

Article

Near-Extremal Type I Self-Dual Codes with Minimal Shadow over GF(2) and GF(4)

Sunghyu Han

School of Liberal Arts, KoreaTech, Cheonan 31253, Korea; sunghyu@koreatech.ac.kr; Tel.: +82-41-640-8611

Received: 23 June 2018; Accepted: 11 July 2018; Published: 13 July 2018

Abstract: Binary self-dual codes and additive self-dual codes over GF(4) contain common points. Both have Type I codes and Type II codes, as well as shadow codes. In this paper, we provide a comprehensive description of extremal and near-extremal Type I codes over GF(2) and GF(4) with minimal shadow. In particular, we prove that there is no near-extremal Type I [24m, 12m, 2m + 2] binary self-dual code with minimal shadow if $m \ge 323$, and we prove that there is no near-extremal Type I $(6m + 1, 2^{6m+1}, 2m + 1)$ additive self-dual code over GF(4) with minimal shadow if $m \ge 22$.

Keywords: additive codes over GF(4); binary codes; extremal codes; minimal shadow; near-extremal codes; self-dual codes

1. Introduction

There are many interesting classes of codes in coding theory, such as cyclic codes, quadratic residue codes, algebraic geometry codes and self-dual codes. This paper focuses on self-dual codes, which, while of interest themselves, are closely related to other mathematical structures such as block designs, lattices, modular forms and sphere packings (for example, see [1]).

There are several types of self-dual codes. Among them, binary self-dual codes and additive self-dual codes over GF(4) have common points. Firstly, there are Type I and Type II codes in both classes. Secondly, there are shadow codes in both classes. Using shadow theory, E. M.Rains provided an upper bound to the minimum distances of Type I codes in both classes [2]. If a code meets this bound, then it is called an extremal code.

For extremal Type II codes, there is a systematic nonexistence proof [3]. However, for extremal Type I codes, no such nonexistence proof exists. Research has also been conducted on extremal Type I codes with minimal shadow. S. Bouyuklieva and W. Willems studied the nonexistence of extremal Type I binary codes with minimal shadow [4]. Impressed by the results, S. Han studied the nonexistence of extremal Type I additive codes over GF(4) with minimal shadow [5]. Recently, S. Bouyuklieva, M. Harada and A. Munemasa studied the nonexistence of near-extremal Type I binary self-dual codes with minimal shadow [6].

In this paper, we cover the missing case of the nonexistence of near-extremal Type I binary self-dual codes with minimal shadow, which was not covered in [6], and we apply the technique to near-extremal Type I additive codes over GF(4) with minimal shadow. The main contribution of this paper is three-fold. Firstly, it provides a comprehensive presentation of the nonexistence of extremal and near-extremal Type I codes over GF(2) and GF(4). Secondly, we prove that there is no near-extremal Type I [24m, 12m, 2m + 2] binary self-dual code with minimal shadow if $m \ge 323$. Thirdly, we prove that there is no near-extremal Type I $(6m + 1, 2^{6m+1}, 2m + 1)$ additive self-dual code over GF(4) with minimal shadow if $m \ge 22$.

The rest of the paper is organized as follows. In Section 2, we deal with binary self-dual codes with minimal shadow. We consider the nonexistence of extremal Type I binary self-dual codes with minimal shadow. In Section 3, we consider the nonexistence of near-extremal Type I binary self-dual codes with

Information 2018, 9, 172 2 of 12

minimal shadow. In Section 4, we deal with additive self-dual codes over GF(4) with minimal shadow. We consider the nonexistence of extremal Type I additive self-dual codes over GF(4) with minimal shadow. In Section 5, we consider the nonexistence of near-extremal Type I additive self-dual codes over GF(4) with minimal shadow. All computer calculations in this study were performed using the mathematical software Maple.

2. Extremal Type I Binary Self-Dual Codes with Minimal Shadow

In this section, we deal with binary self-dual codes with minimal shadow. First, we discuss basic facts about binary self-dual codes. Secondly, we consider the nonexistence of extremal Type I binary self-dual codes with minimal shadow.

A binary linear code C is a subspace of a vector space $GF(2)^n$, and the vectors in C are called codewords. The weight of a codeword $u = (u_1, u_2, \dots, u_n)$ in $GF(2)^n$ is the number of nonzero u_j . The minimum distance of C is the smallest nonzero weight of any codeword in C. If the dimension of C is C is C is an C is an

The scalar product in $GF(2)^n$ is defined by:

$$(u,v) = \sum_{j=1}^{n} u_{j} v_{j} , \qquad (1)$$

where the sum is evaluated in GF(2). The dual code of a binary linear code C is defined by:

$$C^{\perp} = \{ v \in GF(2)^n : (v, c) = 0 \text{ for all } c \in C \}.$$
 (2)

If $C \subseteq C^{\perp}$, we say C is self-orthogonal, and if $C = C^{\perp}$, we say C is self-dual.

A binary code is even if all its codewords have even weights. Clearly, self-dual binary codes are even. In addition, some of these codes have all codewords of weights divisible by four. A self-dual code with all codewords of weights divisible by four is called doubly-even or Type II; a self-dual code where some codewords have weights not divisible by four is called singly-even or Type I. Bounds on the minimum distance of binary self-dual codes were provided in [2].

Theorem 1. ([2]) Let C be an [n, n/2, d] binary self-dual code. Then, $d \le 4[n/24] + 4$ if $n \not\equiv 22 \pmod{24}$. If $n \equiv 22 \pmod{24}$, then $d \le 4[n/24] + 6$, and if the equality holds, C can be obtained by shortening a Type II code of length n + 2. If $24 \mid n$ and d = 4[n/24] + 4, then C is Type II.

A code meeting the bounds of Theorem 1, i.e., for which equality holds within the bounds, is called extremal. From Theorem 1, note that there is no extremal Type I code of length n = 24m ($m \ge 1$). There is a systematic proof for the nonexistence of extremal Type II codes if the code length is sufficiently large [3].

Theorem 2. ([3]) Let C be an extremal binary Type II code of length $n = 24m + 8\ell$. Then, the code C does not exist if $m \ge 154$ (for $\ell = 0$), $m \ge 159$ (for $\ell = 1$) and $m \ge 164$ (for $\ell = 2$).

The proof of Theorem 1 for Type I codes is formulated using a shadow code. In [7], the concept of a shadow code was introduced. The shadow code of a self-dual code C is defined as follows: let $C^{(0)}$ be the subset of C consisting of all codewords whose weights are multiples of four, and let $C^{(2)} = C \setminus C^{(0)}$. The shadow code of C is defined by:

$$S = S(C) = \{ u \in GF(2)^n : (u, v) = 0 \text{ for all } v \in C^{(0)}, (u, v) = 1 \text{ for all } v \in C^{(2)} \}.$$
 (3)

Information 2018, 9, 172 3 of 12

The weight enumerator of a code is given by:

$$W_C(x,y) = \sum_{i=0}^{n} A_i x^{n-i} y^i,$$
(4)

where there are A_i codewords of weight i in C. The following lemma is needed in this paper:

Lemma 1. [7] Let C be a Type I binary self-dual code of length n and minimum weight d. Let $S(y) = \sum_{i=0}^{n} b_i y^i$ be the weight enumerator of S(C). Then:

1.
$$b_0 = 0$$

2. $b_i \le 1$ for $i < d/2$

Let *C* be a Type I binary self-dual code of length $n = 24m + 8\ell + 2r$ where $\ell = 0, 1, 2$ and r = 0, 1, 2, 3. By Gleason's theorem [8–10], we can calculate the weight enumerator of *C* as follows for suitable constants c_i :

$$W_C(x,y) = \sum_{i=0}^{[n/8]} c_i (x^2 + y^2)^{n/2 - 4i} \{ x^2 y^2 (x^2 - y^2)^2 \}^i.$$
 (5)

Using the shadow code theory [7], we can calculate the weight enumerator of shadow code S(C):

$$W_S(x,y) = \sum_{i=0}^{[n/8]} (-1)^i 2^{n/2 - 6i} c_i(xy)^{n/2 - 4i} (x^4 - y^4)^{2i}.$$
 (6)

We rewrite Equations (5) and (6) to the following:

$$W_C(1,y) = \sum_{i=0}^{12m+4\ell+r} a_i y^{2i} = \sum_{i=0}^{3m+\ell} c_i (1+y^2)^{12m+4\ell+r-4i} \{ y^2 (1-y^2)^2 \}^i, \tag{7}$$

$$W_S(1,y) = \sum_{j=0}^{6m+2\ell} b_j y^{4j+r} = \sum_{i=0}^{3m+\ell} (-1)^i c_i \, 2^{12m+4\ell+r-6i} y^{12m+4\ell+r-4i} (1-y^4)^{2i}. \tag{8}$$

Note that all a_j and b_j must be nonnegative integers. One can write c_i as a linear combination of the a_j for $0 \le j \le i$, and one can write c_i as a linear combination of b_j for $0 \le j \le 3m + \ell - i$, as follows for suitable constants α_{ij} and β_{ij} :

$$c_i = \sum_{j=0}^{i} \alpha_{ij} a_j = \sum_{j=0}^{3m+\ell-i} \beta_{ij} b_j.$$
 (9)

In our computation, we need to calculate α_{i0} and β_{ij} . The following formula can be found in [2] for i > 0:

$$\alpha_{i0} = -\frac{n}{2i} \left[\text{coeff. of } y^{i-1} \text{ in } (1+y)^{-(n/2)-1+4i} (1-y)^{-2i} \right]$$
 (10)

and:

$$\beta_{ij} = (-1)^i 2^{-\frac{n}{2} + 6i} \frac{k - j}{i} \binom{k + i - j - 1}{k - i - j},\tag{11}$$

where $k = 3m + \ell$. Note that $a_0 = c_0 = \alpha_{00} = 1$. Now, we introduce the definition of a code with minimal shadow:

Definition 1. Let C be a Type I binary self-dual code of length $n = 24m + 8\ell + 2r$ with $\ell = 0, 1, 2$ and r = 0, 1, 2, 3. Then, C is a code with minimal shadow if:

1.
$$d(S) = r \text{ for } r > 0 \text{ and }$$

Information 2018, 9, 172 4 of 12

2.
$$d(S) = 4$$
 for $r = 0$

where d(S) is the minimum weight of S.

Let C be an extremal Type I binary self-dual code with a minimal shadow of length n. Then, the following facts can be found in [4]: For a_i , we have $a_0 = 1$, $a_1 = a_2 = \cdots = a_{2m+1} = 0$. Moreover, if $n \equiv 22 \pmod{24}$, then $a_{2m+2} = 0$. For b_j , we have $b_0 = 1$ if (i) r = 1 and $m \ge 0$ and (ii) r = 2,3 and $m \ge 1$. Furthermore, we have $b_0 = 0$, $b_1 = 1$ if r = 0 and $m \ge 2$. If r > 0, then $b_1 = b_2 = \cdots = b_{m-1} = 0$. If r = 0, then $b_2 = b_3 = \cdots = b_{m-1} = 0$. Moreover, if n = 24m + 8l + 2, then $b_m = 0$. Using these facts, we have the following lemma:

Lemma 2. Using the above notations, we have the following results:

```
1. If n=24m+2 (m\geq 0), then c_i=\alpha_{i0} for 0\leq i\leq 2m+1, c_i=\beta_{i0} for 2m\leq i\leq 3m.

2. If n=24m+4 (m\geq 1), then c_i=\alpha_{i0} for 0\leq i\leq 2m+1, c_i=\beta_{i0} for 2m+1\leq i\leq 3m.

3. If n=24m+6 (m\geq 1), then c_i=\alpha_{i0} for 0\leq i\leq 2m+1, c_i=\beta_{i0} for 2m+1\leq i\leq 3m.

4. If n=24m+8 (m\geq 2), then c_i=\alpha_{i0} for 0\leq i\leq 2m+1, c_i=\beta_{i1} for 2m+2\leq i\leq 3m+1.

5. If n=24m+10 (m\geq 0), then c_i=\alpha_{i0} for 0\leq i\leq 2m+1, c_i=\beta_{i0} for 2m+1\leq i\leq 3m+1.

6. If n=24m+12 (m\geq 1), then c_i=\alpha_{i0} for 0\leq i\leq 2m+1, c_i=\beta_{i0} for 2m+2\leq i\leq 3m+1.

7. If n=24m+14 (m\geq 1), then c_i=\alpha_{i0} for 0\leq i\leq 2m+1, c_i=\beta_{i0} for 2m+2\leq i\leq 3m+1.

8. If n=24m+16 (m\geq 2), then c_i=\alpha_{i0} for 0\leq i\leq 2m+1, c_i=\beta_{i0} for 2m+2\leq i\leq 3m+2.

9. If n=24m+18 (m\geq 0), then c_i=\alpha_{i0} for 0\leq i\leq 2m+1, c_i=\beta_{i0} for 2m+2\leq i\leq 3m+2.

10. If n=24m+20 (m\geq 1), then c_i=\alpha_{i0} for 0\leq i\leq 2m+1, c_i=\beta_{i0} for 2m+3\leq i\leq 3m+2.

11. If n=24m+20 (m\geq 1), then c_i=\alpha_{i0} for 0\leq i\leq 2m+1, c_i=\beta_{i0} for 2m+3\leq i\leq 3m+2.
```

Proof. Let *C* be an extremal Type I binary self-dual code with minimal shadow of length n = 24m + 2. We can rewrite Equation (9) as follows:

$$c_i = \sum_{i=0}^{i} \alpha_{ij} a_j = \sum_{j=0}^{3m-i} \beta_{ij} b_j.$$
 (12)

Then, we have:

$$c_i = \sum_{j=0}^i \alpha_{ij} a_j = \alpha_{i0} \text{ for } i = 0, 1, 2, \dots, 2m+1$$
 (13)

and:

$$c_i = \sum_{j=0}^{3m-i} \beta_{ij} b_j = \beta_{i0} \text{ for } i = 2m, 2m+1, \dots, 3m.$$
 (14)

Therefore, the first statement is proven. The other cases can be proven similarly. \Box

Using Lemma 2, we have the following theorem:

Theorem 3. Let C be an extremal Type I binary self-dual code of length n with minimal shadow. Then, the weight enumerator of C is unique if $n \not\equiv 24m + 16,24m + 20$.

Proof. Suppose that $n \not\equiv 24m + 16, 24m + 20$. From Lemma 2, we can see that c_i can be calculated by Equations (10) and (11), and they depend only on the length n for all i, $(0 \le i \le \lfloor n/8 \rfloor)$, except the following cases. By [7], we know that:

- 1. n = 24m + 4: If m = 0, then n = 4. For this case, there is no extremal code.
- 2. n = 24m + 6: If m = 0, then n = 6. For this case, there is no extremal code.
- 3. n = 24m + 8: If m = 0, then n = 8. For this case, there is no extremal Type I code. If m = 1, then n = 32. For this case, there are three extremal Type I codes. They have the same weight enumerator: $W_C(1,y) = 1 + 364y^8 + 2048y^{10} + 6720y^{12} + 14336y^{14} + 18598y^{16} + \cdots$,

Information 2018, 9, 172 5 of 12

 $W_S(1,y) = 8y^4 + 592y^8 + 13944y^{12} + 36448y^{16} + \cdots$. We can see that the codes have minimal shadow.

- 4. n=24m+12: If m=0, then n=12. For this case, there is a unique extremal Type I code. The weight enumerator is the following: $W_C(1,y)=1+15y^4+32y^6+\cdots$, $W_S(1,y)=6y^2+5y^6+\cdots$. We can see that the code has minimal shadow.
- 5. n=24m+22: If m=0, then n=22. For this case, there is a unique extremal Type I code. The weight enumerator is the following: $W_C(1,y)=1+77y^6+330y^8+616y^{10}+\cdots$, $W_S(1,y)=352y^7+1344y^{11}+\cdots$.

This completes the proof. \Box

The following nonexistence theorems are proven in [4].

Theorem 4. [4] Extremal self-dual codes of lengths n = 24m + 2, 24m + 4, 24m + 6, 24m + 10 and 24m + 22 with minimal shadow do not exist.

Theorem 5. [4] There are no extremal Type I binary self-dual codes of length n with minimal shadow if:

```
1. n = 24m + 8 and m \ge 53;
```

- 2. n = 24m + 12 and $m \ge 142$;
- 3. n = 24m + 14 and $m \ge 146$;
- 4. n = 24m + 16 and $m \ge 164$;
- 5. n = 24m + 18 and $m \ge 157$.

Remark 1. Currently, n = 24m + 20 is the unique untouched code length for the nonexistence or an explicit bound for the length n of an extremal Type I binary self-dual code with minimal shadow.

3. Near-Extremal Type I Binary Self-Dual Codes with Minimal Shadow

In this section, we consider the nonexistence of near-extremal Type I binary self-dual codes with minimal shadow. We start with the following definition:

Definition 2. Let C be an [n, n/2, d] Type I binary self-dual code. Then, C is a near-extremal code if:

```
1. d = 4[n/24] + 2 for n \not\equiv 22 \pmod{24}; and 2. d = 4[n/24] + 4 for n \equiv 22 \pmod{24}.
```

Let *C* be a near-extremal Type I binary self-dual code with minimal shadow. Then, we have the following: $a_0 = 1$, $a_1 = a_2 = \cdots = a_{2m} = 0$. Moreover, if $n \equiv 22 \pmod{24}$, then $a_{2m+1} = 0$.

```
By Lemma 1, b_0 = 1 if (i) r = 1, 2 and m \ge 1, (ii) r = 3, n \ne 22 \pmod{24} and m \ge 2 and (iii) r = 3, n \equiv 22 \pmod{24} and m \ge 1. In addition, b_0 = 0, b_1 = 1 if r = 0 and m \ge 2.
```

If r=1,2 or r=3 and $n\equiv 22\pmod{24}$, then $b_1=b_2=\cdots=b_{m-1}=0$. Otherwise, S would contain a vector v of weight less than or equal to 4m-4+r, and if $u\in S$ is a vector of weight r, then $u+v\in C$ with wt $(u+v)\leq 4m-4+2r$, a contradiction with a minimum distance of C. If r=3 and $n\not\equiv 22\pmod{24}$, then $b_1=b_2=\cdots=b_{m-2}=0$. Furthermore, if r=0, then $b_2=b_3=\cdots=b_{m-1}=0$. The proofs are similar to the above case. Using this fact, we have the following lemma:

Lemma 3. Using the above notations, we have the following results:

```
1. If n = 24m (m \ge 2), then c_i = \alpha_{i0} for 0 \le i \le 2m, c_i = \beta_{i1} for 2m + 1 \le i \le 3m.
```

- 2. If n = 24m + 2 ($m \ge 1$), then $c_i = \alpha_{i0}$ for $0 \le i \le 2m$, $c_i = \beta_{i0}$ for $2m + 1 \le i \le 3m$.
- 3. If n = 24m + 4 $(m \ge 1)$, then $c_i = \alpha_{i0}$ for $0 \le i \le 2m$, $c_i = \beta_{i0}$ for $2m + 1 \le i \le 3m$.
- 4. If n = 24m + 6 $(m \ge 2)$, then $c_i = \alpha_{i0}$ for $0 \le i \le 2m$, $c_i = \beta_{i0}$ for $2m + 2 \le i \le 3m$.
- 5. If n = 24m + 8 ($m \ge 2$), then $c_i = \alpha_{i0}$ for $0 \le i \le 2m$, $c_i = \beta_{i1}$ for $2m + 2 \le i \le 3m + 1$.
- 6. If n = 24m + 10 ($m \ge 1$), then $c_i = \alpha_{i0}$ for $0 \le i \le 2m$, $c_i = \beta_{i0}$ for $2m + 2 \le i \le 3m + 1$.

Information 2018, 9, 172 6 of 12

```
7. If n=24m+12 (m\geq 1), then c_i=\alpha_{i0} for 0\leq i\leq 2m, c_i=\beta_{i0} for 2m+2\leq i\leq 3m+1.

8. If n=24m+14 (m\geq 2), then c_i=\alpha_{i0} for 0\leq i\leq 2m, c_i=\beta_{i0} for 2m+3\leq i\leq 3m+1.

9. If n=24m+16 (m\geq 2), then c_i=\alpha_{i0} for 0\leq i\leq 2m, c_i=\beta_{i1} for 2m+3\leq i\leq 3m+2.

10. If n=24m+18 (m\geq 1), then c_i=\alpha_{i0} for 0\leq i\leq 2m, c_i=\beta_{i0} for 2m+3\leq i\leq 3m+2.

11. If n=24m+20 (m\geq 1), then c_i=\alpha_{i0} for 0\leq i\leq 2m, c_i=\beta_{i0} for 2m+3\leq i\leq 3m+2.

12. If n=24m+22 (m\geq 1), then c_i=\alpha_{i0} for 0\leq i\leq 2m+1, c_i=\beta_{i0} for 2m+3\leq i\leq 3m+2.
```

Proof. The proof is similar to the one for Lemma 2. \Box

Using Lemma 3, we have the following theorem [6]:

Theorem 6. [6] Let C be a near-extremal Type I binary self-dual code with minimal shadow of length n. Then, we have the following:

- 1. The weight enumerator of C is uniquely determined if n = 24m + 2,24m + 4,24m + 10.
- 2. The code C does not exist if:
 - (a) n = 24m + 2 and $m \ge 155$ (b) n = 24m + 4 and $m \ge 156$ (c) n = 24m + 10 and $m \ge 160$

The missing case in Theorem 6 is the code length n = 24m. We can prove similar results for the missing case using the following theorem:

Theorem 7. Let C be a [24m, 12m, 4m + 2] near-extremal Type I binary self-dual code with minimal shadow. Then, we have the following:

- 1. The weight enumerator of C is uniquely determined.
- 2. The code C does not exist if $m \ge 323$.

Proof. From Lemma 3, we can see that c_i can be calculated by Equations (10) and (11), and they depend only on the length n for all i, $(0 \le i \le \lfloor n/8 \rfloor)$ unless m = 1. If m = 1, then n = 24. For this case, there is a unique near-extremal Type I code [7]. The weight enumerator is the following: $W_C(1,y) = 1 + 64y^6 + 375y^8 + 960y^{10} + 1296y^{12} + \cdots$. $W_S(1,y) = 6y^4 + 744y^8 + 2596y^{12} + \cdots$. We can see that the code has minimal shadow. This proves the first statement.

For the second statement, from Equation (9) and the fact that $c_i = \alpha_{i,0}$ for $0 \le i \le 2m$, we have:

$$c_{2m} = \alpha_{2m,0} = \beta_{2m,1} + \beta_{2m,m}b_m. \tag{15}$$

Therefore, we get:

$$b_m = \beta_{2m,m}^{-1}(\alpha_{2m,0} - \beta_{2m,1}). \tag{16}$$

Using Equations (10) and (11), we have:

$$\beta_{2m,m} = 1, \alpha_{2m,0} = 6 \binom{5m-1}{m-1}, \beta_{2m,1} = \frac{3m-1}{2m} \binom{5m-2}{m-1}. \tag{17}$$

From this, we get:

$$b_m = 6 \binom{5m-1}{m-1} - \frac{3m-1}{2m} \binom{5m-2}{m-1}.$$
 (18)

From Equation (9) and the fact that $c_i = \alpha_{i,0}$ for $0 \le i \le 2m$, we have:

$$c_{2m-1} = \alpha_{2m-1,0} = \beta_{2m-1,1} + \beta_{2m-1,m}b_m + \beta_{2m-1,m+1}b_{m+1}. \tag{19}$$

From this, we get:

$$b_{m+1} = \beta_{2m-1,m+1}^{-1} (\alpha_{2m-1,0} - \beta_{2m-1,1} - \beta_{2m-1,m} b_m).$$
 (20)

Information 2018, 9, 172 7 of 12

Using Equations (10) and (11), we have:

$$\beta_{2m-1,m+1} = -2^{-6},\tag{21}$$

$$\alpha_{2m-1,0} = -\frac{24m}{2(2m-1)} \left[\binom{5m+3}{m-1} + \binom{5m+2}{m-2} \binom{7}{2} + \binom{5m+1}{m-3} \binom{7}{4} + \binom{5m}{m-4} \binom{7}{6} \right] \tag{22}$$

and:

$$\beta_{2m-1,1} = -2^{-6} \times \frac{3m-1}{2m-1} {5m-3 \choose m}, \ \beta_{2m-1,m} = -\frac{m}{16}.$$
 (23)

Therefore, we get:

$$b_{m+1} = \frac{64(6m-1)(5m-1)(5m-3)!}{(4m+4)!(m-1)!}h_0(m), \tag{24}$$

where:

$$h_0(m) = -64m^5 + 20640m^4 - 9388m^3 + 582m^2 - 49m - 3. (25)$$

We can see that $h_0(m) < 0$ if $m \ge 323$. Therefore, if $m \ge 323$, then $b_{m+1} < 0$. This is a contradiction. \square

Remark 2. The definition of near-extremal Type II binary self-dual codes and the corresponding nonexistence proof can be found in [11].

4. Extremal Type I Additive Self-Dual Codes over GF(4) with Minimal Shadow

In this section, we deal with additive self-dual codes over GF(4) with minimal shadow. First, we discuss basic facts about additive self-dual codes over GF(4). Then, we consider the nonexistence of extremal Type I additive self-dual codes over GF(4) with minimal shadow.

An additive code C over GF(4) of length n is an additive subgroup of $GF(4)^n$. The weight of a vector $u = (u_1, u_2, \dots, u_n)$ in $GF(4)^n$ and the minimum distance of C are defined the same way as for binary linear codes. C is a k-dimensional GF(2)-subspace of $GF(4)^n$ and thus has 2^k codewords. It is denoted as an $(n, 2^k)$ code, and if its minimum distance is d, the code is an $(n, 2^k, d)$ code.

The trace map, $\text{Tr}: GF(4) \to GF(2)$, is defined by $\text{Tr}(x) = x + x^2$. The Hermitian trace inner product of two vectors over GF(4) of length $n, u = (u_1, u_2, ..., u_n)$ and $v = (v_1, v_2, ..., v_n)$ is given by:

$$u * v = \sum_{i=1}^{n} \text{Tr}(u_i v_i^2) = \sum_{i=1}^{n} (u_i v_i^2 + u_i^2 v_i) \pmod{2}.$$
 (26)

We define the dual of the code Cwith respect to the Hermitian trace inner product as follows:

$$C^{\perp} = \{ u \in GF(4)^n : u * c = 0 \text{ for all } c \in C \}.$$
 (27)

If $C \subseteq C^{\perp}$, we say C is self-dual, and if $C = C^{\perp}$, we say C is self-dual. If C is self-dual, then it must be an $(n, 2^n)$ code.

We distinguish between two types of additive self-dual codes over GF(4). A code is Type II if all codewords have even weights, otherwise it is Type I. Bounds on the minimum distance of additive self-dual codes over GF(4) were provided in [1,2].

Theorem 8. [1,2] Let C be an $(n, 2^n, d)$ additive self-dual code over GF(4). If C is Type I, then:

$$d \le \begin{cases} 2[n/6] + 1, & \text{if } n \equiv 0 \pmod{6}; \\ 2[n/6] + 3, & \text{if } n \equiv 5 \pmod{6}; \\ 2[n/6] + 2, & \text{otherwise.} \end{cases}$$
 (28)

If C is Type II, then:

$$d \le 2[n/6] + 2. \tag{29}$$

Information 2018, 9, 172 8 of 12

A code that meets the appropriate bound is called extremal. There is a systematic proof for the nonexistence of extremal Type II codes if the code length is sufficiently large.

Theorem 9. Let C be an extremal Type II additive self-dual code over GF(4) of length n. Then, the code C does not exist if n = 6m ($m \ge 17$), n = 6m + 2 ($m \ge 20$) and n = 6m + 4 ($m \ge 22$).

Proof. The Gleason polynomials of Type II additive self-dual codes over GF(4) are the same as the ones for Type IV Hermitian self-dual linear codes over GF(4) (see [1], Section 7.7, for examples). Both have the same upper bounds on the minimum distance and the same definition of extremal codes w.r.t. minimum distance. There is a nonexistence theorem for Type IV Hermitian self-dual linear codes over GF(4) that is the same as the above statements [3]. The proof is formulated with Gleason polynomials, so that the nonexistence statements are still valid for Type II additive self-dual codes over GF(4). \square

The proof of Theorem 8 for Type I codes is formulated using a shadow code, which is defined as follows: Let C be an additive self-dual code over GF(4) and C_0 be the subset of C consisting of all codewords whose weights are multiples of two. Then, C_0 is a subgroup of C. The shadow code of an additive code C over GF(4) is defined by:

$$S = C_0^{\perp} \backslash C. \tag{30}$$

Alternately, it can be defined as:

$$S = \{ u \in GF(4)^n \mid u * v = 0 \text{ for all } v \in C_0, \ u * v = 1 \text{ for all } v \in C \setminus C_0 \}.$$

$$(31)$$

The following lemmas for shadow codes can be found in [5]:

Lemma 4. [5] Let C be a Type I additive self-dual code over GF(4) and S be the shadow code of C. If $u, v \in S$, then $u + v \in C$.

Lemma 5. [5] Let C be an additive self-dual code over GF(4) of length n and minimum weight d. Let $S(y) = \sum_{r=0}^{n} B_r y^r$ be the weight enumerator of S. Then:

- 1. $B_0 = 0$
- 2. $B_r \le 1$ for r < d/2

Let *C* be a Type I additive self-dual code over GF(4). By [2], the weight enumerator of *C*, $W_C(x,y)$, and its shadow code weight enumerator, $W_S(x,y)$, are given by:

$$W_C(x,y) = \sum_{i=0}^{[n/2]} c_i(x+y)^{n-2i} \{y(x-y)\}^i,$$
(32)

$$W_S(x,y) = \sum_{i=0}^{[n/2]} (-1)^i 2^{n-3i} c_i y^{n-2i} (x^2 - y^2)^i,$$
(33)

for suitable constants c_i . We rewrite Equations (32) and (33) to the following:

$$W_C(1,y) = \sum_{j=0}^n a_j y^j = \sum_{i=0}^{\lfloor n/2 \rfloor} c_i (1+y)^{n-2i} \{ y(1-y) \}^i$$
 (34)

and:

$$W_S(1,y) = \sum_{j=0}^{[n/2]} b_j y^{2j+t} = \sum_{i=0}^{[n/2]} (-1)^i 2^{n-3i} c_i y^{n-2i} (1-y^2)^i, \tag{35}$$

Information 2018, 9, 172 9 of 12

where t = 0 if n is even and t = 1 if n is odd. Note that all a_j and b_j must be nonnegative integers. One can write c_i as a linear combination of the a_j for $0 \le j \le i$, and one can write c_i as a linear combination of b_i for $0 \le j \le \lfloor n/2 \rfloor - i$ in the following form for suitable constants a_{ij} and a_{ij} :

$$c_i = \sum_{j=0}^{i} \alpha_{ij} a_j = \sum_{j=0}^{[n/2]-i} \beta_{ij} b_j.$$
 (36)

In our computation, we need to calculate α_{i0} and β_{ij} . The following formulas can be found in [2] for i > 0:

$$\alpha_{i0} = -\frac{n}{i} \left[\text{coeff. of } y^{i-1} \text{ in } (1+y)^{-n-1+2i} (1-y)^{-i} \right]$$
 (37)

and:

$$\beta_{ij} = (-1)^i 2^{3i-n} \binom{k-j}{i},\tag{38}$$

where k = [n/2]. Note that $a_0 = c_0 = \alpha_{00} = 1$. Now, we will introduce the definition of a code with minimal shadow:

Definition 3. ([5]) Let C be a Type I additive self-dual code over GF(4) of length $n = 6m + r(0 \le r \le 5)$. Then, C is a code with minimal shadow if:

- 1. d(S) = 1 if r = 1, 3, 5; and
- 2. d(S) = 2 if r = 0, 2, 4,

where d(S) is the minimum weight of S.

Let *C* be an extremal Type I additive self-dual code over GF(4) with minimal shadow of length n = 6m + r. Then, the following facts can be found in [5]:

Suppose that r=0. Then, $a_0=1$, $a_1=a_2=\cdots=a_{2m}=0$, $b_0=0$, $b_1=1$ if $m\geq 2$, and $b_2=b_3=\cdots=b_{m-1}=0$.

Suppose that r=1,3. Then, $a_0=1$, $a_1=a_2=\cdots=a_{2m+1}=0$, $b_0=1$ if $m\geq 1$, and $b_1=b_2=\cdots=b_{m-1}=0$.

Suppose that r = 2, 4. Then, $a_0 = 1$, $a_1 = a_2 = \cdots = a_{2m+1} = 0$, $b_0 = 0$, $b_1 = 1$ if $m \ge 2$, and $b_2 = b_3 = \cdots = b_{m-1} = 0$.

Suppose that r=5. Then, $a_0=1$, $a_1=a_2=\cdots=a_{2m+2}=0$, $b_0=1$, and $b_1=b_2=\cdots=b_{m-1}=b_m=0$. Using this fact, we have the following lemma:

Lemma 6. [5] Using the above notations, we have the following results:

- 1. If n = 6m ($m \ge 2$), then $c_i = \alpha_{i0}$ for $0 \le i \le 2m$, $c_i = \beta_{i1}$ for $2m + 1 \le i \le 3m$.
- 2. If n = 6m + 1 ($m \ge 1$), then $c_i = \alpha_{i0}$ for $0 \le i \le 2m + 1$, $c_i = \beta_{i0}$ for $2m + 1 \le i \le 3m$.
- 3. If n = 6m + 2 ($m \ge 2$), then $c_i = \alpha_{i0}$ for $0 \le i \le 2m + 1$, $c_i = \beta_{i1}$ for $2m + 2 \le i \le 3m + 1$.
- 4. If n = 6m + 3 $(m \ge 1)$, then $c_i = \alpha_{i0}$ for $0 \le i \le 2m + 1$, $c_i = \beta_{i0}$ for $2m + 2 \le i \le 3m + 1$.
- 5. If n = 6m + 4 ($m \ge 2$), then $c_i = \alpha_{i0}$ for $0 \le i \le 2m + 1$, $c_i = \beta_{i1}$ for $2m + 3 \le i \le 3m + 2$.
- 6. If n = 6m + 5 ($m \ge 0$), then $c_i = \alpha_{i0}$ for $0 \le i \le 2m + 2$, $c_i = \beta_{i0}$ for $2m + 2 \le i \le 3m + 2$.

Using Lemma 6, we have the following theorems [5]:

Theorem 10. [5] Extremal Type I additive self-dual codes over GF(4) with minimal shadows of lengths n = 6m, 6m + 1, 6m + 2, 6m + 3 and 6m + 5 have uniquely-determined weight enumerators.

Theorem 11. [5] Extremal Type I additive self-dual codes over GF(4) with minimal shadows of lengths n = 6m + 1 and n = 6m + 5 do not exist.

Information 2018, 9, 172 10 of 12

Theorem 12. [5] There are no extremal Type I additive self-dual codes over GF(4) with minimal shadow if:

- 1. $n = 6m \text{ and } m \ge 40;$
- 2. n = 6m + 2 and $m \ge 6$;
- 3. n = 6m + 3 and $m \ge 22$.

Remark 3. Currently, n = 6m + 4 is the unique untouched code length for the nonexistence or an explicit bound for the length n of an extremal Type I additive self-dual code over GF(4) with minimal shadow.

5. Near-Extremal Type I Additive Self-Dual Codes over GF(4) with Minimal Shadow

In this section, we consider the nonexistence of near-extremal Type I additive self-dual codes over GF(4) with minimal shadow. We start with the following definition:

Definition 4. Let C be an $(n, 2^n, d)$ Type I additive self-dual code over GF(4). Then, C is a near-extremal code if C is Type I and d = 2[n/6] if $n \equiv 0 \pmod{6}$, d = 2[n/6] + 2 if $n \equiv 5 \pmod{6}$ and d = 2[n/6] + 1 otherwise.

Let *C* be a near-extremal Type I additive self-dual code over GF(4) with a minimal shadow of length n = 6m + r. Then, we have the following facts:

Suppose that r=0. Then, $a_0=1$, $a_1=a_2=\cdots=a_{2m-1}=0$ and $b_0=0$. By Lemma 5, $b_1=1$ if $m\geq 3$. We have $b_2=b_3=\cdots=b_{m-2}=0$. Otherwise, S would contain a vector v of weight less than or equal to 2m-4, and if $u\in S$ is a vector of weight two, then $u+v\in C$ with $wt(u+v)\leq 2m-4+2=2m-2$, a contradiction with the minimum distance of C.

Suppose that r=1,3. Then, $a_0=1$ and $a_1=a_2=\cdots=a_{2m}=0$. By Lemma 5, $b_0=1$ if $m\geq 1$. We have $b_1=b_2=\cdots=b_{m-1}=0$. The proof is similar to the above case.

Suppose that r=2,4. Then, $a_0=1$, $a_1=a_2=\cdots=a_{2m}=0$ and $b_0=0$. By Lemma 5, $b_1=1$ if $m\geq 2$. We have $b_2=b_3=\cdots=b_{m-1}=0$. The proof is similar to the above case.

Suppose that r = 5. Then, $a_0 = 1$ and $a_1 = a_2 = \cdots = a_{2m+1} = 0$. By Lemma 5, $b_0 = 1$ if $m \ge 1$. We have $b_1 = b_2 = \cdots = b_{m-1} = 0$. The proof is similar to the above case. Using this fact, we have the following lemma:

Lemma 7. Using the above notations, we have the following results:

- 1. If n = 6m ($m \ge 3$), then $c_i = \alpha_{i0}$ for $0 \le i \le 2m 1$, $c_i = \beta_{i1}$ for $2m + 2 \le i \le 3m$.
- 2. If n = 6m + 1 ($m \ge 1$), then $c_i = \alpha_{i0}$ for $0 \le i \le 2m$, $c_i = \beta_{i0}$ for $2m + 1 \le i \le 3m$.
- 3. If n = 6m + 2 ($m \ge 2$), then $c_i = \alpha_{i0}$ for $0 \le i \le 2m$, $c_i = \beta_{i1}$ for $2m + 2 \le i \le 3m + 1$.
- 4. If n = 6m + 3 ($m \ge 1$), then $c_i = \alpha_{i0}$ for $0 \le i \le 2m$, $c_i = \beta_{i0}$ for $2m + 2 \le i \le 3m + 1$.
- 5. If n = 6m + 4 ($m \ge 2$), then $c_i = \alpha_{i0}$ for $0 \le i \le 2m$, $c_i = \beta_{i1}$ for $2m + 3 \le i \le 3m + 2$.
- 6. If n = 6m + 5 ($m \ge 1$), then $c_i = \alpha_{i0}$ for $0 \le i \le 2m + 1$, $c_i = \beta_{i0}$ for $2m + 3 \le i \le 3m + 2$.

Proof. Let *C* be an near-extremal Type I additive self-dual code over GF(4) with a minimal shadow of length $n = 6m(m \ge 3)$. We rewrite Equation (36) as follows:

$$c_i = \sum_{j=0}^{i} \alpha_{ij} a_j = \sum_{j=0}^{3m-i} \beta_{ij} b_j.$$
(39)

Then, we have:

$$c_i = \sum_{j=0}^{i} \alpha_{ij} a_j = \alpha_{i0} \text{ for } i = 0, 1, 2, \dots, 2m - 1$$
 (40)

and:

$$c_i = \sum_{i=0}^{3m-i} \beta_{ij} b_j = \beta_{i1} \text{ for } i = 2m+2, 2m+2, \dots, 3m.$$
 (41)

Therefore, the first statement is proven. The other cases can be proven similarly. \Box

Information 2018, 9, 172

Using Lemma 7, we have the following theorem:

Theorem 13. Let C be a near-extremal Type I additive self-dual code over GF(4) with a minimal shadow of length n = 6m + 1. Then, we have the following:

- 1. The weight enumerator of *C* is uniquely determined.
- 2. The code C does not exist if $m \ge 22$.

Proof. From Lemma 7, we can see that c_i can be calculated by Equations (37) and (38), and the values depend only on the length n for all i, ($0 \le i \le \lfloor n/3 \rfloor$) unless m = 0. If m = 0, then there is only one code for that code length [12]. This proves the first statement.

For the second statement, from Equation (36) and the fact that $c_i = \alpha_{i,0}$ for $0 \le i \le 2m$, we have:

$$c_{2m} = \alpha_{2m,0} = \beta_{2m,0} + \beta_{2m,m} b_m. \tag{42}$$

Therefore, we get:

$$b_m = \beta_{2m\,m}^{-1}(\alpha_{2m,0} - \beta_{2m,0}). \tag{43}$$

Using Equations (37) and (38), we have:

$$\beta_{2m,m} = \frac{1}{2}, \alpha_{2m,0} = \frac{6m+1}{m} {3m \choose m-1}, \beta_{2m,0} = \frac{1}{2} {3m \choose 2m}. \tag{44}$$

Therefore, we get:

$$b_m = \frac{12m+2}{m} \binom{3m}{m-1} - \binom{3m}{2m}.$$
 (45)

From Equation (36) and the fact that $c_i = \alpha_{i0}$ for $0 \le i \le 2m$, we have:

$$c_{2m-1} = \alpha_{2m-1,0} = \beta_{2m-1,0} + \beta_{2m-1,m}b_m + \beta_{2m-1,m+1}b_{m+1}. \tag{46}$$

Therefore, we get:

$$b_{m+1} = \beta_{2m-1,m+1}^{-1} (\alpha_{2m-1,0} - \beta_{2m-1,0} - \beta_{2m-1,m} b_m). \tag{47}$$

Using Equations (37) and (38), we have:

$$\beta_{2m-1,m+1} = -\frac{1}{16}, \alpha_{2m-1,0} = -\frac{6m+1}{2m-1} \left[\binom{3m+2}{m-1} + 10 \binom{3m+1}{m-2} + 5 \binom{3m}{m-3} \right]$$
(48)

and:

$$\beta_{2m-1,0} = -\frac{1}{16} {3m \choose 2m-1}, \beta_{2m-1,m} = -\frac{m}{8}. \tag{49}$$

Therefore, we get:

$$b_{m+1} = 16 \cdot \frac{6m+1}{2m-1} \left[\binom{3m+2}{m-1} + 10 \binom{3m+1}{m-2} + 5 \binom{3m}{m-3} \right] - \binom{3m}{2m-1} - 2m \left[\frac{12m+2}{m} \binom{3m}{m-1} - \binom{3m}{2m} \right].$$
 (50)

From this, we have:

$$b_{m+1} = \frac{(3m)!}{(2m+3)!(m-1)!}h_1(m),\tag{51}$$

where:

$$h_1(m) = -88m^3 + 1864m^2 - 34m - 62. (52)$$

We can see that $h_1(m) < 0$ if $m \ge 22$. Therefore, if $m \ge 22$, then $b_{m+1} < 0$. This is a contradiction. \square

Information 2018, 9, 172

Remark 4. The definition of near-extremal Type II additive self-dual codes over GF(4) and the corresponding nonexistence proof can be found in [11].

6. Summary

In this paper, we provided a comprehensive presentation of extremal and near-extremal Type I self-dual codes over GF(2) and GF(4) with minimal shadow. We discussed recent research results for these codes. We also proved that there is no near-extremal Type I [24m, 12m, 2m + 2] binary self-dual code with minimal shadow if $m \ge 323$, and we proved that there is no near-extremal Type I $(6m + 1, 2^{6m+1}, 2m + 1)$ additive self-dual code over GF(4) with minimal shadow if $m \ge 22$.

Funding: This research received no external funding.

Acknowledgments: The author wishes to thank the reviewers for valuable remarks, which helped to improve this article.

Conflicts of Interest: The author declares no conflict of interest.

References

- 1. Rains, E.M.; Sloane, N.J.A. Self-Dual Codes. In *Handbook of Coding Theory*; Pless, V.S., Huffman, W.C., Eds.; Elsevier: Amsterdam, The Netherlands, 1998.
- 2. Rains, E.M. Shadow bounds for self-dual codes. IEEE Trans. Inform. Theory 1998, 44, 134–139. [CrossRef]
- 3. Zhang, S. On the nonexistence of extremal self-dual codes. Discrete Appl. Math. 1999, 91, 277–286.
- 4. Bouyuklieva, S.; Willems, W. Singly even self-dual codes with minimal shadow. *IEEE Trans. Inf. Theory* **2012**, *58*, 3856–3860. [CrossRef]
- 5. Han, S. Additive self-dual codes over *GF*(4) with minimal shadow. *Information* **2018**, *9*, 81. [CrossRef]
- 6. Bouyuklieva, S.; Harada, M.; Munemasa, A. Nonexistence of certain singly even self-dual codes with minimal shadow. *Electron. J. Comb.* **2018**, *25*, 1–13.
- 7. Conway, J.H.; Sloane, N.J.A. A new upper bound on the minimal distance of self-dual codes. *IEEE Trans. Inf. Theory* **1990**, *36*, 1319–1333. [CrossRef]
- 8. Berlekamp, E.R.; MacWilliams, F.J.; Sloane, N.J.A. Gleason's theorem on self-dual codes. *IEEE Trans. Inf. Theory* **1972**, *18*, 409–414. [CrossRef]
- 9. Conway, J.H.; Sloane, N.J.A. Sphere Packings, Lattices and Groups; Springer: New York, NY, USA, 1988.
- 10. MacWilliams, F.J.; Sloane, N.J.A. *The Theory of Error Correcting Codes*, 9th ed.; North-Holland: Amsterdam, The Netherlands, 1998.
- 11. Han, S.; Kim, J.L. The nonexistence of near-extremal formally self-dual codes. *Des. Codes Cryptogr.* **2009**, 51, 69–77. [CrossRef]
- 12. Huffman, W.C. On the classification and enumeration of self-dual codes. *Finite Fields Appl.* **2005**, *11*, 451–490. [CrossRef]

© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).