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Abstract: Binary self-dual codes and additive self-dual codes over GF(4) contain common points.
Both have Type I codes and Type II codes, as well as shadow codes. In this paper, we provide
a comprehensive description of extremal and near-extremal Type I codes over GF(2) and GF(4)
with minimal shadow. In particular, we prove that there is no near-extremal Type I [24m, 12m,2m + 2|
binary self-dual code with minimal shadow if m > 323, and we prove that there is no near-extremal
Type I (6m +1,26"+1,2m + 1) additive self-dual code over GF(4) with minimal shadow if m > 22.

Keywords: additive codes over GF(4); binary codes; extremal codes; minimal shadow; near-extremal
codes; self-dual codes

1. Introduction

There are many interesting classes of codes in coding theory, such as cyclic codes, quadratic residue
codes, algebraic geometry codes and self-dual codes. This paper focuses on self-dual codes, which,
while of interest themselves, are closely related to other mathematical structures such as block designs,
lattices, modular forms and sphere packings (for example, see [1]).

There are several types of self-dual codes. Among them, binary self-dual codes and additive
self-dual codes over GF(4) have common points. Firstly, there are Type I and Type II codes in both
classes. Secondly, there are shadow codes in both classes. Using shadow theory, E. M.Rains provided
an upper bound to the minimum distances of Type I codes in both classes [2]. If a code meets this
bound, then it is called an extremal code.

For extremal Type II codes, there is a systematic nonexistence proof [3]. However, for extremal
Type I codes, no such nonexistence proof exists. Research has also been conducted on extremal Type I
codes with minimal shadow. S. Bouyuklieva and W. Willems studied the nonexistence of extremal
Type I binary codes with minimal shadow [4]. Impressed by the results, S. Han studied the nonexistence
of extremal Type I additive codes over GF(4) with minimal shadow [5]. Recently, S. Bouyuklieva,
M. Harada and A. Munemasa studied the nonexistence of near-extremal Type I binary self-dual codes
with minimal shadow [6].

In this paper, we cover the missing case of the nonexistence of near-extremal Type I binary
self-dual codes with minimal shadow, which was not covered in [6], and we apply the technique
to near-extremal Type I additive codes over GF(4) with minimal shadow. The main contribution
of this paper is three-fold. Firstly, it provides a comprehensive presentation of the nonexistence of
extremal and near-extremal Type I codes over GF(2) and GF(4). Secondly, we prove that there is
no near-extremal Type I [24m, 12m,2m + 2| binary self-dual code with minimal shadow if m > 323.
Thirdly, we prove that there is no near-extremal Type I (6m + 1,261, 2m + 1) additive self-dual code
over GF(4) with minimal shadow if m > 22.

The rest of the paper is organized as follows. In Section 2, we deal with binary self-dual codes with
minimal shadow. We consider the nonexistence of extremal Type I binary self-dual codes with minimal
shadow. In Section 3, we consider the nonexistence of near-extremal Type I binary self-dual codes with
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minimal shadow. In Section 4, we deal with additive self-dual codes over GF(4) with minimal shadow.
We consider the nonexistence of extremal Type I additive self-dual codes over GF(4) with minimal
shadow. In Section 5, we consider the nonexistence of near-extremal Type I additive self-dual codes
over GF(4) with minimal shadow. All computer calculations in this study were performed using the
mathematical software Maple.

2. Extremal Type I Binary Self-Dual Codes with Minimal Shadow

In this section, we deal with binary self-dual codes with minimal shadow. First, we discuss basic
facts about binary self-dual codes. Secondly, we consider the nonexistence of extremal Type I binary
self-dual codes with minimal shadow.

A binary linear code C is a subspace of a vector space GF(2)", and the vectors in C are called
codewords. The weight of a codeword u = (uy,up, -+ ,uy) in GF(2)" is the number of nonzero u;.
The minimum distance of C is the smallest nonzero weight of any codeword in C. If the dimension of
C is k and the minimum distance in C is d, we say C is an [n, k, d| code.

The scalar product in GF(2)" is defined by:

(u,0) =Y ujv;, 1
j=1

where the sum is evaluated in GF(2). The dual code of a binary linear code C is defined by:
Ct ={ve GF(2)": (v,c) =0 forall c € C}. 2)

IfC C Ct,we say C is self-orthogonal, and if C = C+, we say C is self-dual.

A binary code is even if all its codewords have even weights. Clearly, self-dual binary codes are
even. In addition, some of these codes have all codewords of weights divisible by four. A self-dual
code with all codewords of weights divisible by four is called doubly-even or Type II; a self-dual code
where some codewords have weights not divisible by four is called singly-even or Type 1. Bounds on
the minimum distance of binary self-dual codes were provided in [2].

Theorem 1. ([2]) Let C be an [n,n/2,d] binary self-dual code. Then, d < 4[n/24] + 4 if n # 22(mod 24).
Ifn = 22(mod 24), then d < 4[n/24] + 6, and if the equality holds, C can be obtained by shortening a Type 11
code of length n + 2. If 24|n and d = 4[n/24] + 4, then C is Type IL.

A code meeting the bounds of Theorem 1, i.e., for which equality holds within the bounds, is
called extremal. From Theorem 1, note that there is no extremal Type I code of length n = 24m
(m > 1). There is a systematic proof for the nonexistence of extremal Type II codes if the code length is
sufficiently large [3].

Theorem 2. ([3]) Let C be an extremal binary Type II code of length n = 24m + 8¢. Then, the code C does not
exist if m > 154 (for £ = 0), m > 159 (for £ = 1) and m > 164 (for { = 2).

The proof of Theorem 1 for Type I codes is formulated using a shadow code. In [7], the concept of
a shadow code was introduced. The shadow code of a self-dual code C is defined as follows: let C(%) be
the subset of C consisting of all codewords whose weights are multiples of four, and let C?) = C\C(©).
The shadow code of C is defined by:

S=5(C)={ueGF?2)": (u,0) =0forallv e C, (u,0) = 1forallv e C?}. ©)
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The weight enumerator of a code is given by:

n . .
We(x,y) =) Ax"'y, (4)
i=0
where there are A; codewords of weight i in C. The following lemma is needed in this paper:

Lemma 1. [7] Let C be a Type I binary self-dual code of length n and minimum weight d. Let S(y) = Y1 by’
be the weight enumerator of S(C). Then:

1. bp=0
2.b;<1fori<d/2

Let C be a Type I binary self-dual code of length n = 24m + 8¢ + 2r where ¢ = 0,1,2 and
r=0,1,2,3. By Gleason’s theorem [8-10], we can calculate the weight enumerator of C as follows for
suitable constants c;:

(/8] : :
Welxy) = Yo (o + )" 24 {22 (2 = y2)?) ®)
i=0

Using the shadow code theory [7], we can calculate the weight enumerator of shadow code S(C):

[n/8]

Ws(x,y) = ) (~1)22 0 (xy)" /2 ¥(x* — )2 ©)
i=0

We rewrite Equations (5) and (6) to the following;:

W 1 _ 12m+4£+r . 2] _ 3m+z . 1 2 12m+4£+r—4i 2 1 _ 2\2\1 7
cLy)= Y, ay? =Y c(l+y°) {y*(1—vy*)*}, )
j=0 i=0
We(1 _ 6m+2€b' 4j+r _ St -1 i .212m+4€+r—6i 12m-+40+r—4i 1— 4\ 2i 8
s(Ly)= Y, by =Y, (-1)¢ y (1—y*)*. 8)
=0 i=0

Note that all 4; and b; must be nonnegative integers. One can write ¢; as a linear combination of the a;
for 0 < j <i, and one can write ¢; as a linear combination of b]- for 0 <j < 3m+ £ —1i, as follows for
suitable constants a;; and B;;:

3m+0—i

i
Ci = Z aijaj = Z ﬁl]b] (9)
j=0 j=0

In our computation, we need to calculate a;y and §;;. The following formula can be found in [2]
fori > 0:

ajg = —% coeff. of ¥~ in (1+4y)~/2)-1+4(q —y)_zi] (10)

and: i ki1
c o n . — + 1 _] —
= (=1 12 +617] 11
where k = 3m + £. Note that a9 = ¢) = g9 = 1. Now, we introduce the definition of a code with
minimal shadow:

Definition 1. Let C be a Type I binary self-dual code of length n = 24m 4 8¢ 4 2r with £ = 0,1,2 and
r=0,1,2,3. Then, C is a code with minimal shadow if:

1. d(S) =r forr > 0and
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2. d(S)=4forr=0

where d(S) is the minimum weight of S.

Let C be an extremal Type I binary self-dual code with a minimal shadow of length #.
Then, the following facts can be found in [4]: For a;, we have ay = 1,4y = ay = -+ = ay41 = 0.
Moreover, if n = 22 (mod 24), then a,,.» = 0. For b;, we have b =1if (i) r =1land m > 0 and
(ii) r = 2,3 and m > 1. Furthermore, we have by = 0,b; = 1ifr = 0and m > 2. If r > 0, then
bp=bp=---=by_1=0.Ifr=0,thenby, = bz = --- = b,,_1 = 0. Moreover, if n = 24m + 8] + 2,
then b,, = 0. Using these facts, we have the following lemma:

Lemma 2. Using the above notations, we have the following results:

1. Ifn=24m+2 (m > 0), then c; = ajg for 0 <i <2m +1, ¢; = Big for 2m < i < 3m.

2 Ifn=24m+4(m > 1), thenc; = ajg for 0 <i <2m+1,¢c; = Bjg for2m+1 < i < 3m.

3. Ifn=24m+6(m>1),thenc; =wjfor 0 <i <2m+1,¢; = Bjp for2m+1 < i < 3m.

4. Ifn=24m+8(m > 2),thenc; = wjofor 0 <i <2m+1,¢; = Big for2m+2 <i < 3m+ 1.
5. Ifn=24m+10(m > 0), then ¢; = wjg for 0 <i <2m+1,¢; = Bjp for2m+1 <i <3m + 1.
6. Ifn=24m+12(m > 1), then c; = ajo for 0 <i <2m+1,¢c; = Bigfor2m+2 <i <3m+ 1.
7. Ifn=24m+14 (m > 1), then c; = ajo for 0 <i <2m+1,¢c; = Bijg for2m+2 <i <3m+ 1.
8. Ifn=24m+16 (m > 2),thenc; = wjo for 0 <i <2m+1, ¢; = Bj for2m +3 <i < 3m + 2.
9. Ifn =24m+18 (m > 0), then c; = wjp for 0 < i <2m+1, ¢; = Big for2m +2 <i < 3m + 2.
10. If n =24m+20 (m > 1), thenc; = ajo for 0 <i <2m+1,¢c; = Bigfor2m+3 <i <3m+ 2.
11. Ifn =24m+22 (m > 1), then c; = ajg for 0 <i <2m+2,¢c; = Big for2m+3 <i <3m+ 2.

Proof. Let C be an extremal Type I binary self-dual code with minimal shadow of length n = 24m + 2.
We can rewrite Equation (9) as follows:

i 3m—i
c; = Z(Xijﬂ]' = Z ﬁqb] (12)
j=0 j=0
Then, we have:
i
ci:Zaijaj:aiO for i=0,1,2,...,2m+1 (13)
j=0
and:
3m—i
C; = 2 :Bl] j:,BiO for z:2m,2m+1,,3m (14)
j=0

Therefore, the first statement is proven. The other cases can be proven similarly. [

Using Lemma 2, we have the following theorem:

Theorem 3. Let C be an extremal Type I binary self-dual code of length n with minimal shadow. Then, the weight
enumerator of C is unique if n # 24m + 16,24m + 20.

Proof. Suppose that n # 24m + 16,24m + 20. From Lemma 2, we can see that ¢; can be calculated by
Equations (10) and (11), and they depend only on the length n for all #, (0 < i < [n/8]), except the
following cases. By [7], we know that:

1. n =24m + 4: If m = 0, then n = 4. For this case, there is no extremal code.

2. n=24m+ 6: If m = 0, then n = 6. For this case, there is no extremal code.

3. n=24m+8: If m = 0, then n = 8. For this case, there is no extremal Type I code. If m = 1,
then n = 32. For this case, there are three extremal Type I codes. They have the same
weight enumerator: Wc(1,y) = 1+ 364y® + 2048y'0 + 6720y'% + 14336y'* + 18598y1¢ + - - -,
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Ws(Ly) = 8y*+592y® + 13944y'? + 36448y'® + -... We can see that the codes have
minimal shadow.
4 n = 2d4m+12: If m = 0, then n = 12. For this case, there is a unique extremal

Type I code. The weight enumerator is the following: Wc(1,y) = 1+ 15y* +32y° + -,
Ws(1,y) = 6y> + 5y° + ---. We can see that the code has minimal shadow.

5. n =24m+22: f m = 0, then n = 22. For this case, there is a unique extremal Type I
code. The weight enumerator is the following: Wc(1,y) = 1+ 77y° + 330y + 616y° + - - -,
Ws(1,y) = 352y + 1344yt + .- ..

This completes the proof. [

The following nonexistence theorems are proven in [4].

Theorem 4. [4] Extremal self-dual codes of lengths n = 24m + 2,24m + 4,24m + 6,24m + 10 and 24m + 22
with minimal shadow do not exist.

Theorem 5. [4] There are no extremal Type I binary self-dual codes of length n with minimal shadow if:

n =24m + 8 and m > 53;

n="24m -+ 12 and m > 142;
n = 24m + 14 and m > 146;
n=24m+ 16 and m > 164;
n=24m+ 18 and m > 157.

Gl L=

Remark 1. Currently, n = 24m + 20 is the unique untouched code length for the nonexistence or an explicit
bound for the length n of an extremal Type I binary self-dual code with minimal shadow.

3. Near-Extremal Type I Binary Self-Dual Codes with Minimal Shadow

In this section, we consider the nonexistence of near-extremal Type I binary self-dual codes with
minimal shadow. We start with the following definition:

Definition 2. Let C be an [n,n/2,d] Type I binary self-dual code. Then, C is a near-extremal code if:

1. d =4[n/24] + 2 for n # 22 (mod 24); and
2. d=4[n/24] + 4 for n =22 (mod 24).

Let C be a near-extremal Type I binary self-dual code with minimal shadow. Then, we have the
following: ay = 1,a1 = ap = - - - = ap,, = 0. Moreover, if n = 22 (mod 24), then ay,, 11 = 0.

By Lemma 1,by =1if (i) r =1,2and m > 1, (ii) r = 3, n # 22 (mod 24) and m > 2 and (iii) r = 3,
n =22 (mod 24) and m > 1. In addition, by = 0,b; = 1if r = 0and m > 2.

Ifr=1,20rr=3and n =22 (mod 24), then by = b, = --- = b,, 1 = 0. Otherwise, S would
contain a vector v of weight less than or equal to 4m — 4 +r, and if u € S is a vector of weight r, then
u+v € Cwithwt(u +v) < 4m — 4+ 2r, a contradiction with a minimum distance of C. If r = 3 and
n #£ 22 (mod 24),thenby = by = - -+ = by,_» = 0. Furthermore, ifr = 0, thenby = b3 =--- =b,,_1 =0.
The proofs are similar to the above case. Using this fact, we have the following lemma:

Lemma 3. Using the above notations, we have the following results:

Ifn =24m (m > 2), then ¢; = ajg for 0 < i <2m, ¢; = By for2m+1 <i < 3m.

Ifn =24m+2 (m > 1), then ¢; = ajp for 0 < i <2m, ¢; = Bijg for2m+1 <i < 3m.
Ifn=24m+4 (m > 1), then ¢; = ajp for 0 < i <2m, ¢; = Bjg for2m+1 <i < 3m.
Ifn=24m+6 (m > 2), then ¢; = ajp for 0 < i < 2m, ¢; = Bjg for 2m +2 < i < 3m.
Ifn=24m+8 (m > 2), then ¢; = ajp for 0 < i < 2m, ¢; = By for2m +2 <i < 3m+ 1.
Ifn=24m+10 (m > 1), then ¢; = ajp for 0 <i <2m, ¢; = Bjg for2m +2 <i < 3m + 1.

S e
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7. Ifn=24m+12 (m > 1), then ¢; = wjo for 0 <i < 2m, ¢; = Bjo for2m +2 <i < 3m+ 1.
8. Ifn=24m+14 (m > 2), then ¢; = ajp for 0 < i < 2m, ¢; = Bjg for2m+3 <i < 3m+ 1.
9. Ifn=24m+16 (m > 2), then ¢; = ajp for 0 < i <2m, ¢; = B for2m +3 <i < 3m +2.
10. If n =24m + 18 (m > 1), then c; = wjo for 0 <i < 2m, c; = Bjg for2m +3 <i <3m+ 2.
11. If n =24m + 20 (m > 1), then c; = wjo for 0 < i < 2m, c; = Pjg for2m +3 <i <3m+ 2.
12. If n =24m+22 (m > 1), then c; = wjo for 0 <i <2m+1, ¢; = Bjp for2m +3 <i <3m + 2.

Proof. The proof is similar to the one for Lemma 2. O

Using Lemma 3, we have the following theorem [6]:

Theorem 6. [6] Let C be a near-extremal Type I binary self-dual code with minimal shadow of length n.
Then, we have the following:

1. The weight enumerator of C is uniquely determined if n = 24m + 2,24m + 4,24m + 10.
2. The code C does not exist if:

(a) n=24m+2and m > 155
(b) n=24m+4and m > 156
(¢) n =24m + 10 and m > 160

The missing case in Theorem 6 is the code length n = 24m. We can prove similar results for the
missing case using the following theorem:

Theorem 7. Let C be a [24m,12m,4m + 2| near-extremal Type I binary self-dual code with minimal shadow.
Then, we have the following:

1. The weight enumerator of C is uniquely determined.
2. The code C does not exist if m > 323.

Proof. From Lemma 3, we can see that c; can be calculated by Equations (10) and (11), and they depend
only on the length n for all 4, (0 < i < [1/8]) unless m = 1. If m = 1, then n = 24. For this case,
there is a unique near-extremal Type I code [7]. The weight enumerator is the following: Wc(1,y) =
1+ 64y° + 37518 + 960y'0 + 129612 + - - -. Ws(1,y) = 6y* + 744y + 259612 + - - - . We can see that the
code has minimal shadow. This proves the first statement.

For the second statement, from Equation (9) and the fact that ¢; = a; for 0 <i < 2m, we have:

Cam = 2m0 = Pom1 + Bammbm- (15)

Therefore, we get:
b = ﬁ;,;,m(WZm,O — Boma)- (16)

Using Equations (10) and (11), we have:
5m—1 3m—1/5m—2

,BZm,m—11“2711,0—6("1_1)/,32”1,1—zm(m_1>~ (17)

From this, we get:

5m—1 3m—1/5m—-2

bm_6<m—1>_2m<m—1>' (18)

From Equation (9) and the fact that ¢; = &; o for 0 < i < 2m, we have:

Com—1 = 82m—1,0 = Bom—1,1 + Bom—1,mbm + Bom—-1,m+10m+1- (19)

From this, we get:
by = /52_,,1_1,,11“(062;1171,0 — Bom—-1,1 — Bam—1,mbm)- (20)
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Using Equations (10) and (11), we have:

Bom-1mi1 =279, (21)

=[G (0 (DO ()]

and: 3m—1[/5m—3
m — m — m
11=-27° A =——. 2
Bam-11 X 2m—1( . >, Bam—1,m 6 (23)
Therefore, we get:
_ 64(6m —1)(5m —1)(5m — 3)!
b+t = Gt aim—1)  om) @)
where:
ho(m) = —64m® + 20640m* — 9388m> + 582m> — 49m — 3. (25)

We can see that hg(m) < 0if m > 323. Therefore, if m > 323, then b,,, ;1 < 0. This is a contradiction. O

Remark 2. The definition of near-extremal Type II binary self-dual codes and the corresponding nonexistence
proof can be found in [11].

4. Extremal Type I Additive Self-Dual Codes over GF(4) with Minimal Shadow

In this section, we deal with additive self-dual codes over GF(4) with minimal shadow.
First, we discuss basic facts about additive self-dual codes over GF(4). Then, we consider the
nonexistence of extremal Type I additive self-dual codes over GF(4) with minimal shadow.

An additive code C over GF(4) of length n is an additive subgroup of GF(4)". The weight of
avector u = (uy, up, - ,uy) in GF(4)" and the minimum distance of C are defined the same way as
for binary linear codes. C is a k-dimensional GF(2)-subspace of GF(4)" and thus has 2¥ codewords.
It is denoted as an (n, Zk) code, and if its minimum distance is d, the code is an (1, 2k d) code.

The trace map, Tr : GF(4) — GF(2), is defined by Tr(x) = x + x2. The Hermitian trace inner
product of two vectors over GF(4) of length n, u = (uy, up, ..., u,) and v = (v1, 02, ..., vy) is given by:

(ujvi® 4+ u;?v;)  (mod 2). (26)

1=

n
uxv =Y Tr(up?) =
i=1 i

1

We define the dual of the code Cwith respect to the Hermitian trace inner product as follows:
Ct={uecGF4)":uxc=0 forall ceC}. (27)

IfC C Ct,we say C is self-orthogonal, and if C = Cct, we say C is self-dual. If C is self-dual, then it
must be an (n,2") code.

We distinguish between two types of additive self-dual codes over GF(4). A code is Type II if all
codewords have even weights, otherwise it is Type I. Bounds on the minimum distance of additive
self-dual codes over GF(4) were provided in [1,2].

Theorem 8. [1,2] Let C be an (n,2",d) additive self-dual code over GF (4). If C is Type I, then:

2[n/6]+1, if n=0 (mod 6);
d<{ 2[n/6|+3, if n=5 (mod6); (28)
2[n/6]+2, otherwise.

If C is Type 11, then:
d <2[n/6]+2. (29)
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A code that meets the appropriate bound is called extremal. There is a systematic proof for the
nonexistence of extremal Type II codes if the code length is sufficiently large.

Theorem 9. Let C be an extremal Type 11 additive self-dual code over GF(4) of length n. Then, the code C does
not exist if n = 6m (m > 17),n = 6m +2 (m > 20) and n = 6m +4 (m > 22).

Proof. The Gleason polynomials of Type II additive self-dual codes over GF(4) are the same as the
ones for Type IV Hermitian self-dual linear codes over GF(4) (see [1], Section 7.7, for examples).
Both have the same upper bounds on the minimum distance and the same definition of extremal
codes w.r.t. minimum distance. There is a nonexistence theorem for Type IV Hermitian self-dual linear
codes over GF(4) that is the same as the above statements [3]. The proof is formulated with Gleason
polynomials, so that the nonexistence statements are still valid for Type II additive self-dual codes over
GF(4). O

The proof of Theorem 8 for Type I codes is formulated using a shadow code, which is defined
as follows: Let C be an additive self-dual code over GF(4) and Cy be the subset of C consisting of all
codewords whose weights are multiples of two. Then, Cy is a subgroup of C. The shadow code of
an additive code C over GF(4) is defined by:

S=Cp\C. (30)
Alternately, it can be defined as:
S={ueGF4)"|uxv=_0forallv € Cy, uxv=1forallv € C\Cp}. (31)
The following lemmas for shadow codes can be found in [5]:

Lemma 4. [5] Let C be a Type I additive self-dual code over GF(4) and S be the shadow code of C. If u,v € S,
thenu +v € C.

Lemma 5. [5] Let C be an additive self-dual code over GF (4) of length n and minimum weight d. Let S(y) =
Y7o Bry" be the weight enumerator of S. Then:

1. By=0
2. B <1forr<d/2

Let C be a Type I additive self-dual code over GF(4). By [2], the weight enumerator of C, W¢(x,y),
and its shadow code weight enumerator, Ws(x,y), are given by:

[n/2] . .
We(xy) = Y ci(x+y)" #{y(x —y)}, (32)
i=0
[n/2] 4 . . .
Ws(x,y) = Y (=1)2" ey 2 (22 — ), (33)
i=0

for suitable constants c¢;. We rewrite Equations (32) and (33) to the following:

n o [/2) . .
Wely) =Y a/ = Y ci(1+y)" 2 {y(1—-y)} (34)
=0 i=0
and:
n/2 [n/2]

mo o ‘ ,
Ws(Ly)= Y by =Y (-1)2" ¥y 2 (1—y?), (35)
jn) /
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where t = 0 if nis even and t = 1 if n is odd. Note that all 4; and b; must be nonnegative integers.
One can write ¢; as a linear combination of the a; for 0 < j < i, and one can write ¢; as a linear
combination of b]' for 0 < j < [n/2] —iin the following form for suitable constants a;j and ﬁij:

i [n/2]—i
c; = Zl’é,‘]ﬂj = Z ‘Bljb] (36)
=0 =0

In our computation, we need to calculate ajy and B;;. The following formulas can be found in [2]
fori > 0:

ajg = —? coeff. of '~ ! in (14y) " 121 - y)l] (37)

and: )
Bij = (—1)72%" (k N ]> , (38)

1

where k = [n/2]. Note that ag = ¢ = agp = 1. Now, we will introduce the definition of a code with
minimal shadow:

Definition 3. ([5]) Let C be a Type I additive self-dual code over GF(4) of lengthn = 6m +r(0 <r < 5).
Then, C is a code with minimal shadow if:

1. d(S)=1ifr=1,3,5 and
2. d(S) =2ifr =0,2,4,

where d(S) is the minimum weight of S.

Let C be an extremal Type I additive self-dual code over GF(4) with minimal shadow of length
n = 6m + r. Then, the following facts can be found in [5]:

Suppose that ¥ = 0. Then, a9 = 1,41 = a = -+ = azy, = 0, bp =0, by = 1if m > 2,
andb2:b3:-~:bm_1:0.

Suppose that ¥ = 1,3. Then, a9 = 1, a1 = ap = -+ = a1 = 0, bp = 1ifm > 1,
andbl = bz = - = bm,1=0.

Suppose that r = 2,4. Then, a9 = 1,41 = ap = -+ = a1 =0, bp =0, b1 = 1if m > 2,
andb2:b3:---:bm_1:0.

Suppose that * = 5. Then, a9 = 1, a9 = a, = -+ = a2 = 0, bp = 1,
andby = bp = -+ = by_1 = by = 0. Using this fact, we have the following lemma:

Lemma 6. [5] Using the above notations, we have the following results:

Ifn=6m(m>2) thenc; = wjp for 0 <i < 2m, ¢c; = Bjy for2m+1 <i < 3m.
Ifn=6m+1(m>1) thenc; =wajfor0<i<2m+1,¢; = Bipfor2m+1<i<3m.
Ifn=6m+2(m>2),thenc; =afor0<i<2m+1,¢c;=pBpnfor2m+2<i<3m+1.
Ifn=6m+3(m>1) thenc; =wajgfor0<i<2m+1,c; =P for2m+2 <i<3m+1
Ifn=6m+4(m>2),thenc; =wajgfor0<i<2m+1,c; =Py for2m+3 <i<3m+2
Ifn=6m+5(m>0), thenc; = ajg for0 <i <2m+2,c; = Bigfor2m+2 <i <3m+2.

Sk W=

Using Lemma 6, we have the following theorems [5]:

Theorem 10. [5] Extremal Type I additive self-dual codes over GF(4) with minimal shadows of lengths
n = 6m,6m-+1,6m+2,6m + 3 and 6m + 5 have uniquely-determined weight enumerators.

Theorem 11. [5] Extremal Type I additive self-dual codes over GF(4) with minimal shadows of lengths
n =6m-+1and n = 6m + 5 do not exist.
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Theorem 12. [5] There are no extremal Type I additive self-dual codes over GF (4) with minimal shadow if:

1. n = 6mand m > 40;
2. n=6m+2andm > 6;
3. n=6m+3andm > 22.

Remark 3. Currently, n = 6m + 4 is the unique untouched code length for the nonexistence or an explicit
bound for the length n of an extremal Type I additive self-dual code over GF (4) with minimal shadow.

5. Near-Extremal Type I Additive Self-Dual Codes over GF(4) with Minimal Shadow

In this section, we consider the nonexistence of near-extremal Type I additive self-dual codes over
GF(4) with minimal shadow. We start with the following definition:

Definition 4. Let C be an (n,2",d) Type I additive self-dual code over GF(4). Then, C is a near-extremal code if
Cis Typeland d = 2[n/6]ifn =0 (mod 6),d =2[n/6]+2ifn =5 (mod 6) andd = 2[n/6] + 1 otherwise.

Let C be a near-extremal Type I additive self-dual code over GF(4) with a minimal shadow of
length n = 6m + r. Then, we have the following facts:

Suppose that r = 0. Then, a9 = 1,471 = ay = -+ = ap—1 = 0and by = 0. By Lemma 5,
by =1ifm > 3. Wehaveby, = b3 = --- = b,,_» = 0. Otherwise, S would contain a vector v of
weight less than or equal to 2m — 4, and if u € S is a vector of weight two, then u +v € C with
wt(u+v) <2m —4+2 =2m — 2, a contradiction with the minimum distance of C.

Suppose thatr = 1,3. Then, a9 = land ay =a, = --- = ay,;, = 0. By Lemma 5, by = 1if m > 1.
We have by = by = --- = by,_1 = 0. The proof is similar to the above case.

Suppose that r = 2,4. Then, a9 =1,4y =ay = - -+ = apy, = 0and by = 0. By Lemma 5, by = 1 if
m > 2. Wehave by = b3 = - -+ = b,,_1 = 0. The proof is similar to the above case.

Suppose thatr = 5. Then, a9 = land g = a = --- = app41 = 0. By Lemma 5, by = 1if m > 1.
Wehave by = by, = --- = by, _1 = 0. The proof is similar to the above case. Using this fact, we have the

following lemma:

Lemma 7. Using the above notations, we have the following results:

Ifn=6m(m>3) thenc;i =wjgfor0 <i<2m—1,¢; =By for2m+2 <i < 3m.
Ifn=6m+1(m=>1) thenc; = ajp for 0 <i <2m, ¢c; = Bijg for2m +1 <i < 3m.
Ifn=6m+2(m>2) thenc; =wjfor0 <i<2m,c;i=Ppfor2m+2<i<3m+1.
Ifn=6m+3(m>1) thenc; =wj for 0 <i <2m,c; = Bijgfor2m+2 <i <3m+1.
Ifn=6m+4(m>2) then c; = wjg for 0 <i <2m,c; = Py for2m+3 <i <3m+2.
Ifn=6m+5m>1) thenc; =afor0<i<2m+1,¢; =Bigfor2m+3 <i<3m+2

SN ONS

Proof. Let C be an near-extremal Type I additive self-dual code over GF(4) with a minimal shadow of
length n = 6m(m > 3). We rewrite Equation (36) as follows:

i 3m—i
ci =) wjap= ) Bibj. (39)
j=0 j=0
Then, we have:
i
ci:thl‘]’a]‘:lXiO for i:0/1/2/-~~12m_1 (40)
j=0
and:
3m—i
ci= Y. Bijbj=PBn for i=2m+2,2m+2,...,5m. (41)
j=0

Therefore, the first statement is proven. The other cases can be proven similarly. [
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Using Lemma 7, we have the following theorem:

Theorem 13. Let C be a near-extremal Type I additive self-dual code over GF (4) with a minimal shadow of
length n = 6m + 1. Then, we have the following:

1. The weight enumerator of C is uniquely determined.
2. The code C does not exist if m > 22.

Proof. From Lemma 7, we can see that ¢; can be calculated by Equations (37) and (38), and the values
depend only on the length n for all i, (0 < i < [1/3]) unless m = 0. If m = 0, then there is only one
code for that code length [12]. This proves the first statement.

For the second statement, from Equation (36) and the fact that ¢; = «; for 0 < i < 2m, we have:

Com = Km0 = ﬁZm,O + ﬁZm,mbm' (42)

Therefore, we get:
by = ﬁz_,,ll,m(ﬂézm,o — Bomp)- (43)

Using Equations (37) and (38), we have:
1 6m+1/( 3m 1/3m

Bamm = 5, 00mp = — <m B 1>/,52m,0 =5 (2m) (44)

Therefore, we get:

12m+2( 3m 3m

b = m (m - 1) B (Zm) 45

From Equation (36) and the fact that ¢; = a;y for 0 < i < 2m, we have:

Com—1 = &2m—1,0 = Boam—1,0 + Poam—1,mbm + Bom—1,m+1bm+1- (46)

Therefore, we get:
b1 = Bam—1 msr (€2m—1,0 = Bam—10 — Bam—1,mbm)- (47)

Using Equations (37) and (38), we have:

1 em+1|/3m+2 3m+1 3m
Poam—imi1 = — g fom-10 = —5 K 1 ) + 10( . _2> +5(m B 3)} (48)
and: . 3
m m
Pam—10=—1¢ (2m B 1)/,32m—1,m =3 (49)
Therefore, we get:
6m—+1/[/3m+2 3m+1 3m
bt = 162575 Km—l) HO(m—z) +5<m—3>}
3m 12m+2/( 3m 3m
o) 20 - G 0
From this, we have:
(3m)!
b = h 1
= G gy m = U G
where:
hy(m) = —88m> + 1864m> — 34m — 62. (52)

We can see that hy(m) < 0if m > 22. Therefore, if m > 22, then by, 1 < 0. This is a contradiction. O
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Remark 4. The definition of near-extremal Type II additive self-dual codes over GF(4) and the corresponding
nonexistence proof can be found in [11].

6. Summary

In this paper, we provided a comprehensive presentation of extremal and near-extremal Type I
self-dual codes over GF(2) and GF(4) with minimal shadow. We discussed recent research results
for these codes. We also proved that there is no near-extremal Type I [24m,12m,2m + 2] binary
self-dual code with minimal shadow if m > 323, and we proved that there is no near-extremal Type I
(6m+1, 26m+1 oy 4 1) additive self-dual code over GF(4) with minimal shadow if m > 22.
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