron Predictor (node 5): this node processed by MLP algorithm the training and
testing datasets provided by the first partition and the second partition of node 3, respectively.

• Line Plot (JavaScript): this node allows to plot graphically output results, such as real values and
predicted ones.

• Numeric Sorer (node 7): this node computes certain statistics between the a numeric column’s values
(ri) and predicted (pi) values; it computes R2 = 1 − SSres/SStot = 1 − Σ(pi − ri)2/Σ(ri − 1/n*Σri)2,
mean absolute error (1/n*Σ|pi− ri|), mean squared error (1/n*Σ(pi− ri)2), root mean squared error
(sqrt(1/n*Σ(pi− ri)2)), and mean signed difference (1/n*Σ(pi− ri)).

• Excel Writer (XLS): this node exports in an Excel file the output results allowing to further process
data, for example by adding error bars (data post-processing).

Only two seconds are necessary for the data processing of the workflow of Figure 10 and about 6 s
for the reporting performed by node 6. Figure 11 illustrates the output of the Multi Layer Perceptron
Predictor node obtained by the following best parameter settings: first partition of 80 (absolute value),
6 hidden layers, 50 as maximum number of iterations, 10 hidden neurons per layer, linear sampling.
The choice of the parameters is provided by the analysis of the mean absolute error reported in
Figure 12 versus different parameters, finding the minimum value of 0.138. We observe that, taking
into account the total number of 168 records to process, a good compromise is to set the first partitioning
to 80 as an absolute number of rows. All 80 rows entered into the first table will be processed by the
Learner node (node 4), enabling the training process of the model, while the second table (second
partition) contains the remaining rows which will be processed for the testing process. Below are
reported more details about the meaning of the parameters of Figure 12:

• Take from top (partitioning): this mode puts the top-most rows into the first output table and the
remainder in the second table.

• Linear sampling (partitioning): this mode always includes the first and the last row and selects
the remaining rows linearly over the whole table.

• Draw randomly (partitioning): random sampling of all rows.
• Number of hidden layers (RProp MLP Learner): number of hidden layers in the architecture of

the neural network.
• Maximum number of iterations (RProp MLP Learner): number of learning iterations.
• Number of hidden neurons per layer (RProp MLP Learner): number of neurons contained in each

hidden layer.
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Figure 10. KNIME (Konstanz Information Miner): MLP graphical user interface (GUI) neural network
for the prediction of the health status of a patient.

The procedure used for the parameter setting follows the same order as Figure 12a–d. It is fixed
before the number of the hidden layers providing the minimum error, then it is fixed for the maximum
number of iterations at minimum condition, successively it is set to the number of hidden neurons
per layer, and finally the partitioning of sampling approach. In order to analyze better the error plot
behavior during the iteration process, Appendix B displays the error plot trend for each iteration before
the 50 iterations by observing that the error decreases drastically after only nine iterations. In order to
read correctly the predicted results as reported in Figure 11, error bars having an amplitude of ± 0.138
equal to the calculated mean absolute error are presented (the total error bar amplitude is 0.276).
By observing the high-pressure threshold and the predicted results it is clear that there are no risks for
the monitored patient about high-pressure or hypertension conditions. If the error bars remain during
the MLP-ANN calculation below the high-pressure threshold line, the DSS level 3 will not activate the
alerting condition. For the opposite, if the error bars overcome the high-pressure and hypertension
thresholds for a certain number of records, it will enable the alert condition, thus activating in the
RPM-DSS the emergency assistance ticket concerning a request for an urgent analysis to be performed
in the clinic, further supervision of a nurse, etc.

Systolic dashboards similar to Figure 11 can be achieved for different patients transmitting data
in the RPM-DSS database of the clinic. Other predicted results could be related to all the parameters
indicated in Table 2. The goal of the proposed experimentation is to provide a key reading of the
predicted results specifically for blood-pressure monitoring. The same approach can be adopted to
read other physiological data, such as heart rate data values.Information 2018, 9, x FOR PEER REVIEW  14 of 20 
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Figure 11. KNIME MLP prediction results of systolic values.
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Figure 12. Choice of the parameters performing the lower mean absolute error: mean absolute error
versus number of hidden layers (a); versus maximum number of iterations (b); versus number of
hidden neurons per layer (c); and versus different sampling approach for the partitioning (d).

Figure 12 shows the procedure to select the best parameter settings of the KNIME workflow of
Figure 10. The same procedure is based on the step-by-step mean absolute error evaluation, and can
be adopted also in the case of bigger experimental datasets. The dashboards of Figure 12 support to
understand the reliability of the results and to evaluate if an alerting signal is false or true. The choice
of the ANN-MLP approach is also validated by observing preliminary results indicating that error bar
amplitude decreases with an increase in the number of samples in the training dataset.

4. Discussion

European scenarios in telemedicine refers to COM(2008)689 of the European Commission [31]
and several member states, such as Sweden and Spain, have already integrated telemedicine services
using different approaches in their national health systems. The Italian Ministry of Health also receipts
agreements about telemedicine application with regional governments according to “TELEMEDICINA
Linee di indirizzo nazionali” approved in 2012 [32], that specifies system classifications, actors,
technology components, organization models, training, costs, performances, and ethical aspects. In this
direction, the paper propones enabling technologies to implement the transition from organization
models based on specializations to process management approaches [32] improved by patient status
prediction by means of multilayer perceptron MLP-ANN and several other DSS tools supporting the
management of new organizational models. Specifically, the DSS alerting level 1 (time t1) is always
active and provides real-time monitoring of the overcoming condition of the threshold. For repeated
alerting conditions checked during a day, a health operator can be urgently sent to a home. The alerting
conditions checked in a week can enable the alerting condition of the DSS level 2 (time t2). In this case,
a preventive procedure is applied by adding or anticipating visits in the previously scheduled agenda.
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Historical physiological data can be processed for health prediction (DSS level 3 at time t3 ≥ t2) by also
modifying the scheduling of visits.

The DSS level 3 works by executing the KNIME workflow of Figure 9 characterized by the
following main phases typical of an ANN-MLP data processing:

(a) Data input phase: by means of a cron activates the prediction by reading patient data from a
database; the cron automatizes the prediction process;

(b) Data pre-processing phase: input data are pre-processed and properly partitioned into training
and testing branches;

(c) Data processing: the system is learned and tested;
(d) Output: the outputs results are plotted.

As shown in Figure 10, the parameter setting is performed partially in the data pre-processing
phase (setting the size of the first partition and the sampling typology) and partially in the training
object (maximum number of iterations, number of hidden layers, number of hidden neurons per layer,
and random seed). In the analyzed case, in order to increase the training dataset of real-patient data,
other 112 pseudo-random values characterized by low value variations are used. This is necessary when
the historical data are few, especially at the beginning of the self-learning process. The self-learning
process will be optimized when the training dataset is substantial. An element which could mislead
the prediction is the presence of possibly wrong data. In this last case, it is necessary to previously
filter input data in order to not consider wrong iterations and wrong predicted results having a good
false accuracy. All the proposed architectures and design layouts of the RPM-DSS proposed in this
paper have been implemented. The RPM-DSS platform has been tested by managing different tickets
of the homecare assistance process, and by proving the correct operation of the whole prototype
platform. The procedure discussed in the previous section about the parameter setting for the best
algorithm performance could be adopted also for the processing of other physiological data. By defining
threshold lines in predictive diagnostics, it is possible also to trace anomalous blood pressure trends by
analyzing if the new measured values are checked many times over threshold values. The proposed
data information system has been tested for different sensors connected to a single tablet behaving as
a router. Different sensors and tablets can realize a capillary network suitable for de-hospitalization
processes and for big data analytics. For a capillary network, KNIME workflows can be directly
connected to an ESB (enterprise service bus) by a web service connection [22] or directly to a Cassandra
big data system by means of a proper connector [33] or by means a python script executing data
migration in a local repository. Each patient is identified by an ID number and by an ID of the tablet
recognized by the backend system. The control room platform visualizes for each patient a page
containing their real-time data, historical, data and predicted ones (see Figure 13). By combining the
analyses of different predicted physiological data, it is possible to find correlations, thus defining
accurate risk maps associated with each patient.
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5. Conclusions

By means of results achieved in a research project, the paper proves how to integrate a multi-level
telemedicine DSS system for homecare assistance into a theoretical RPM platform having CRM
and BPM functionalities. The proposed telemedicine communication system is based on web cloud
communication able to manage different medical devices measuring data from patients at home.
The realized system integrates telemedicine features into a DSS engine that analyzes the information
contained in a database by means of a dashboard plotting real-time patient values and MLP-ANN
algorithms. The DSS controls automatically the overcoming of thresholds values for real-time data
and evaluates risk conditions activating alerts and assistance processes. The proposed RPM-DSS
platform is suitable for homecare assistance management oriented on predictive diagnosis. A full
UML design of the RMP-DSS is presented, defining all the features and actors involved in the system.
The design is completed by the architectures of RMP, of the multi-level DSS, of the telemedicine
network, and of the KNIME workflow implementing MLP-ANN predictive approaches on real-patient
data. A parametric approach used for the optimization of the prediction accuracy proves that it
is possible to integrate efficiently predictive algorithms in an RPM-based platform, by providing a
methodology to analyze blood pressure predicted results. The experimentation has been performed on
a patient monitored at home by a sensor detecting systolic values. The prototypal RPM-DSS e-health
platform has been constructed starting to a previous homecare platform implementation integrating
only the DSS level 1 [14]. The prototype is a versatile and flexible platform able to operate in the cloud,
connecting a lot of patients and data in a big data system. The focus of the proposed research is in the
design and development of the DSS system integrated in a resource management platform, and in
the design and development of the MLP-ANN KNIME workflow, which can be easily adapted to
other RPM frameworks involving different application fields. The platform is unique in its application
scenario and could be adopted also for the development of cross services including other functionalities
such as pill reminding, video consulting with external doctors, and linking with electronic patient
records. The proposed study combines the mapping of process managements with DSS outputs, thus
optimizing the assistance activities and services. The DSS experimentation on different patients by
correlating different physiological data such as heart rate is under investigation.

Author Contributions: Conceptualization, A.G. and A.M.; Methodology, V.M. and A.M.; Software, V.M., D.C.,
E.D.F. and A.M.; Validation, A.M.; Formal Analysis, N.S.; Investigation, A.G., M.D.M. and A.M.; Resources, N.S.,
M.D.M.; Data Curation, A.M.; Writing-Original Draft Preparation, A.M.; Supervision, A.G. and M.D.M.; Project
Administration, A.G., M.D.M. and N.S.

Funding: This research received no external funding.



Information 2018, 9, 176 17 of 20

Acknowledgments: The work has been developed in the frameworks of the projects: “Piattaforma B.I. intelligente
di management risorse e di monitoraggio costi di assistenza sanitaria: ‘Healthcare Assistance Platform:
Management and Resources Allocation’ [B.I. platform oriented on intelligent management of resources and
on monitoring health care costs ‘Healthcare Assistance Platform: Management and Resources Allocation’]”.
Authors gratefully thanks the researchers: V. Calati, D. Carella, A. Colonna, R. Cosmo, G. Fanelli, R. Guglielmi,
A. Leogrande, A. Lombardi, A. Lorusso, N. Malfettone, F. S. Massari, G. Meuli, L. Pellicani, R. Porfido, D. Suma,
F. Tarulli, and E. Valenzano.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Diagram of the Implemented RPM-DSS Features

In Figure A1 reported below is illustrated the entity-associations diagram of the ticketing service.
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Appendix B. Error Plot of the ANN-MLP Approcah

In Figure A2 reported below is illustrated the Error Plot of the node 4 related the RProp
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Appendix C. HL7 Protocol

Actually the study is also focused on the integration of the data protocol in the HL7 standard [34].
HL7 is a standardized text communication protocol between the clinic and medical storage systems.
The HL7 domain therefore includes clinical and administrative health data. In this context it is
important that the devices operate through this data protocol so that they can be “integrated” with the
electronic patient record. More details about this topic are illustrated. In the figure reported below is
illustrated an example of modeling of the HL7 protocol in the clinical field according to the functional
architecture shown in Figure 2.
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below is illustrated an example of modeling of the HL7 protocol in the clinical field according to the 
functional architecture shown in Figure 2. 
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Appendix D. Example of Procedure Validating Sensor Measurements

The health worker who assists the patient from home will be appropriately trained about the
instrumentation and the devices that he will use for the analysis. Before acquiring the measures
on the patient, he has to follow a specific procedure. Before starting a measurement he must check
if the reference values, that define the range of validity of the medical device, have already been
acquired; if these reference values are not acquired, he will have to proceed with the system calibration.
The calibration process can be summarized as follow: the operator performs a test on a known sample
and then defines the delta error from the detected measurements, and the margin of error correlated to
the device accuracy (resolution). After the calibration process the Health operator can perform the
measurement. He will repeat the measures if the first results are “anomalous”. The final measure
will be transmitted to the laboratory staff who will then decide to validate the analysis. Laboratory
personnel may decide to calibrate the instrument several times in a day, if deemed necessary.
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