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Abstract: Regardless of the type of data, traditional Bloom filters treat each element of a set as a
string, and by iterating every character of the string, they discretize all data randomly and uniformly.
However, with the data size and dimension increases, these variants are inefficient. To better discretize
vectors with high numerical dimensions, this paper improves the string hashes to integer hashes.
Based on the integer hashes and a counter array, we propose a new variant—high-dimensional Bloom
filter (HDBF)—to extend the Bloom filter into high-dimensional spaces, which can represent and
query numerical vectors of a big set with a low false positive probability. This paper theoretically
analyzes the feasibility of the integer hashes on discretizing data and discusses the relationship
of parameters of the HDBF. The experiments illustrate that, in high-dimensional numerical spaces,
the HDBF shows better randomness on distribution and entropy than that of the counting Bloom filter.
Compared with the parallel Bloom filters, for a fixed false positive probability, the HDBF displays
time-space overheads, and is more suitable to deal with the numerical vectors with high dimensions.

Keywords: Bloom filter; high-dimensional numerical vector; high-dimensional Bloom filter; integer
hash functions

1. Introduction

In high-dimensional spaces, exact search methods, such as kd-tree approaches [1] and Q-gram [2],
are only suitable for small size vectors due to the very large computational resources. With the
development of sensor technology, communication technology and storage technology, big data with
high dimensions have brought a new challenge to the retrieval and storage of the data. There is a
compromise between efficiency and accuracy. A Bloom filter (BF) [3] and its variants [4,5], as a type of
space-efficient and constant query delay random data structure, have been applied to represent a big
set and retrieve memberships broadly [4,5], including IP address lookup [6,7], routing-table lookup [8],
hardware String Matching [9,10], cooperative Web caching [11], intrusion detection [12-15], and so on.

The standard BF [3] includes a bit (or counter) array and multiple string hash functions,
which stores all elements of a given set into the bit-array using these multiple string hash functions.
During the past 30 years, different variants of the BF have optimized and extended BF from
different perspectives, which make BFs more suitable for different circumstances and requirements [4].
The performances are comprehensively discussed in References [16,17], including the memory cost,
size of the set, false positive probability (FPP) and number of the hash functions. Reference [18] analyzes
the conditions under which the paradox occurs in the BF and demonstrates that it highly depends
on the prior probability that a given element belongs to the represented set. Complement BF [19]
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proposes to identify the trueness of BF positives, which effectively solves the FPPs produced by the BE.
The modifications mainly concentrated on the following three aspects.

1.

Improvements on the array. For most of the applications, Counting BF (CBF) [20] proves that 4-bit
counter array is enough to defend FPPs brought by elements deletion. The Variable-Increment
CBF (VI-CBF) [21] increases the counter at a variable step instead of 1 to further reduce the
FPPs of the CBE. By combination with VI-CBF, fingerprint CBF (FP-CBF) adds fingerprints to
the elements stored in the CBF to reduce the FPP of the VI-CBF. These two improvements on
the FPP are at the cost of memory, VI-CBF needs more bits to store the variable steps and
another one requires extra spaces to store the fingerprints. Improved associative deletion BF
(IABF) [22], adopts multiple CBF to store multiple attributes, and a check CBF to keep the
association information on these attributes of items in the given data set. By operation of these
CBE the IABF can support association attribute deletion. The Shifting Bloom filter (ShBF) [23] can
quickly process membership, association, and multiplicity queries of sets, using a small amount
of memory.

Modifications on the structure. For a static set, it is possible to know the whole set in advance
and design a perfect hash function to avoid hash collisions. However, for the set with uncertain
cardinality, BF and CBF are unsuitable. Scalable BF (SBF) [24] and Dynamic BFs (DBF) [25] propose
to represent a dynamic set instead of rehashing the dynamic set into a new filter as the set size
changes. If the original DBF is full, the DBF adds a new CBF dynamically and merges it into the
DBE. Let the DBF own s sub-CBFs and a sub-CBF corresponds k hash functions, time complexities
of membership query (or deletion) for sub-CBF and DBF are O(k) and O(k x s), respectively.
However, in the DBF, there is no mechanism to control the overall FPP, although sub-CBF makes
the upper bound of FPP converge, it does not support useful bit vector-based algebra operations
between sub-CBFs and may cause unacceptable space waste; in addition, the DBF has to query
all sub-CBFs one by one to discover the query. Partitioned BF (Par-BF) [26] partitions the whole
required memory space into disjointed sub-CBF lists. Each sub-CBEF list can index maximal 7,
elements. Each sub-CBF list can contain s homogeneous CBFs at most. A thread is assigned
into each sub-CBF list to do the matching, via parallel computing, the Par-BF gets query time
optimization. PBF [27], PBF-BF and PBF-HT [28] extend the BF to represent and query elements
with multi-dimensional text attributes. The PBF allocates d dimensions into d parallel BFs, but the
integrity of an element is destroyed, which results in a high FPP. PBF-BF and PBF-HT also
introduce d parallel CBF (PBF) arrays to store d dimensions, to keep these d dimensions integrity,
a check BF (PBF-BF) or a hash table (PBF-HT) is added. However, the space occupations increase
linearly, not only with the rising cardinality, but also the dimensions, which lead to huge memory
wastes and large query delays. All of them make parallel BFs not suitable for the big set in a
high-dimensional space.

Different hash functions. LshBF [29] schemes adopt local sensitive hash functions (LSH) instead
of string hash functions to solve the Approximate Membership Query (AMQ). The LSH function
follows a P-stable (p € (0,2]) distribution, only when p = 1 and 2, the probability density
functions can be written, and they are a Cauchy distribution (p = 1) and Gaussian (normal)
distribution (p = 2), respectively. The LSH function maps the neighbors in Euclidean spaces to
nearby locations, and directly changes high-dimensional vectors into real numbers. To reduce
the FPP, the LshBF-BF [30] adds a verification BF to further disperse points in the LshBE.
Multi-Granularity LshBF-BF (MLBF) [31] develops multiple granularities search instead of one
step in the LshBE-BF to further improve the search accuracy. However, MLBF is designed to only
filter (query) objects with multiple logarithmic distance granularities. The integer-granularity
locality-sensitive Bloom filter (ILBF) [32] filters objects with multiple integer distance granularities
to shrink the distances and to reduce the FPP in MLBF. All these schemes are based on the LSH,
according to the central limited theorem, after mapping, the LSH shrinks most of elements of
the set around the mean, which results in a high FPP in member query, especially around the
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mean. For example, approximately 68.5% elements are projected to the locations between the
negative and positive variance under Gaussian distribution. Through LSH mapping, the LshBFs
transform high-dimensional vectors into real numbers, which avoids dimension disasters and
brings computing and space overheads, but the aggregation of neighbors causes high FPPs.
This, LshBFs are only suitable for AMQ not membership query.

Whatever the types of elements may be, the BF and the variants in above 1 and 2 view every
element of a set as a flat one-dimensional string. By iteratively computing the characters of each input,
they yield a random hash value and project it in a fixed array. For elements with all dimensions being
numerical, such as pictures, the LshBFs [29-32] P-stable-function-based will provide a high FPPs for
membership query. To answer the membership lookup of a large set with high-dimensional vectors,
this paper modifies the string hash functions of BF and implements a new BF structure, denoted as
HDBE. The experiments demonstrate that the HDBF has the same performances as CBF as regards
data discretization, which can efficiently deal with the vectors in high numerical dimensional spaces.
The main contributions of this paper are as follows.

1.  The modified hash functions can effectively discretize vectors with numerical high dimensions,
uniformly and randomly. Based on the modified hash functions, HDBF extends the Bloom filters
to represent and query numerical vectors in high-dimensional spaces.

2. Compared with CBF, HDBF is more efficient in dealing with numerical dimensions, and can be a
replacement for CBF in numerical high-dimensional spaces

3. HDBF outperforms CBF in false positive probability, query delay, memory costs, and especially in
numerical high-dimensional spaces.

4.  Different from parallel BFs (PBFs), HDBF will not bring dimension disaster. Moreover, it has
memory and query overheads compared with PBFs.

2. Work Mechanism and Structure

2.1. Bloom Filter

Definition 1. A standard BF [3] applies an array of m bits, initially all are set to 0, and k independent hash
functions h; to represent a set S = {ay,...,a,} of n elements, as shown in Figure 1a. If an element is mapped
into the BF by h;, the corresponding bit h;(a;)%m is set to 1. Given a query q, by k hash functions h;(q)%m
mapping, the BF answers whether the q is a member of S with a false positive probability (FPP). CBF [20]
replaces the bit-array with the 4-bit counter array to support element deletion, as shown in Figure 1b.

h, hy

h’ =49 <<5+49>>2+50;
| B} =h?<<5+hE >>245]

X(“123,113,89")
X("123,113,89")  Y("345,68,75") ho —_o X("123,113,89")  Y("345,68,75")
l \f/ \hz‘ : / hzl NJ/ \hz
M 1 0 0 1 0 1 e

1 0 0 1 0 1 0 1 0 1

4-bit counter array

1-bit array -

hy

(a)the structure of BF h =sax fash(char*key) (b)the structure of CBF
h, = RSHash(char * key)

hy = APHash(char * key)

Figure 1. Structure of high-dimensional vector Bloom filter.

A BF includes hash functions and the bit array, this paper takes sax_hash, a classical string
hash function [33] used by the BF and most of the generations, as an example to illustrate the work
mechanism of string hash functions, shown in Figure 1 and Algorithm 1. Given a three-dimensional
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vector x with numeral dimensions 123, 113, and 89, if the vector is inputted into the sax_hash,
the sax_hash regards it as a string key = “123, 213, 89”. By determining every character’s ASCII code
{497, 750”7, 751”7, “44”, ... } and bitwise operating, the sax_hash gets a hash value ranged in [0 — 231].
The iterating process is

hi =49

h? =hi <5+ hi > 2+50

1
b =ht <540 >2+51 M

as shown in Figure 1 and line 3 and 4 of Algorithm 1. The operations of other string hashes are similar
to the sax_hash, such as RSHash and APHash. Through k different string hash computing and MOD
function h;(x)%m mapping, the input is stored in the bit (or counter) array.

Algorithm 1

unsigned int sax_hash(char *key)

{ 1. unsigned inth = 0;

2. while(*key)

3. h" =(h <<5) + (h >>2) + (unsigned char)*key++;
4. return (h& 0x7FFFFFFF);

}

2.2. High Dimensional Bloom Filter (HDBF)

BF assumes that all the elements of a set can be randomly and uniformly scattered into a range of
integers. The string hash functions should satisfy: (1) Different vectors being projected to different
values by the same hash function; (2) same vector being projected to different values by different hash
functions; and (3) the avalanche effect [34]. The change of single character will bring big change of the
hash value.

The Sax hash regards the input parameter “key” as a one-dimensional string, and every
character in the “key” will be computed. In fact, the characters the sax_hash operated are the
ASCII codes, which are a series of integers. This implies that the input can be modified to an
integer array. Thus, by modification of the input, we can expand BF into high-dimensional spaces.
Except for replacing the input string (char *key) with an integer array (int *key), the modified
sax_hash, called HDsax_hash, as shown in Algorithm 2. The HDsax_hash regards the input as a
three-dimensional integer vector. By bitwise operating on integers 123, 213 and 89, as shown in lines 3
and 4 of Algorithm 2 and Figure 2, the HDsax_hash computes a hash value of the three-dimensinal
vector. The operation process is

HD_hl =123
HD_h? = HD_hi <5+ HD_h} > 2+113 )
HD_h3 = HD_h3 < 5+ HD_h? > 2+ 89

Algorithm 2

unsigned int HDsax_hash(int *key)

{ 1. unsigned int h=0;

2. while(*key)

3. h "= (h<<5) + (h>>2) + (unsigned int)*key++;
4. return (h& 0x7FFFFFFF);

}
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4-bit counter array
Figure 2. Structure of high dimension vector Bloom filter.

The similar modifications are applied on other string hash functions and the high-dimensional
integer hash function (HDIH) family is obtained. Based on the HDIH and a counter array, a new
BF structure, denoted as HDBE, is constructed to store and query the vectors with high numerical
dimensions in a large set.

Definition 2. A high-dimensional integer BF (HDBF) applies an array of m counters. Initially all are set to 0,
and k independent HDIH functions HD_h; to represent a set S = {V1,V,, ...,V } of n vectors, where any
vector with d numerical dimensions Vj(vj1,...,vjq),vj € 1, as shown in Figure 2. If vector V; is mapped
into the HDBF by HD_h;, the corresponding counter HD_h;(V;)%m is increased by 1. Given query q, if all k
HDIH functions HD_h;(q)%m are bigger than 1, the HDBF regards q as a member of S with a FPP; if not,
the query is certainly not in set S.

3. Performances

Due to the same data process, counter array and data type of CBF [20] and HDBF, they have
the same performance, which can map a vector into an integer, ranged in [0 — 231] , randomly and
uniformly. After n vectors are mapped into the counter array with m size by k HDIH functions,
the probability of any one counter still being 0 is:

—kn

) mem =p ®)
If a false positive occurs, the corresponding counter must be 1, so the false positive probability
(FPP) is:
—kn K —kn
Fupsr = (1= p)F = (1 - e%) = exp(kIn(1 — eTk')) 4)
From Equation (4), the memory required by HDBF is:

m=— fn ®)

In(1 — (fupBr)*)

Let the upper limit of the FPP of the HDBF be fy. For fixed m and k, from Equation (4),
the maximum number of vectors the HDBF can represent is 19, and

=

fo
In(1—em%)-m
o = O ©
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In terms of Equation (4), given that g(k) = kIn(1 — e~ ), then fupsr = e8(). To get the minimum
value of fupsr, function g(k) is derivative using k,

—kn

dg (k) k., kn em

When d%—(kk) = 0, the minimum number of the hash functions is obtained, and:

m

kmin = (In2)(—) (8)

n
Since HDBF only needs k hash computing for a query/deletion/insertion, the query time
complexity is o(k).

4. Experimental Section

4.1. Dataset and Settings

Since there are no benchmark datasets for BFs, here Color [35], Sift and Gist [36], used in most
experiments, are adopted to compare and test the performances of different variants. The Color
dataset includes 70 K vectors with 32 dimensions, and values of the dimensions are all less than 1,
we expanded all values into integers. Sift and Gist contain 100 K vectors with 128 and 300 dimensions,
respectively, and the values of dimensions are positive integers. All query vectors are different from
the samples and are set to 10 K. The experiments ran on a computer with Intel Xeon E5-2603 v3 and
16 GB RAM. The schemes used to compare contain CBF [20], PBF-HT and PBEF-BF [28], in which all
counters of the arrays took up 4 bits.

4.2. Distribution and Entropy

Since the distribution and entropy reflect the discrete state of data, to check whether HDBF can
scatter the high-dimensional vectors into different integers, randomly and uniformly, this paper firstly
compares the distribution and entropy of HDBF with CBF on 3 datasets. Let v be the value of a counter
after n vectors are projected by k hash functions, and p = v/kn be the selected frequencies of a counter.
The entropy of the counter array is defined as

E=—plogp 9

Given m = 25n. Figure 3 shows the distributed situations of CBF and HDBF after different datasets
are projected into counter arrays by 6 different hash functions. Figure 3a—c shows the distributions of
the CBF, where the maximum values of the counters are 6, 6 and 12 on Color, Sift and Gist, respectively.
Figure 3e—g demonstrates the distributions of HDBF, in which the maximum values are 6, 6 and 7,
respectively. This illustrates that the HDIH functions almost possess the same discrete ability as the
string hashes of CBE.

Figure 4a—c displays the increase of entropies of HDBF and CBF with samples increases under
d, being 32, 128 and 300. For fixed n, Figure 4d,e shows the changes of entropies with the dimension
increase. In Figure 4a,d, HDBF and CBF almost have similar entropies in low-dimensional spaces
(d < 32). With the increase in dimension (Figure 4b,c,e,g), the entropies of HDBF are slightly larger
than those of CBF, obviously, for Sift and Gist where d > 32. This means that HDBF is superior to the
CBF on the data discretization, especially in high-dimensional spaces.
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4.3. FPP

Figure 5 displays the FPP changes with the increase of k for different memory costs and fixed
samples. From Equation (8) in Section 4, for fixed m and n, there are a minimum number of hash
functions; the FPPs first decrease to a minimum, then increase with the increase in k. The CBF and

HDBF have the same change tendencies.
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Figure 5. FPPs of the CBF and HDBF for different k and memory cost.
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From Equation (8), for a fixed k = 6 and memory costs, the FPP will increase with sample growth,
even reaching 1, as Figure 6 shows. On the contrary, for a fixed k and n, the FPP will decrease with the
increase in memory, as shown in Figure 7. From Figures 5-7, we can clearly see that the FPPs of the
CBF and HDBF almost possess the same values, display similar change tendencies, and they are close
to meeting the false positive probability requirements.
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o

Figure 6. FPPs of the CBF and HDBF for different samples.
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Figure 7. FPPs of the CBF and HDBF for different memory costs.

The above discussions show that HDBF can discretize data with high-dimensions, randomly and
uniformly, which can substitute CBF for dealing with vectors with numerical high-dimensions.
The following sections will continue to compare HDBF with other schemes based on BFs.

4.4. Memory Costs and Latency

Let the average FPP C [0.0001 — 0.0005], m = 25n and k = 6. Figure 8 compares the memory use
of the PBF-BF, PBF-HT, CBF and HDBF on 3 datasets. For fixed FPPs, the memory costs of PBF-BF and
PBF-HT enlarge with the increase in the samples and dimensions, linearly, which is in line with the
discussions in Section 2. According to Equation (4), with the n growing, m will enlarge to fit a constant
FPP, so the memory usages of HDBF and CBF increase with the number of samples (Figure 8a—c),
and will not be affected by the dimensions (Figure 8d—e). Once the dimensions are greater than 1,
the memory costs of PBF-BF and PBF-HT are far higher than those of CBF and HDBF, as shown in
Figure 8d-f.

Under 10 K query vectors, the average initiation and query time of CBF and HDBF are less than
PBF-HT and PBF-BE, as shown in Figures 9 and 10. Since all schemes need to split vectors and project
all dimensions into corresponding arrays, the initiation time will continue to increase with the samples
and dimensions. However, the increased speeds of CBF and HDBF are far slower than those of PBF-BF
and PBF-HT, as shown in Figure 9. Compared with PBF-BF and PBF-HT, CBF and HDBF only require
dividing the dimensions and computing the hash values, so their query times will increase slightly
with the increased dimensions (Figure 10d—e) but are constant as cardinality increase (Figure 10a—),
which is consistent with Equation (9). Since PBF-HT and PBF-BF contain multiple BFs, once any one
BF returns to 0, the query will stop, the query time fluctuates slightly with the increase in dimensions.
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5. Conclusions

With the development of computer technology, data dimensions and sizes increase quickly,
and the requirements for tools and methods for dealing with high dimensional data are becoming
urgent. Although there are some data structures for high-dimensional data in a number of variants of
BF, there are some problems, such as high temporal and spatial costs. In this paper, we proposed a
new hash family, called HDIH, to map the vectors with high-dimensions. Based on the HDIH family
and a counter array, a new Bloom filter structure, denoted as HDBF, was built to represent and query
the vectors with numerical high-dimensions in a large set. The HDBF regards all elements in a set
as vectors while not strings. By iteratively operating the dimensions of the input vectors, the HDBF
can translate the vectors into a series of integers, randomly and uniformly. This paper theoretically
discusses the relationships of false positive probability, memory costs and hash functions of HDBF.
The experiments showed that the distribution of HDBF is almost the same as that of CBF, and the
entropy of HDBF in high-dimensional spaces is slightly larger than that of CBF. This means that
HDBF has a better data discrete ability than CBE, which can replace CBF to deal with vectors with
high-dimensions, randomly and uniformly. Compared with PBF-BF and PBF-HT, HDBF has memory
and query overheads, and the memory costs and query time will not be affected by the dimensions.
Therefore, HDBE, as a substitute for CBE, is suitable for representing and querying numerical vectors
in a high-dimensional space.
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