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Abstract: Multiswarm comprehensive learning particle swarm optimization (MSCLPSO) is a
multiobjective metaheuristic recently proposed by the authors. MSCLPSO uses multiple swarms
of particles and externally stores elitists that are nondominated solutions found so far. MSCLPSO
can approximate the true Pareto front in one single run; however, it requires a large number of
generations to converge, because each swarm only optimizes the associated objective and does not
learn from any search experience outside the swarm. In this paper, we propose an adaptive particle
velocity update strategy for MSCLPSO to improve the search efficiency. Based on whether the elitists
are indifferent or complex on each dimension, each particle adaptively determines whether to just
learn from some particle in the same swarm, or additionally from the difference of some pair of
elitists for the velocity update on that dimension, trying to achieve a tradeoff between optimizing the
associated objective and exploring diverse regions of the Pareto set. Experimental results on various
two-objective and three-objective benchmark optimization problems with different dimensional
complexity characteristics demonstrate that the adaptive particle velocity update strategy improves
the search performance of MSCLPSO significantly and is able to help MSCLPSO locate the true Pareto
front more quickly and obtain better distributed nondominated solutions over the entire Pareto front.

Keywords: multiobjective optimization; particle swarm optimization; comprehensive learning;
multiswarm; adaptive

1. Introduction

Multiobjective optimization optimizes multiple conflicting objectives simultaneously. A multiobjective
optimization problem can be formulated with the following minimization form without loss of
generality [1]:

Minimize f(x) = (f1(x), f2(x), ..., fm(x))

subject to x € () @

where x is the D-dimensional decision vector; () is the search space; M is the number of objectives;
and f, (m=1,2,...,M)is the function or procedure used for evaluating the performance of x on the
mth objective. The set ® = {f(x) € RM|x € Q} is the objective space. Given two points u = (u1, ty,
... uy)and v = (v1, vy, ..., M) in ®, v dominates u if v, < uy, foreachm=1,2,... ,Mand v # u. A
point u in © is nondominated if no other point in ® dominates u; in other words, improvement on one
objective of a nondominated point leads to deterioration on at least one other objective. A point x in ()
is Pareto-optimal if f(x) is nondominated in ®; the set of all the nondominated points in © is the Pareto
front and the set of all the Pareto-optimal points in () is the Pareto set.

In absence of the preferences of conflicting objectives, there is no way to say whether one
nondominated solution is better than another nondominated solution, because a nondominated
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solution does not outperform on all the objectives. Accordingly, for many real-world applications, a
number of nondominated solutions, well distributed over the entire span of the Pareto front, must
be identified for selecting the final tradeoff. Metaheuristics have been recognized as promising and
competitive for approximating the Pareto front [2,3]. A metaheuristic is essentially a collection of one or
more intelligent search strategies inspired by nature principles from, e.g., biology, chemistry, ethology,
and physics [2-5]. Metaheuristics were originally proposed for single-objective optimization [4,5],
and have been extended to address multiobjective optimization recently [2,3]. A metaheuristic
usually solves the single-objective or multiobjective optimization problem using a population of
individuals, with each individual representing a candidate solution and iteratively evolving. Compared
with traditional optimization methods such as linear programming, nonlinear programming, and
optimal control theory, metaheuristics do not require characteristics such as continuity, differentiability,
linearity, and convexity on the optimization problem; in addition, population-based metaheuristics
can find multiple nondominated solutions in just one run for multiobjective optimization. Existing
metaheuristics solve a multiobjective optimization problem by either treating the multiobjective
problem as whole [6-18] or involving decomposition (i.e., decomposing the multiobjective problem
into multiple single-objective problems) [1,19-27].

Particle swarm optimization (PSO) is a class of metaheuristics inspired by ethology and simulates
the movements of zooids in a bird flock or fish school [1,7,20,21,28-32]. In PSO, the population is
termed as a swarm, and an individual is termed as a particle. All the particles of the swarm can
be considered to be “flying” in the search space (). Each particle is thus associated with a position,
a velocity, and a fitness indicating the particle’s search performance. The particles are initialized
randomly. Each particle adjusts its velocity in each iteration (or generation) based on the historical
best search experience (i.e., personal best position) of the particle itself and/or the personal best
positions of other particles. In our recent work [1], we have proposed multiswarm comprehensive
learning PSO (MSCLPSO) for multiobjective optimization. Decomposition is employed in MSCLPSO;
multiple swarms are used and each swarm independently optimizes a separate original objective by a
state-of-the-art single-objective comprehensive learning PSO (CLPSO) algorithm [29]. Nondominated
solutions found so far (also called elitists) are stored in an external repository. Mutation and differential
evolution are applied to the elitists. The experimental results reported in [1] demonstrate that the
decomposition, mutation and differential evolution strategies help MSCLPSO discover the true Pareto
front in just one run. However, the experimental results also indicate that MSCLPSO needs a large
number of generations to converge on benchmark problems with either simple or complex Pareto
sets; in other words, MSCLPSO is inefficient. The underlying reason is that each swarm just tries
to optimize the associated objective and does not learn from any other swarm or the elitists for the
particles’ velocity update. This particle velocity update strategy contributes to the search of the extreme
nondominated solutions on the Pareto front, but does not benefit locating the other nondominated
solutions on the Pareto front. Therefore, in this paper, we propose an adaptive particle velocity update
strategy for MSCLPSO to improve the search efficiency. According to whether the elitists are indifferent
or complex on each dimension, each particle adaptively determines to only learn from some particles in
the same swarm, or additionally, from the difference of some pair of elitists for the velocity update on
that dimension, in an attempt to achieve a tradeoff between optimizing the associated single objective
and exploring the Pareto set.

Metaheuristics need to store elitists either internally (i.e., within the population) or externally (i.e.,
using one or more separate repositories) when dealing with multiobjective optimization. However,
none of the existing metaheuristics [1,6-27], including MSCLPSO, have differentiated the indifferent
and complex cases for the elitists on each dimension when evolving the individuals. If the elitists
are indifferent on a dimension, the Pareto-optimal decision vectors are expected to be indifferent on
that dimension, and learning from the historical search experience related to optimizing an objective
benefits moving close to the indifferent Pareto-optimal decision vectors. On the other hand, when
the elitists differ considerably on a dimension, the Pareto-optimal decision vectors are expected to be
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complex on that dimension, and it is important to persistently exert different forces on the evolution of
each individual for the purpose of exploring the Pareto set. Accordingly, judging whether the elitists
are indifferent or complex on each dimension and letting the individuals evolve differently in either
case is critical to improve the search efficiency for multiobjective metaheuristics.

The rest of this paper is organized as follows. In Section 2, related work on multiobjective
metaheuristics is discussed. Section 3 briefly reviews MSCLPSO and details the implementation of the
adaptive particle velocity update strategy. The improved algorithm is referred to as adaptive MSCLPSO
(AMCLPSO). In Section 4, AMCLPSO is evaluated on various two-objective and three-objective
benchmark optimization problems and its performance is compared with MSCLPSO, as well as several
other state-of-the-art multiobjective metaheuristics. Section 5 concludes the paper.

2. Related Work

A lot of metaheuristics have been proposed in the literature to address multiobjective optimization.
These metaheuristics either treat the multiobjective optimization problem as a whole or involve
decomposition. In addition, these metaheuristics differ in the strategies adopted to guide the search
towards the true Pareto front and to obtain well distributed nondominated solutions.

Metaheuristics usually use a population of individuals that evolve iteratively. In each iteration,
each individual is compared with its evolved value in order to decide whether the individual needs
to be replaced by its evolved value. For metaheuristics that treat the multiobjective optimization
problem as whole [6-16], the comparison is based on Pareto dominance. As Pareto dominance is
a partial order, an inappropriate selection of the value to stay in the population would negatively
affect discovering the true Pareto front. Metaheuristics that involve decomposition decompose the
multiobjective optimization problem into multiple different single-objective problems and use multiple
populations/individuals, with each single-objective problem being independently optimized by a
separate population/individual. As a result, the comparison of each individual with the evolved value
is determined simply based on the optimized single objective. The multiple populations/individuals
exchange information and collaborate to derive nondominated solutions. For vector evaluated genetic
algorithm [19], vector evaluated PSO [20], co-evolutionary multiswarm PSO (CMPSO) [21], and
MSCLPSO [1], multiple populations are used and each population focuses on optimizing a separate
original objective. Multiobjective evolutionary algorithm based on decomposition (MOEA /D) [22-27]
is a framework that lets each individual handle a different single-objective problem; an aggregation
technique (e.g., weighted sum) is applied to attain each single objective.

To guide the search towards the true Pareto front, most metaheuristics encourage each individual
to learn from diverse exemplars [6,7,19-26]. The exemplars exert different forces on the evolution of
the individual. The exemplars can be the individual itself [6,7,19-26], another individual [6,7,19-26],
and/or an externally stored elitist [7,21]. For elitists stored in an external repository, the repository
can be considered as a separate population of individuals, thus the elitists can also be appropriately
evolved to help discover the true Pareto front [1,21].

To obtain well distributed nondominated solutions on the Pareto front, metaheuristics need to
promote the diversity of the elitists using techniques such as adaptive grid [12,13], clustering [14],
crowding distance [6], fitness sharing [8], maximin sorting [15], vicinity distance [9,16], nearest
neighbor density estimation [10], and weighted sum aggregation [22-26]. The weighted sum
aggregation technique employed in the MOEA /D framework is the most efficient and assumes that
the predefined uniformly distributed weight vectors result in reasonably distributed nondominated
solutions; however, this assumption may be violated in cases where the Pareto front is discontinuous
or has a shape of sharp peak and low tail [26].

Robustness and search efficiency are also important concerns for metaheuristics. The initialization
and evolution of the individuals involve random influence; therefore, the set of nondominated solutions
obtained by a metaheuristic might be quite different for each run. Agent swarm optimization [11]
improves the robustness by using a framework with various population-based metaheuristics coexist,
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working like a multi-agent system. A number of adaptive strategies have been adopted recently in
literature metaheuristics to enhance the search efficiency [17,18,26,27].

3. Adaptive Multiswarm Comprehensive Learning Particle Swarm Optimization

3.1. Multiswarm Comprehensive Learning Particle Swarm Optimization

MSCLPSO [1] involves decomposition and uses M swarms, with each swarmm (m=1,2,... , M)
optimizing a separate original objective (i.e., objective f;;) by CLPSO [29]. There are N particles in each
swarm. For each particlei (i=1,2, ..., N) in each swarm m, i is associated with a position Py, ; = (P ; 1,
Puwio, ..., Pm;ip)and avelocity Viy;=(Viui1, Vi, ..., Vimip).- Vi and Py, ; are updated on each
dimensiond (d=1,2, ..., D) as follows in each generation.

Vinid = WViia + mia(Epid — Prig) )

Puid = Puia+ Vinid 3)

where w is the inertia weight that somewhat keeps the previous flying direction with the use of the
term wV,, ; 5, which decreases from 0.9 to 0.4 linearly; E;;; ; = (Em i1, Em 2, - -- , Em i p) is the guidance
vector; c is the acceleration coefficient fixed at 1.5; and 7y, ; 4 is a random number within the range
[0, 1] and the term c7y, ; 4(Ep i g — Py ig) aims to pull i towards E;; ;. CLPSO encourages learning from
different guidance exemplars E;; ;4 (d =1, 2, ..., D) on different dimensions. E, ;4 is dimension d
of i’s personal best position B, ; or dimension d of the personal best position of some other particle
selected from swarm m. By, ; is actually i’s historical best search experience. In each generation, the
fitness of Py, ; is evaluated and replaces By, ; if Py, ; gives a better fitness value than By, ;.

Elitists are stored in an external repository shared by all the swarms. The repository is initialized
to be empty and has a fixed maximum size Lmax. When the number of the elitists is larger than Lyax,
the elitists with larger crowding distances (for two-objective optimization problems) [6] or vicinity
distances (for multiobjective optimization problems with more objectives) [16] are allowed to stay in
the repository, thereby facilitating preserving the diversity of the elitists.

The Pareto set of a multiobjective optimization can be simple or complex on each dimension d,
i.e., the Pareto-optimal decision vectors are indifferent or differ considerably on that dimension.
During the maintenance of the external repository, MSCLPSO applies mutation to maximally
Nmut = Lmax(M —1)/5 elitists randomly selected from the repository on a dimension selected
randomly and adds the mutated elitists that are nondominated into the repository. The mutation
strategy takes advantage of the particles’ personal best positions and the elitists. Each swarm m
optimizes objective f,;; therefore, for each particle i in the swarm, i’s personal best position By, ; is
exactly the single-objective global optimum or close to the single-objective global optimum on f, after
a sufficient number of generations. The single-objective global optimum on f;, is also a multiobjective
Pareto-optimal decision vector and is extreme on the Pareto front. If the Pareto set is simple on
dimension d, as By, ; 4 is exactly the same as or close to dimension d of the single-objective optimum on
fm, learning from By, ; ; benefits the search of the Pareto-optimal decision vectors on dimension d. On
the other hand, if the Pareto set is complex on dimension d, the personal best positions of particles in
different swarms often differ noticeably on that dimension; accordingly, learning from the particles’
personal best positions leads to the exploration of different regions of the Pareto set on dimension
d. Additionally, the dimensional difference of two different elitists selected from the repository is
often small when the Pareto set is simple on a dimension and could be large in the complex case;
hence, learning from the elitists” differences also helps search the Pareto set. The chances of mutating
an elitist based on a personal best position or the difference of two elitists on each dimension are,
respectively, 0.5.

MSCLPSO also applies differential evolution to maximally Nge = Lmax(M —1)/10 extreme and
least crowded elitists in the external repository on all the D dimensions and adds the differentially
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evolved elitists that are nondominated into the repository. MSCLPSO differentially evolves an elitist
by a large search step size or a small search step size with the same possibilities 0.5, for the purpose of
achieving a balance between exploring and exploiting the Pareto set. The application of differential
evolution to the extreme and least crowded elitists helps to improve the diversity of the elitists.

Let kmax be the predefined maximum number of generations and k be the generation counter,
the working procedure of MSCLPSO is briefed in Algorithm 1. More details about MSCLPSO can be
found in [1].

Algorithm 1. The brief working procedure of MSCLPSO.

1: Initialize the swarms, the external repository, and the algorithm parameters
fork=1,2,..., kmax do

3:  Apply mutation and differential evolution to some elitists stored in the external repository, add the
particles’ positions and the evolved elitists that are nondominated into the repository, and remove some
elitists with smaller crowding/vicinity distances if the number of elitists surpasses Lnax-

4:  For each particle in each swarm, update the particle’s velocity and position, and update the particle’s
personal best position if the new position gives a better fitness value.

5:  end for

6:  Output the nondominated solution stored in the external repository.

3.2. Adaptive Particle Velocity Update

Let the number of elitists in the external repository be L. For each elitist/ (I =1, 2, ..., L) in the
repository, I's decision vector is denoted as Q; = (Q;,1, Qr 2, . .. , Q1. p)- On each dimension d, AMCLPSO
calculates Q7'** and innin which are respectively the maximum and minimum decision variable values

relevant to all the elitists stored in the repository, i.e.,
leax = maX{Ql,d/ QZ,d! ceey QL,d} (4)
QM = min{Q14,Qoa,---,Qra} (5)

If Equation (6) is true, the elitists are deemed to be indifferent on dimension d; otherwise, the
elitists differ considerably on dimension d.

Q™ — QF'™ < Aaps and QF™ — Q™ < At (PF"™ — P™) ©)

where A, is the absolute bound and is a small positive number; A, is the relative ratio and is a
positive number much smaller than 1; and P;lnin and PJ®* are, respectively, the lower and upper
bounds of the search space on dimension d. As the dimensional search space [P, PM%X] can be very
large, the combined use of the absolute bound and relative ratio ensures that the elitists are indifferent
on dimension d. The concepts of absolute bound and relative ratio were introduced in [31]; Q7'** and
Q" differ from the “normative interval” determined in [31] in that Q7'® and Q7" are relevant to the
elitists, whereas the normative interval relates to the personal best positions. Empirical values chosen
for Aps and A are 2 and 0.06 respectively.

The shared external repository provides an indirect information exchange mechanism among the
swarms. For each particle i in each swarm m, i can learn from three types of search experience during
the flight, i.e., i’s personal best position By, ;, the personal best positions of other particles in swarm m,
and the elitists stored in the repository. The search experience of i and that of other particles in swarm
m benefit the single-objective optimization on objective f,,,. The search experience of the elitists might
hinder the single-objective optimization on f,;; however, it could contribute to the discovery of the
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Pareto set if the Pareto-optimal decision vectors differ considerably. Accordingly, on each dimension d,
i’s velocity Vy, ; 4 is adaptively updated as follows.
WV id+ mid(Emid — Pmiq), if L <1 or Equation (6) is true @
Ad = ;
" 18yid(Emia — Pria) + c2Pm,ia(Qna — Qua), otherwise

where c; and ¢; are the acceleration coefficients used for the particle velocity update on dimension d
when the elitists differ considerably on that dimension; «,, ; s and B, ; 4 are two random numbers in
[0, 1]; and I and I are two elitists randomly selected from the repository, and I; # I, when the number
of elitists L > 2. Note that the same pair of I; and /; are used for all the dimensions. As can be seen
from Equation (7), if Equation (6) is true, the Pareto set is expected to be simple on dimension d, thus i
focuses on searching the optimal decision variable value with respect to objective f;; on dimension d,
because such a value is close to the Pareto-optimal decision vectors on that dimension. On the other
hand, if Equation (6) is false, the Pareto set is expected to be complex on dimension d; as illustrated
in Figure 1, the term c1a,,; 4(Eyy i g — Pig) guides i to fly towards the exemplar E;, ; ; on dimension
d and helps to locate the extreme nondominated solution that is optimal on f;;, while the other term
2Bm,i,d(Qn g — Qio,4) performs perturbation based on the difference of the two elitists /; and I/, and lets
the particle to explore the Pareto set on dimension d. It is much more important to conduct perturbation
than extremity search for the particle velocity update when the Pareto set is expected to be complex on
dimension d, hence c; is much larger than c;. ¢; and c; are, respectively, set as 0.3 and 3 empirically.

4

im.id

|

g Epia—Opia) Czﬂm,f,d (Ona—9na)
- !

' e . > O S |

min max
d Em,i,d Pm,i,u’ le,d Qil,d d

Figure 1. Illustration of the adaptive particle velocity update strategy.

The adaptive particle velocity update strategy is able to improve the search efficiency of MSCLPSO.
When the Pareto-optimal decision vectors differ considerably on a significant number of dimensions,
updating the particles’ flight trajectories using Equation (2) does not contribute much to exploring
the complex Pareto set, and MSCLPSO solely relies on the mutation and differential evolution of the
externally stored elitists to discover the complex Pareto set; as a result, the computational effort spent
on evolving the particles is mostly wasted. With the judgment of the complexness of the elitists on each
dimension, the adaptive particle velocity update strategy dynamically determines the appropriate rule
to update the particles’ velocities and positions on each dimension, helping to find the Pareto-optimal
decision vectors on each dimension. The adaptive particle velocity update strategy also contributes to
cases where at least one objective is multimodal and the Pareto-optimal decision vectors are indifferent
on a significant number of dimensions. As it is difficult to locate the single-objective global optimum
for the multimodal objective, the algorithm would encounter many local optima corresponding to
the multimodal objective and the single-objective local optima would be stored as temporary elitists.
The local optima could be quite different and Equation (6) may be false. Updating the particle’s flight
trajectories based on the elitists” differences helps to explore the search space, escape the local optima,
and accelerate approaching the global optimum.

Calculating the maximum and minimum decision variable values relevant to all the elitists on all
the dimensions requires O(LmaxD) basic operations. The judgment of the complexities of the Pareto set
on all the dimensions needs O(D) basic operations. Hence the adaptive particle velocity update strategy
incurs an additional computational burden of O(LmaxD) basic operations in each generation. The time
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complexity of MSCLPSO is O((MN + Lmax + Nmut + Nge)?D) basic operations and O(MN + Nyt +
Nge) function evaluations (FEs) in each generation [1]. If the adaptive particle velocity update strategy
can help MSCLPSO discover the true Pareto front with a noticeably smaller number of generations, a
lot of computation time can be saved.

4. Experimental Studies

4.1. Performance Metric

Inverted generational distance (IGD) [1,6,21] is adopted as the metric for evaluating the
performance of multiobjective metaheuristics in this paper, as it can reflect both the convergence
of the resulting nondominated solutions to the true Pareto front and the diversity of the solutions over
the entire Pareto front. As expressed in Equation (8), the IGD metric measures the average distance in
the objective space ® from a number of uniformly distributed points sampled along the true Pareto
front to the nondominated solutions obtained.

ITI Zdzst (1,S) (8)

where S is the external repository; T is the true Pareto front; u is a point sampled along T; the function
dist() calculates the Euclidean distance between 1 and the nondominated solution in S that is nearest
to u; and |T| gives the number of points in T. Clearly, the IGD metric value would be small if the
nondominated solutions stored in S are well distributed over the true Pareto front.

4.2. Multiobjective Benchmark Optimization Problems

The following multiobjective benchmark optimization problems are chosen for evaluating
multiobjective metaheuristics: ZDT2 and ZDT3 from the ZDT test set [33], ZDT4-V1 and ZDT4-V2
which are modified versions of ZDT4 [1], WFGI1 from the WFG test set [34], UF1, UF2, UF7, UFS8,
and UF9 from the UF test set [35], a hybrid version of ZDT2 and UF1 called ZDT2-UF1, and a hybrid
version of ZDT4 and UF2 called ZDT4-UF2. Equations (9) and (10) respectively describe the ZDT2-UF1
and ZDT4-UF2 problems.

ZDT2 — UF1:
fi=x1
) D/2 D ) )
fo=y( = (9)), wherey =1+ g5} xa+f ), (xy—sin(6mxr + )
d=2 d=D/2+1

For ZDT2-UF1, D = 30. The search spaceis {x; € [0,1],1 <d < D/2,x; € [-1,1],D/2+1 < d < D}.
The Pareto setis {x; € [0,1],x; =0,2<d < D/2,x4 = sin(6mtx; +dn/D),D/2+1<d < D}. The
Pareto front is nonconvex. f is unimodal and f, is multimodal.

ZDT4 — UF2:
D/2
fi=x1+10(8 = 1) + ) ((x4)* — 10cos(47xy))
d:2 (10)
fh=1-ya+3 Z (x4 — (0.3(x1)*cos (2471 + H7) 4 0.6x; )sin(671x; + d”))
d=D/2+1

For ZDT4-UF2, D = 30. The search space is

{x1€[0,1],x; € [-55],2<d < D/2,x;€ [-1,1,D/2+1 < d < D}
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The Pareto set is

{Xl S [0, 1],
X3 =0,2<d<D/2,x; = (0.3(x1)*cos(247x; + 4drt/ D) + 0.6x1 ) sin(671x1 + d7t/ D),
D/2+1<d <D}

The Pareto front is convex. f1 and f, are both multimodal.

For ZDT2, ZDT3, ZDT4-V1, ZDT4-V2, and WFG1, the Pareto set is complex on dimension 1 and
simple on the other D — 1 dimensions. With regard to UF1, UF2, UF7, UFES, and UF9, the Pareto set
is complex on all the dimensions. Concerning ZDT2-UF1 and ZDT4-UF2, the Pareto set is simple on
D/2 — 1 dimensions (i.e., dimension 2 to dimension D/2) and complex on D/2 + 1 dimensions (i.e.,
dimension 1 and dimension D/2 + 1 to dimension D). UF8 and UF9 are three-objective, while all the
other benchmark problems are two-objective.

4.3. Metaheuristics Compared and Parameter Settings

AMCLPSO is compared with MSCLPSO [1] in order to investigate whether the proposed adaptive
particle velocity update strategy can help MSCLPSO improve the search efficiency. The algorithm
parameters of MSCLPSO take the recommended values given in [1]. The algorithm parameters
of AMCLPSO take the same values as those of MSCLPSO, except that the empirical values of the
parameters related to the adaptive particle velocity update strategy have been given in Section 3. The
maximum number of elitists stored in the external repository S is set as 100 and 300, respectively, on
the two-objective benchmark optimization problems and three-objective problems. The number of
points sampled along the true Pareto front T is set as 1000 for the two-objective problems and 10,000
for three-objective problems. e-dominance [36] is adopted. Given two points u = (uy, up, ... , up) and
v=(v1, v, ..., VM) in the objective space ©, v e-dominances u if v, < uy, + eforeachm=1,2,... , M,
and at least one m exists such that v, < u,, + ¢, where ¢ is a given very small positive number. ¢ is set
as 0.0001. As the problems exhibit different difficulty levels, the metaheuristics take different numbers
of FEs on the problems. The FEs values are listed in Table 1. AMCLPSO and MSCLPSO are run
for 30 independent times on each problem. MSCLPSO was compared with several state-of-the-art
multiobjective metaheuristics including CMPSO [21], MOEA/D [22], and nondominated sorting
genetic algorithm II (NSGA-II) and was ranked the best in [1], we can thus understand whether
CMPSO outperforms the CMPSO, MOEA /D, and NSGA-II algorithms based on the comparison
between AMCLPSO and MSCLPSO.

Table 1. FEs used on the benchmark problems.

ZDT2 ZDT3 ZDT4-V1 ZDT4-V2 WEFG1 ZDT2-UF1
FEs 30,000 30,000 40,000 200,000 500,000 500,000
ZDT4-UF2 UF1 UF2 UF7 UF8 UF9
FEs 300,000 300,000 500,000 300,000 600,000 600,000

4.4. Experimental Results and Discussions

Table 2 lists the statistical (i.e., mean, standard deviation, best, and worst) IGD results calculated
from the 30 runs of AMCLPSO and MSCLPSO on all the benchmark optimization problems. The better
results of the two metaheuristics on all the problems are marked in bold in Table 2. The IGD results of
AMCLSO in all 30 runs are compared with those of MSCLPSO using the Wilcoxon rank sum test with
the significance level 0.05 on each benchmark problem. The test p-value results are listed in Table 3
and p-value results less than 0.05 are marked in bold. The best single-objective solutions obtained by
different swarms of AMCLPSO on all the problems are listed in Table 4. Table 5 gives the statistical
IGD results of AMCLPSO using some different parameters settings of the adaptive particle velocity
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update strategy. Standard deviation is abbreviated as “sd” for convenience in Tables 1, 4 and 5. The
nondominated solutions obtained by AMCLPSO and MSCLPSO in the worst runs on all the problems
are illustrated in Figure 2, with the hollow circle and solid triangle curves respectively representing
AMCLPSO and MSCLPSO.

Table 2. Statistical IGD results of AMCLPSO and MSCLPSO on the benchmark problems.

Problem IGD AMCLPSO MSCLPSO Problem IGD AMCLPSO MSCLPSO
Mean 437 x 1073 436 x 1073 Mean 453 x 1073 492 x 1073

SD 145 x 107%  1.07 x 10~* SD 112 X 10~% 394 x 10°*

Zb12 Best 4.09 x 1073 4.15x 1073 ZDT4-UF2 Best 436 X 1073 4.40 x 1073
Worst 466 x 1073 4.59 x 1073 Worst 4.84 x 1073 625 x 1073

Mean 4.89 x 1073 494 x 1073 Mean 410 x 1073  4.35x 1073

SD 1.08 X 10~% 157 x 1074 SD 521 x 10> 113 x10°*

ZDT3 Best 471 x 1073 471 x 1073 UF1 Best 398 X 1073 415 x 1073
Worst 520 X 1073 534 x 1073 Worst 420 x 1073 466 x 1073

Mean 441 x 1073 851 x 1073 Mean 432 x 1073 490 x 1073

SD 132 x107% 223 x 1072 SD 1.82 x 107% 576 x 10~*

ZDT4-V1 Best 4.05 x 1073 422 x 1073 UF2 Best 4.08 x 1073 412 x 1073
Worst 467 x 1073 126 x 107! Worst 475 x 1073 7.01 x 1073

Mean 432 x 1073 834x1073 Mean 415 x 1073 440 x 1073

SD 7.23 X 1075 222 x 1072 SD 1.05 X 10~% 258 x 10~*

ZDT4-V2 Best 417 x 1073 4.09 x 1073 UF7 Best 3.98 X 1073 4.08 x 1073
Worst 450 x 1073  1.26 x 1071 Worst 439 x 1073 527 x 1073

Mean 134 x 1072 135 x 1072 Mean 478 x 1072 531 x 1072

SD 377 x107*  3.28 x 10~* SD 319 x 1073 997 x 1073

WFG1 Best 124 X 1072 128 x 1072 UF8 Best 415 x 1072 4.50 x 1072
Worst 145 %1072 1.41 x 1072 Worst 573 X 1072 8.60 x 1072

Mean 467 x 107 4.64 x 1073 Mean 2.64 X 1072 3.30 x 1072

SD 1.60 X 10~% 253 x 10°* SD 213 X 1073 256 x 1072

ZDT2-UF1 Best 443 x 1073 422 x 1073 UE9 Best 240 X 1072 241 x 1072
Worst 508 x 1073 512 x 1073 Worst 3.61 X102  1.68 x 1071

Table 3. Wilcoxon rank sum test p-value results on the benchmark problems.

ZDT2 ZDT3 ZDT4-V1 ZDT4-V2 WFG1 ZDT2-UF1
p-value result 0.6973 0.3136 0.4761 0.1504 0.786 0.7191
ZDT4-UF2 UF1 UF2 UF7 UF8 UF9

p-valueresult 9.557 x 10 1.64 X 10~15  1.366 X 10~%  6.816 x 10~7  3.025 x 10~1  4.576 x 10~

Table 4. Best single-objective solutions obtained by different swarms of AMCLPSO on the
benchmark problems.

Swarm 1 Swarm 2 Swarm 3
Problems
Mean SD Mean SD Mean SD
ZDT2 231 x 1074 2.60 x 107 1.95 2.04 x 1071 - -
ZDT3 2.68 x 1074 1.98 x 1074 1.22 2.15 x 107! - -
ZDT4-V1 241 x 1074 243 x 107 7.63 x 1071 325 x 107! - -
ZDT4-V2 1.35 x 1075 2.09 x 10~ 2.55 x 1071 2.38 x 107! - -
WFG1 2.44 6.06 x 1072 8.30 x 1072 318 x 10711 - -
ZDT2-UF1 2.90 x 104 357 x 10~ 2.71 8.14 x 107! - -
ZDT4-UF2 18.30 3.70 1.24 x 1071 2.17 x 1072 - -
UF1 7.44 x 1071 2.03 x 1071 7.16 x 1071 2.10 x 107! - -
UF2 1.27 x 1071 248 x 1072 1.90 x 1071 434 x 1072 - -
UF7 9.49 x 107! 1.48 x 1071 407 x 1071 1.30 x 107! - -
UF8 544 x 1071 2.80 x 1071 440 x 1071 224 x 1071 644 x 1071 351 x 107!

UF9 6.92 x 1071 245 x 1071 7.33 x 107! 246 x 1071 1.23 246 x 1071
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Table 5. Statistical IGD results of AMCLPSO using some different parameter settings of the adaptive
particle velocity update strategy.

Statistical IGD Results

Parameter Setting Problem
Mean SD Best Worst
Ave = 0.1 ZDT4-V2 8.42 x 1073 222 x 1072 414 x 1073 1.26 x 1071
c1=0 WFG1 1.50 x 1072 142 x 1073 1.34 x 1072 1.95 x 102
=1 UF9 4,09 x 1072 459 x 1072 2.34 x 1072 1.83 x 1071
=03 UF2 447 x 1073 3.72 x 1074 417 x 1073 593 x 1073

The adaptive particle velocity update strategy: As can be observed from Table 2, AMCLPSO
outperforms MSCLPSO on 10 problems with respect to each type of statistical IGD result. AMCLPSO is
slightly worse than MSCLPSO in terms of the mean IGD result on ZDT2 and ZDT4-UF1, the standard
deviation IGD result on ZDT2 and WFGI, the best IGD result on ZDT4-V2 and ZDT2-UF1, and the
worst IGD result on ZDT2 and WFGI. For the Wilcoxon rank sum test, the null hypothesis is that the
two arrays of data samples have identical distributions. A p-value result less than the significance level
0.05 supports the alternative hypothesis and means that the data distributions are significantly different.
It can be observed from the Wilcoxon rank sum test p-value results given in Table 3 that the IGD results
of AMCLPSO are significantly better than those of MSCLPSO on 6 problems i.e., ZDT4-UF2, UF1, UF2,
UF7, UF8, and UF9. According to the nondominated solutions illustrated in Figure 2, AMCLPSO can
approximate the true Pareto front even in the worst run on all 12 problems, and the nondominated
solutions obtained by AMCLPSO in the worst run are well distributed over the entire Pareto front on
10 problems (i.e., except UF8 and UF9). MSCLPSO locates a local Pareto front which is considerably
far from the true Pareto front in the worst run on the ZDT4-V1, ZDT4-V2, UF8, and UF9 problems.
The nondominated solutions derived by MSCLPSO exhibit a worse distribution over the entire Pareto
front than those by AMCLPSO on the ZDT4-UF2, UF2, and UF7 problems. The best single-objective
solutions given in Table 4 show that AMCLPSO can find the global optimum or a near-optimum for
one objective on the ZDT2, ZDT3, WFG1, ZDT2-UF1, and ZDT4-UF2 problems, for two objectives
on the ZDT4-V1, ZDT4-V2, UF1, UF2, UF7, and UF9 problems, and for three objectives on the UF8
problem. A dimension is said to be simple if the Pareto-optimal decision vectors are indifferent on
that dimension, and is complex if the vectors differ considerably. The particles’ personal best positions
obtained by AMCLPSO related to at least one objective are close to the Pareto-optimal decision vectors
on simple dimensions, while the personal best positions regarding all the objectives are located in
rather different regions of the search space on complex dimensions. All the observations verify that:
(1) the personal best positions carry useful information about the Pareto set, and the mutation strategy
that learns from the personal best positions benefits discovering the true Pareto set; (2) there are many
local Pareto fronts encountered and the elitists differ considerably on many dimensions during the
initial search process for the ZDT4-V1 and ZDT4-V2 problems that feature many simple dimensions
and difficult extremity search, the adaptive particle velocity update strategy accelerates the extremity
search through incorporating perturbation; (3) the perturbation mechanism in the adaptive particle
velocity update strategy enables to explore the Pareto set on complex dimensions; and (4) the adaptive
particle velocity update strategy thus helps AMCLPSO to converge towards the true Pareto front
more quickly and to obtain better distributed nondominated solutions over the entire Pareto front
than MSCLPSO.
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Figure 2. Nondominated solutions obtained by AMCLPSO and MSCLPSO in the worst runs on the
benchmark problems: (a) ZDT2; (b) ZDT3; (c) ZDT4-V1; (d) ZDT4-V2; (e) WFG1; (f) ZDT2-UF1.
(g) ZDT4-UF2; (h) UF1; (i) UF2; (j) UF7; (k) UFS; (1) UF9.

The strategy parameters: As we can observe from the statistical IGD results given in Table 5,

the performance of the adaptive particle velocity update strategy is quite sensitive to the values
selected for the parameters. The appropriate values of the strategy parameters are determined based
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on trials on all the problems. AMCLPSO is likely to get stuck in a terrible local Pareto front in the
worst run on the ZDT4-V2 problem with the relative ratio A, = 0.1, on the WFG1 problem with
the acceleration coefficient c; = 0, and on the UF9 problem with ¢; = 1. The distribution of the
nondominated solutions obtained by AMCLPSO with the acceleration coefficient ¢, = 0.3 is much
worse than that with c; = 3. The observations accordingly indicate that: (1) when the interval of the
elitists [Qg‘in, Q7] is sufficiently small on dimension d, the elitists can be considered as indifferent
on that dimension; and (2) the particle velocity update process needs to take a tradeoff between the
extremity search and the perturbation, and it is more much important to conduct the perturbation than
the extremity search when the elitists differ considerably on a dimension.

Comparison of AMCLPSO with other state-of-the-art multiobjective metaheuristics: In [1], we
compared MSCLPSO with CMPSO, MOEA /D, and NSGA-II on the ZDT2, ZDT4, ZDT4-V1, ZDT4-V2,
WEFG1, UF1, UF2, UF7, UFS8, and UF9 problems. The FEs used in [1] are significantly more than
those used in this paper on all the problems. It was demonstrated in [1] that CMPSO, MOEA /D, and
NSGA-II cannot approximate the true Pareto front on ZDT4-V1, ZDT4-V2, WFG1, UF1, UF2, UF7,
UF8, and UF9 in some or all of the runs, while MSCLPSO is able to find nondominated solutions well
distributed over the true Pareto front on all the problems in all the runs. MSCLPSO significantly beats
CMPSO, MOEA /D, and NSGA-II on 9 out of the 10 problems in terms of the statistical IGD results [1].
As AMCLPSO outperforms MSCLPSO, AMCLPSO also performs better than the state-of-the-art
metaheuristics such as CMPSO, MOEA /D, and NSGA-II.

5. Conclusions

In this paper, we have proposed AMCLPSO with an adaptive particle velocity update strategy
to improve the search efficiency of MSCLPSO. When the elitists are indifferent on a dimension, each
particle only learns from some particle in the same swarm on that dimension for flight trajectory
update; otherwise, when the elitists are complex on a dimension, each particle additionally learns
from the difference of some pair of elitists on that dimension. The adaptive particle velocity update
strategy achieves a tradeoff between optimizing each single objective and exploring the Pareto set.
Experimental results on various multiobjective benchmark optimization problems have demonstrated
that the adaptive particle velocity update strategy is able to help AMCLPSO converge more quickly
towards the true Pareto front and derive better distributed nondominated solutions over the entire
Pareto front than MSCLPSO. In the future, we will further enhance the performance of AMCLPSO.
A possible direction is to investigate an adaptive different evolution strategy of the elitists as differential
evolution is not equally useful for the simple and complex dimensions.
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