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Abstract: This paper discusses three edge bundling optimization problems that aim to minimize the
total number of bundles of a graph drawing, in conjunction with other aspects, as the main goal.
A novel evolutionary algorithm for edge bundling for these problems is described. The algorithm
was successfully tested by solving the related problems applied to real-world instances in reasonable
computational time. The development and analysis of optimization models have received little
attention in the area of edge bundling. However, the reported experimental results demonstrate
the effectiveness and the applicability of the proposed evolutionary algorithm to help resolve edge
bundling problems by formally defining them as optimization models.

Keywords: edge bundling; optimization problem; evolutionary algorithm; approximate solution

1. Introduction

A graph is a mathematical structure for representing inherent relationships between discrete
objects. It is often drawn as a node-link diagram, but, as the number of elements increases, its ability
to effectively display information without visual clutter is a challenge. Several existing graph drawing
techniques attempt to reduce visual clutter. An example is edge bundling, which has gained attention
as a way to improve the readability of a graph drawing by merging geometrically close edges into
bundles along a shared path (see Figure 1).

(a) original graph (b) a bundled version

Figure 1. Illustration of the concept of edge bundling.
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Traditional edge bundling approaches are not problem-specific methods, but, instead,
are application-oriented. They are not dedicated to solving a mathematically-formulated problem,
i.e., they do not follow a systematic and theory-guided process to propose and solve edge bundling
optimization problems by defining decision variables and a given objective function to be optimized.
Consequently, these approaches do not address the issue of identifying the “best” set of bundles based
on a group of criteria that are mathematically defined in the form of an objective function.

Departing from tradition, Ferreira et al. [1] proposed the study of edge bundling as a formally
defined combinatorial optimization problem. The authors focused on a class of edge bundling
problems for which the set of edges composing every bundling has to be explicitly chosen as main
problem-decision variables. In order to demonstrate their ideas, the authors formulated a constrained
combinatorial optimization problem, called EB−Star, in which the total number of bundles has to be
minimized and only edges with a common end node (i.e., edges that are adjacent) can be bundled
together. As Peng et al. [2] affirm, bundling only adjacent edges seems to provide a better sense of
edge relations of a graph at the node level. A more general and interesting problem was also defined
by Ferreira et al. [1] by adding a new constraint to the EB−Starα problem. The constraint consisted of
imposing a maximum angle (α) condition that any pair of adjacent edges must satisfy in order to be
bundled. That problem was called EB−Starα, which becomes the EB−Star problem for high values
of α. In the present paper, we refer to EB−Starα as the Angle-Based Edge Bundling Problem (ABEB) in
order to be consistent with other problems that are introduced. Ferreira et al. showed that EB−Star is
NP-hard and, therefore, EB−Starα has the same complexity for high values of α. This justifies the use
of heuristic methods for solving ABEB.

In the present paper, we continue an investigation into the formal modeling of edge bundling and
propose two other problems, in addition to the ABEB. One problem is termed the Compatibility-Based
Edge Bundling Problem (CBEB) which involves minimizing the total number of bundles while
maximizing a multi-objective function that incorporates well-known edge compatibility measures.
The other problem is an extension of the last one and allows the creation of bundles with
non-adjacent edges and is termed General-Based Edge Bundling (GBEB). We also propose an
approximate evolutionary algorithm for ABEB, CBEB and GBEB called here Evolutionary Edge
Bundling (EEB). As far as we know, EEB is the first heuristic method ever proposed for these problems
as Ferreira et al. [1] presented only an integer linear formulation for the ABEB, not a solution method.

Experiments with the evolutionary algorithm show that it produces close-to-optimal solutions for
some of the nontrivial ABEB instances tested. The results emphasize the importance of optimization
approaches to edge bundling, not only as a way of visualizing a graph with less visual clutter, but also
as a means of systematically studying and comparing problem definitions, methods and solutions in
this field. From now on, we consider only undirected graphs.

The remainder of the paper is organized as follows. Section 2 briefly surveys relevant work on
various aspects of edge bundling. Section 3 presents a definition of edge bundling as a combinatorial
optimization problem, as proposed in [1]. Section 4 provides the formal definitions of ABEB, CBEB and
GBEB. Some compatibility and aesthetic criteria are then discussed in Section 5. Section 6 introduces
the evolutionary edge bundling algorithm which aims to solve the ABEB, CBEB and GBEB problems
and Section 7 describes some experimental results. Section 8 discusses a method for rendering the edge
bundling solutions as a final step in the edge bundling process. A comparison of EEB with previous
edge bundling techniques is discussed in Section 9. Finally, in Section 10, we draw some conclusions
and discuss ideas for future research.

2. Related Work

The scientific literature on edge bundling is extensive and reports many edge bundling techniques.
For instance, an approach called hierarchical edge bundling [3] uses hierarchy tree branches for edge
routing; a method called geometric edge bundling [4] forms bundles by routing edges along a mesh
generated by a triangulation algorithm; the force-directed edge bundling technique [5,6] splits the edges
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into segments that attract each other as a basis for bundling edges; the skeleton-based edge bundling
method [7] generates a skeleton from the medial axes of groups of similar edges, and then attracts
edges to this skeleton; and the kernel density estimation edge bundling method [8] computes a density
map and moves the edges in order to create bundles.

Those and many other edge bundling techniques attempt to aggregate edges with similar
properties into bundles, addressing mainly the question of specifying how these edges should be
routed along the same path. The techniques produce solutions in which the coarse structure of the
graph is revealed but fail to show connection patterns at the node level. Peng, Lu and Peng [2]
affirm that sometimes it is more important to show the connection trends of a node rather than the
overall network structure. For example, in graph drawings representing a route network, the actual
relationships between interconnected components are usually more relevant than the coarse structure
of the graph. This is due to the fact that many traditional edge bundling methods generate bundles
that have common interior segments and multiple source and destination nodes, i.e., they “knot” the
edges in the middle of the bundle.

Consequently, Peng, Lu and Peng [2] proposed an algorithm called node-based edge bundling that
bundles and “knots” edges nearer to the common node of adjacent edges. Nocaj and Brandes [9]
refined the technique of [2] and proposed a method called stub bundling that joins only edges that share
the same endpoint. The method has the aim of visualizing unambiguous graphs and retrieving the
exact source and target of each edge. The method uses the angle between consecutive edges as the
criterion for choosing which edges to be joined together.

Even though the methods in [2,9] efficiently produce bundles with only adjacent edges, neither of
them has the aim of explicitly minimizing the number of bundles. In order to achieve this goal, it may
be needful to formulate an optimization problem having decision variables, constraints and objectives.
For addressing the aforementioned need, the present paper investigates the problem of finding the
“best” configuration of bundles (involving adjacent and non-adjacent edges) that optimizes a given
objective function.

3. Edge Bundling as an Optimization Problem

There is a current lack of fundamental and theoretical principles that can be used to objectively
measure the effectiveness of bundling techniques. Despite some attempts to formalize the presentation
of certain edge bundling methods, bundling itself, as a technique, as yet lacks an underlying formalism
that can unify previous methods. Most existing edge bundling definitions are vague, each being related
to slightly different characteristics of the problem. Moreover, edge bundling is related to both joining
edges and determining the paths of the edges.

Recently, McKnight [10] and Lhuillier, Hurter and Telea [11] discussed various complementary
aspects of more complex mathematical formulations of edge bundling. McKnight defines a bundle
as a set of two or more “edge segments”, and edge bundling as the process of segmenting the edges.
Lhuillier, Hurter and Telea [11] define a bundle as a set of paths that share similarities and edge bundling
as a process that creates bundles and trails.

We now complement the definitions of bundle and edge bundling just mentioned. By analyzing
the various existing approaches in this area, it is possible to identify distinct types of bundle structures
and methodologies.

Bundles can be separated into two types, those composed of (i) only edges sharing a common
end node (bundling of only adjacent edges), as in the methods described in [2,9,12–14], or of (more
commonly) (ii) merged edges with multiple origin or destination nodes (see Figure 2).
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(a) only adjacent edges (b) multiple source or destination nodes

Figure 2. Type of bundles.

Regarding the bundling methodologies, an edge bundling method can construct bundles in
an explicit or in an implicit way [15]. In explicit approaches, the edges are first clustered and
then a rendering module draws each group of edges [7,16–19]. In implicit approaches, there is
no pre-grouping of the edges. Instead, the bundles are considered as oriented-curved routes,
each containing a set of edges. The related methods employ strategies for defining routes and making
associations between them [5,8]. McKnight [10] affirms that many existing edge bundling approaches
do not generate bundles directly (explicitly). In fact, most edge bundling algorithms output just a
graph drawing and the identification of the individual bundles is indirect.

Figure 3 uses a synthetic graph (G1) to illustrate the difference between the solution generated
by the explicit approach of the EEB model (described in Section 6) and the solution generated by the
implicit Force-Based Edge Bundling approach [5], implemented in the d3.js library of visualization
routines. The two solutions are visually rather different, which makes it difficult to compare them in
terms of quality. It is especially challenging to make such comparisons when the specific elements
(e.g., parameters and constraints) related to the edge bundling problem are ill defined. In fact,
the comparison is meaningless as the underlying problems are significantly different from each other.

(a) original graph (b) solution of the explicit method EEB

(c) solution of the implicit method FDEB [5] generated by d3.js

Figure 3. Comparison of solutions produced by implicit and explicit methodologies.

In general, the search for a “good” edge-bundling layout is carried out heuristically, and is based
on an informal definition of given desirable optimization goals. In opposition, we take a different line
for the investigation of edge bundling strategies by formally defining edge bundling as an optimization
problem. We also aim at identifying a problem solution that represents an explicitly generated bundle
configuration. For the structure of the solution, we follow the definition given in [10] that focuses on
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computing bundles directly. However, we consider a bundle as a set of edges (not just a set of edge
segments as in [10]).

Thus, in [1], edge bundling was formulated as an optimization problem that attempts to find
the “best” set of bundles in terms of some given parameters, goals and constraints. A general edge
bundling optimization problem, that can be used as a framework for describing more specific problems,
was defined by the authors as follows:

Definition 1. Let G = (V, E) be a graph and D a given unbundled node-link drawing of G in the plane.
Consider the set S = (E1, E2, ..., En), where Ei are subsets of E (not necessarily disjoint), n ∈ N+. Furthermore,
let R be a function of G, D and S that renders a bundled graph drawing version of D (denoted by DR), given some
extra necessary information, such as rules for routing the edges. The General Edge bundling Problem is hence
to determine the set S (here called bundles), with E = ∪n

i=1Ei, so that a set F of objective functions, representing
aesthetic edge bundling measurements of DR are optimized, and a set P of constraints (defining mainly which
edges can be bundled together) are satisfied.

Note that Definition 1 enables the inclusion of the routing problem, which is to find the precise
paths of the bundled (and possibly unbundled) edges. This is a question to be addressed as an
optimization problem. This can be done in either of two ways: (1) by determining the routing as a
second-level problem totally inside the rendering function R; or (2) by extending the formal definition
in order to have extra variables that determine the routing and are used in R. In both cases, functions
that evaluate the quality of the resultant edge-bundling drawings, produced by R, can be included
in the set F, making the edge-routing problem more intrinsic in the optimization process. Some
quality aspects that may influence the routing, such as minimizing the amount of ink for drawing
the bundles, or minimizing the number of edge crossings, can be pursued using these approaches.
However, in the present paper, the routing problem is not considered critical for the optimization
process. Therefore, it was treated as a fully independent problem (see (1) above) and was considered
an external, post-processing stage (see Section 8).

4. Edge Bundling Problems

In this paper, three edge bundling problems are investigated. The problems tightly combine
Definition 1 with some of the common aesthetics and compatibility measures.

Problem 1 (Angle-Based Edge Bundling Problem (ABEB)). Suppose a drawing D of a graph G = (V, E),
a function γejek that returns the smaller angle between any pair of adjacent edges ej and ek from E in the
drawing, and an angle α, 0 ≤ α ≤ 180◦ are given (We define the smaller angle as the smallest angle between
two adjacent edges with regard to the clockwise and counter-clockwise orientations). The Angle-Based Edge
Bundling Problem (was denoted by EB−starα in [1] but, for the sake of clarity, it is denoted by ABEB here)
is to determine a decomposition (We borrow the definition of decomposition of a graph G that, according to
Arumugam, Hamid and Abraham [20], is “a collection ψ of edge-disjoint subgraphs H1, H2, . . . , Hr of G such
that every edge of G belongs to exactly one Hi”) of E into disjoint subsets E1, E2, . . . , En, E = ∪n

i=1Ei, that
minimizes n, subject to the conditions that each Ei induces a star subgraph Gi (i.e, all edges in Ei share a same
node), and γeijeik ≤ α for every pair of edges eij, eik ∈ Ei.

ABEB is the original problem proposed in [1], as mentioned before. Note that a set Ei represents
a bundle containing only adjacent edges, and that each edge of the graph appears in exactly one
bundle. As an example of constraint satisfaction, the two bundles E1 = {e1, e2, e3} and E2 = {e1, e5}
do not represent a solution to ABEB because the edge e1 is in both of them. The objective of ABEB is
to minimize n, the number of bundles, i.e., the size of the decomposition of E. This objective can be
expressed as:

f = n. (1)
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For a given input graph drawing, there may be many solutions with the same number of bundles
that satisfy the angle constraints, but with different set partitions E1, E2, . . . , En. In order to distinguish
between these solutions, the additional objective of maximizing a compatibility parameter between
edges is added to the original ABEB problem. The aim is to produce solutions in which the edges in
each Ei are as compatible as possible. The level of compatibility is given by a function C that evaluates
(possibly using an unbundled drawing of the graph) how similar given edge pairs are, and whether or
not they should be bundled together. The precise definition of this new problem is given below.

Problem 2 (Compatibility-Based Edge Bundling Problem (CBEB)). Let D be a given drawing of a graph
G = (V, E). For D, let C(a, b) be the measure of compatibility between a pair of edges a, b ∈ E, and let
CEi = ∑p,q∈Ei

C(p, q) be the measure of total compatibility of a bundle Ei, defined as the sum of the C
values for all pairs of edges in the bundle. The Compatibility-Based Edge Bundling Problem is to determine
a decomposition of E into disjoint subsets E1, E2, . . . , En, E = ∪n

i=1Ei, which maximizes CG = ∑n
i=1 CEi and

minimizes n, subject to the condition that each Ei induces a star subgraph Gi.

Thus, CBEB has two objectives: to maximize the sum of the compatibilities of the edge bundles
and to minimize the number of edge bundles. These objectives may balance each other out when
finding a minimal set of bundles. For the purpose of simplification, CBEB was converted into a
single-objective problem aimed at maximizing the following weighted sum function:

f = w1 · CG + w2 ·
1
n

, (2)

where 0 ≤ wi ≤ 1, i = 1, 2.
Note that the angle limit α is not a constraint of the problem any more, but angle compatibility

is part of the objective function, embedded in C and, consequently, in CG. Many edge compatibility
measures can be included in C. The exact ones that we used in the current work are described
in Section 5.

The classic edge bundling methods create bundles by joining the edges at their middle parts, not at
their endpoints. However, the solutions to the ABEB and CBEB problems result in graph drawings
with only adjacent edges. A more general problem is proposed, in which the adjacency constraint is
relaxed. The definition of the resulting problem is given below:

Problem 3 (General-Based Edge Bundling Problem (GBEB)). Let D be a given drawing of a graph
G = (V, E). For D, let C(a, b) be the compatibility measure between each pair of edges a, b ∈ E, and let
CEi = ∑p,q∈Ei

C(p, q) be the total compatibility of a bundle Ei, defined as the sum of the C values for all
pairs of edges in the bundle. The GBEB problem is to determine a decomposition of E into disjoint subsets
E1, E2, . . . , En, E = ∪n

i=1Ei, that maximizes CG = ∑n
i=1 CEi and minimizes n.

Comparing the definitions of CBEB and GBEB, one can see that the only aspect that makes the
two problems different is the removal of the adjacency constraint in the second problem. However,
as it will be discussed in the Section 7.4, this simple modification increases the search space of the
feasible solutions. The objective function for GBEB is also defined by Equation (2).

Figure 4 illustrates solutions to the problems ABEB, CBEB and GBEB for a small graph, an angle
α ≈ 45◦ and a compatibility measure CG. Figure 4b is a possible solution to the problem ABEB,
constrained by the conditions of (i) adjacency, (ii) having only disjoint sets and (iii) angles no more
than α ≈ 45◦. The solution consists of the sets of edges E1 = {1, 2, 3}, E2 = {4, 7}, E3 = {5, 8} and
E4 = {6}. The solution to the problem CBEB, Figure 4c, although having the same amount of bundles
as in (b), groups the edges in more compatible sizes, with E1 = {1, 2, 3}, E2 = {4, 5}, E3 = {7, 8} and
E4 = {6}. Finally, a solution to the problem GBEB (Figure 4d) was not restricted by the adjacency
constraint and, therefore, has less bundles, with E1 = {1, 2, 3}, E2 = {4, 5, 7, 8}, E3 = {6}. Note that
the sets Ei for the three problems are disjoint, but, in the solution to GBEB, the non-adjacent edges 5
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(v2, v3) and 7 (v1, v4) were joined at the same bundle E2. Despite producing less bundles, solutions to
GBEB may be more ambiguous in terms of the identification of the individual edges in each bundle.

(a) original graph (b) a solution to ABEB (c) a solution to CBEB

(d) a solution to GBEB

Figure 4. Comparison of possible solutions between the proposed problems.

5. Compatibility and Aesthetics

The terms “compatibility” and “aesthetics” suggest preferable features that a layout should
possess, in order to help to reduce visual clutter. These features are important aspects since they
determine the constraints and objectives of the problems being investigated. In the next two
subsections, some measures of such features are described and some aesthetics for edge bundling
are discussed.

5.1. Compatibility Measures

Generally, edge bundling techniques that decide which edges will be bundled together are based
on compatibility measures. There are several measures including: geometric, semantic, importance,
topology, neighborhood, temporal and connectivity [5,6,21–23].

The proposed evolutionary formulation focuses on the geometric measures introduced by Holten
and Wijk [5], which are: angle compatibility, Ca ∈ [0, 1], that avoids joining perpendicular edges;
scale compatibility, Cs ∈ [0, 1], that prevents joining edges that differ in length; position compatibility,
Cp ∈ [0, 1], which avoids joining edges that are far apart; and visibility compatibility Cv ∈ [0, 1],
which avoids joining edges that diverge in projection overlap. Holten and Wijk define the total
compatibility, C(P, Q) ∈ [0, 1], between two edges P and Q as:

C(P, Q) = Ca(P, Q) · Cs(P, Q) · Cp(P, Q) · Cv(P, Q). (3)

We do not employ the latter four measures in the CBEB problem. In particular, the measures of
position and visibility are left out. This is because they are, in some ways, covered by the adjacency
constraint. As a result, only the angular and scale components were used to compute the total
compatibility measure C.

For the problem GBEB, however, any edges of E can be joined. Thus, the complexity of selecting
compatible edges increases. In order to ensure an acceptable level of compatibility, all four geometric
measures proposed in [5] were used for this problem. In addition, a new compatibility measure
Cd ∈ [0, 1], termed distance compatibility, is proposed to guarantee that pairs edges beyond a certain
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distance are not joined together. The new measure associates the distance between the midpoints of
two edges P, Q with a threshold parameter:

Cd(P, Q) = 1− ||Pm −Qm||
k

, (4)

where k is the Euclidean distance between the leftmost and rightmost nodes of the graph in the given
input drawing D. The values Pm and Qm are the midpoints of the two edges P and Q, respectively.

The measure Cd(P, Q) was included in the total compatibility (Equation (3)) as a product term.
It is important to note that the aim of this measure is similar to the objective of using Cp. Nevertheless,
in our preliminary experiments, its inclusion in C allowed a more refined result, with bundles being
visually more pleasing. Defining a single distance compatibility measure that combines aspects of both
Cp and Cd is left as a topic for future research.

5.2. Aesthetics for Edge Bundling

A graph drawing method usually aims to produce drawings that are considered visually pleasing
according to specific aesthetic criteria, for example, minimizing the number of edge crossings or
maximizing the number of symmetries [24]. However, most of the known heuristics for edge bundling
are not necessarily involved with the exploration and evaluation of the quality of a drawing with
respect to such aesthetics.

There are few reported attempts to incorporate and optimize aesthetic criteria in edge bundling
layouts. Recently, Angelini et al. [25] restricted edge bundling to the end segments of edges and
allowed at most one crossing per bundle. Alam, Fink and Pupyrev [26] proposed a formulation
focused on minimizing the number of bundled crossings for circular graphs but did not provide an
analysis of its complexity, nor an approximation algorithm for it. Saga [27] proposed two measures to
quantitatively evaluate edge bundling: edge lengths and area occupation. The effectiveness of those
measures was not discussed.

We believe that, besides reducing clutter, an edge bundling technique could potentially improve
the readability of a graph drawing if it was constructed to optimize one or more aesthetic criteria related
to the bundling structure. As a result, edge bundling could possibly be formulated as a multi-objective
optimization problem, where the layout is generated according to a given set of aesthetics. Some of the
following edge bundling aesthetics criteria could possibly be used:

(i) minimizing the total number of bundles;
(ii) maximizing the compatibility of bundled edges;
(iii) maximizing the number of edges per bundle;
(iv) minimizing the ambiguity of the edges;
(v) maximizing the axial symmetry of the bundles;
(vi) minimizing the total number of crossings between edges and/or bundles.

As described before, the present paper investigates the first two aesthetics listed above as part of
the objective function of the proposed edge bundling problems.

6. Evolutionary Edge Bundling (EEB)

One of the challenges of dealing with difficult combinatorial optimization problems is to develop
algorithms that guarantee to find a reasonably good solution in an acceptable computational time.
An approach that has frequently been able to address this challenge successfully in many situations is
the so-called evolutionary algorithm (EA), a generic population-based optimization meta-heuristic
from artificial intelligence that uses mechanisms inspired by biological evolution, such as reproduction,
mutation, recombination, and selection. An evolutionary algorithm [28] is a type of evolutionary
computation that can employ a variety of solution representations and evolutionary steps.



Information 2018, 9, 154 9 of 27

Following that line, we present a novel EA for the edge bundling problems ABEB, CBEB and
GBEB. The algorithm adopts the standard evolutionary cycle involving population initialization,
evaluation, selection, recombination and mutation steps. The next subsections describe the solution
representation and present details of the steps of the EA.

6.1. Representation Scheme

Given a graph G = (V, E), the representation of an edge bundling solution (also called here an
individual of a population), for problems ABEB, CBEB or GBEB, is simply I = (E1, E2, . . ., En), that is,
the sets of bundles of edges Ei ⊂ E (1 ≤ i ≤ n), 1 ≤ |Ei| ≤ |E|. The cardinality of individuals is
variable, but cannot exceed a given maximum cardinality, n ≤ |E|. Constraint satisfaction is an integral
part of the concept of a genetic operator. Therefore, we assume that the sets Ei are disjoint and that
E = ∪n

i=1Ei is as specified by ABEB, CBEB or GBEB. Figure 5 illustrates the representation of a simple
bundled graph with four bundles E1, E2, E3 and E4. The bundle E1, for example, is composed of the
edges 1, 2 and 3. The routing of the edges and other visual aspects of the bundling are not included in
our current solution representation. These elements are treated automatically by a rendering function
at the last stage of the edge bundling process.

1, 2, 3 4, 5 6, 7, 8 9, 10
E1 E2 E3 E41 2

3

4
5

8

7
6

9

10

Bundled Graph Representation

Figure 5. Individual representation scheme.

6.2. Fitness Function

The quality of each individual is evaluated according to a fitness function. This function is simply
a maximization version of the objective function required to be optimized in either ABEB, CBEB or
GBEB (see Section 4). For instance, the fitness function for ABEB was defined as f = 1/n. For CBEB
and GBEB, the f function was adapted in order to further penalize solutions with bundles having very
low compatibility values, as described in Section 6.7.

6.3. Initialization

In order to explore the search space of points that are distributed as evenly as possible,
two methods for generating the initial population were devised. The first method is a heuristic based
on solutions for the minimum vertex cover problem [29], while the second method creates individuals
randomly using pseudo-random numbers. Each method generates half of the initial population.

In the first strategy, a minimal vertex cover subset A of V (see Algorithm 1) is generated by a
heuristic process. Then, each node v ∈ A is considered as the center of an induced star subgraph in
G. Finally, edge bundling sets are created, each taking edges from a randomly chosen star subgraph.
The edges that are members of a bundle are also chosen at random, but only compatible edges can
be joined together. This approach was found to be effective, usually generating individuals near
the optimal solution (related to the number of bundles) for populations of large size. However,
preliminary experiments showed that a population that was created by using only this method can
lead to premature convergence.

The second strategy produces individuals by randomly choosing adjacent edges to form bundles,
while ensuring feasibility. This approach may result in uninteresting individuals, but it facilitates an
increase in population diversity, helping to alleviate the problem of premature convergence.
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Algorithm 1 The Verter Cover Algorithm

1: procedure VERTER-COVER(G)
2: A← {}
3: V′ ← V(G)

4: Sort V′ by decreased degree
5: while V′ is not empty do
6: Let v be the next node of V′

7: E’← Adjacent edges of v
8: while E’ is not empty do
9: Let (u, v) be an arbitrary edge of E′

10: Remove from E′ every edge incident on either u or v
11: end while
12: A← A ∪ {v}
13: Sort V′ by decreased degree
14: end while
15: return A
16: end procedure

After an individual is generated, both strategies enable the positions of the bundles to be shuffled.
We found that this improves the efficiency of the crossover operator, often creating more interesting
random individuals and preventing premature convergence.

If any individual is found to be duplicated, a removal procedure is run to replace or discard it.
We use the approach of [30] in which any duplicated individual is replaced probabilistically with
a mutated version of the best individual presented in the population. After applying a test, if the
individual is still duplicated, then it is discarded. A checksum (based on the number of bundles, on the
reference of edges present in each bundle and on the fitness value) is used for quickly checking the
solution. The checksum is invariant with regard to the position of the bundles in the representation.

6.4. Selection

The strategy used for randomly selecting individuals for recombination is tournament selection
with replacement. In addition, after recombining two individuals and mutating their two offspring,
the steady state is applied, where the produced offspring compete for survival against the members of
the current population. This is done by inserting the newborn offspring in the current population and
removing the worst two individuals.

The above process is repeated t times, where t is the number of individuals in the population.
Then, the best individual of the last generation is propagated to the new one, if it has a higher fitness.
If this happens, the best individual randomly replaces a solution in the resultant population.

6.5. Crossover Operator

The one-point and two-point classic methods are applied (they are chosen randomly each time) to
produce the recombination of the parental sets of bundles. This is accomplished by swapping the list
of bundles of two parents in order to create a new random set I, representing two new individuals.
First, the crossover points are selected.

In the one-point crossover, the selected point is at the middle part of the smallest parent
(the smallest n value divided by two). The right-hand side of the parents are then swapped
(see Figure 6). In the two-point crossover, the points are also defined by the size of the smallest
individual, dividing this individual into three equally-sized parts. The middle parts are then swapped.
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1, 2 3, 5 6, 7, 8 4, 9, 10
E1 E2 E3 E4

Offspr ing 1

1, 5 3 4, 6, 7, 8 9, 10
E1 E2 E3 E5

Offspr ing 2

2
E4

1, 2 3, 5 4, 6, 7, 8 9, 10
E1 E2 E3 E4

1, 5 3 6, 7, 8 2, 4, 9, 10
E1 E2 E3 E4

Parent 2

Parent 1

Figure 6. A example of the one point crossover operation.

During the crossover process, infeasible offspring (that violate the disjoint-set constraint or do
not cover all edges) may be produced and must be repaired. The repair procedure involves removing
duplicated edges (the last ones that were included) and inserting missing edges (these edges are added
to new solitary bundles). This is illustrated in Figure 6, where edge 2 was removed from bundle E4 in
Offspring-1 and the same edge was inserted in a new bundle in Offspring-2.

6.6. Mutation Operators

The mutation operators specified for EEB are:

• Join mutation randomly selects two solitary bundles and merges them if their edges are adjacent.
• Merge mutation is similar to Join mutation. The difference is that it works with bundles of any

size and only the first bundle is chosen at random. The other merged bundle is the first compatible
one found by a sequential search in the representation of the individual.

• Split mutation replaces a randomly chosen bundle by dividing it into two sub-bundles.
• Move mutation randomly selects a bundle and moves one of its edges to the first compatible

bundle found.
• Remove mutation randomly removes an edge from a bundle of size greater than one and creates

a new solitary bundle with that edge.

The mutation operation to be used is chosen at random at each time. There is also a constant
probability of applying it.

6.7. Penalty Scheme

The EEB approach uses the formulas defined in the Section 5 to calculate the compatibility C
of pairs of edges (for the CBEB and GBEB problems). The total bundle compatibility, denoted by
CEi , is defined as the sum of the compatibilities of all pairs of edges in the bundle. Nevertheless,
this sum might not be realistic as it may hide pairs of edges with low compatibility in a bundle, if other
high-compatibility edges are present.

A threshold-based penalty is proposed to solve this problem. The threshold T controls the penalty
applied to solutions having pairs of edges with low compatibility. The value T is defined as

T = Ta · Ts · Tp · Tv · Td, (5)

where Ta, Ts, Tp, Tv and Td are compatibility threshold constants set as the lowest acceptable values for
Ca, Cs, Cp, Cv and Cd, respectively.
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Assuming that min _Ci is the smallest compatibility C(p, q) among all pairs p and q in Ei, the total
bundle compatibility CEi is now computed or penalized as follows:

CEi =


∑ C(p, q), ∀p, q ∈ Ei, if min _Ci ≥ T,

pe, if min _Ci < T,
0, if |Ei| = 1,

(6)

with pe < 0 a penalization constant. The compatibility of the graph, CG, is defined as before.
The values of the compatibility thresholds and pe are configurable by the user, who can control

the final graph drawing. The possibility of controlling characteristics of the solution is one of the
benefits of formulating edge bundling problems as optimization problems.

6.8. EEB for GBEB Problem

For the GBEB problem, the lack of an adjacency constraint necessitates some adaptations in the
EEB algorithm. In particular, the population initialization process and the operators of mutation have
to be changed. The population initialization now involves three methods, each creating 1/3 of the
initial population.

The first method uses the same algorithm for initialization guided by the minimal vertex cover set,
proposed in Section 6.3. The second method is similar to the random method presented in that section,
but, in this case, the constraints such as adjacency, vertex cover and compatibility do not restrict the
edges to be grouped. The third method is a new approach. It randomly chooses edges to be joined
by considering only the main compatibility measures (edge adjacency is neglected). Five separate
solutions are generated, each satisfying one of the compatibility thresholds: Ta, Ts, Tp, Tv and Td.

The mutation operators described in Section 6.6 are also partially changed to remove the adjacency
constraint. Furthermore, to prevent premature convergence, the version of EEB for GBEB employs an
adapted multi-population model. Two different subpopulations are maintained, having independent
evolution. After each evolutionary cycle, the best individual of each subpopulation is migrated to the
other subpopulation.

7. Experiments

Experiments for testing the EEB approach were conducted with one synthetic graph and nine
real-world graphs. The graphs are: G1—Synthetic (20 nodes, 28 edges) [1]; G2—ZacharyClub (34 nodes,
78 edges) [31]; G3—PlanarGD2015 (66 nodes, 101 edges) [32]; G4—Dolphin (62 nodes, 160 edges) [33];
G5—a connected version of MovieLens (160 nodes, 161 edges) [34]; G6—LesMiserables (77 nodes,
254 edges) [35]; G7—BooksUSPolitics (105 nodes, 401 edges) [36]; G8—Word adjacencies (112 nodes,
425 edges) [36]; G9—Flare Software Class (220 nodes, 709 edges) [3]; and G10—the USAirline
(235 nodes, 1297 edges) from an unknown source.

We performed three sets of experiments, one for each of the ABEB, CBEB and GBEB problems
discussed in Section 4. The initial layout of each graphs used was predefined as an input file.
The experiments consisted of running the evolutionary algorithm for 100 independent trials (20 trials
for GBEB) for each graph and for some angle parameters. For the ABEB, the angle parameter was
progressively fixed as α = 30◦, 45◦, 70◦.

For the CBEB problem, the angle parameter was considered, but the calculation of the threshold
Ta was carried out using the formula Ta = 1− α/180. The value of the scale compatibility was set at
Ts = 0.890. The penalty value was fixed to pe = −1.

For the GBEB problem, the angle parameter was also included and the formula of Holten and
Wijk [5] was used for calculating Ta. The other compatibility values were empirically determined as
Ts = 0.70, Tp = 0.96, Tv = 0.72 and Td = 0.96. Because the choice of small values for the penalty
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constant pe had no effect during the experiments, a dynamic scheme was implemented: each bundle
was penalized individually according to the following dynamic scheme in (7):

pei =

{
∑ C(p, q) · (−3), if ∑ C(p, q) > 0, ∀ p, q ∈ Ei,

−3, if ∑ C(p, q) = 0, ∀ p, q ∈ Ei.
(7)

This is different from the CBEB problem, which determines a fixed value of pe.
Other parameters defined for the three sets of experiments were: the population size u = 150;

the crossover rate pc = 0.98; and the mutation rate pm = 0.4. The evolutionary cycle was repeated until
there was no further improvement in the population for 500 consecutive iterations or the maximum
number of generations (set at 16,500) was achieved. All tests for ABEB and CBEB were executed
on a MacBook Pro (McIntosh Laboratory, Inc., Binghamton, New York, USA) with an Intel Core i7
processor (Intel Corporation, Santa Clara, California, USA) of 2.9 GHz and 8 GB of 1600 MHz-DDR3
RAM, and, due to the long processing time needed to solve an instance, for the GBEB problem, was
used a more powerful computer a DELL M630 server (Dell Technologies, Round Rock, TX, USA) with
128 GB of RAM and two processors with 10 cores each and hyperthreading, resulting in 40 visible
cores of 3–3.6 Ghz.

7.1. Results for the ABEB Problem

The aim of the first experiment was to produce solutions with the minimum number of bundles,
with all edge angles in a bundle never higher than a given α. Table 1 summarizes the results for the
various graphs.

The first three columns consist of general information. The fourth column shows the number of
bundles of the best solution in 100 trials. The number of trials in which a solution with that property
appeared is presented in parentheses. The fifth and the sixth columns present the average values of
the number of bundles of the best solutions, and the average of their fitness, respectively, over the
100 trials. The seventh and the eighth columns are the standard deviation and the standard error of the
fitness values. The last column shows the average of the total runtime.

Upon analyzing the table, it can seen that the average of the number of bundles in the best
solutions was usually the best one found over the independent trials. In addition, the standard
deviations were low, indicating that a majority of the generated solutions are positioned close to the
mean fitness. Figure 7 illustrates the best solution obtained for the graph G5 with angle constraints
α = 30◦ and α = 70◦. A comparison between Figure 7a,b shows the effect of the angle constraint on
the bundling. Higher α angles lead to more edges being joined together. This is very noticeable for the
edges connected to the highlighted nodes (drawn as lighter circles).

(a) (b)

Figure 7. MovieLens (G5) for ABEB with different angle constraints: (a) angle α = 30◦; (b) angle
α = 70◦.
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Table 1. Results for the ABEB problem, averaged over 100 independent runs, u = 150, pc = 0.98 and
pm = 0.4.

Graph Edges α(◦)
Bundles of Avg. Avg. Std. Dev. Std. Error Avg.

Best Solution Bundles Fitness Fitness Fitness Time (s)

G1 28
30 17 (100) 17.00 0.0588 0.00000 0.000000 2
45 16 (100) 16.00 0.0625 0.00000 0.000000 1
70 13 (89) 13.11 0.0763 0.00173 0.000173 1

G2 78
30 45 (1) 49.74 0.0201 0.00073 0.000073 6
45 37 (3) 39.75 0.0252 0.00081 0.000081 6
70 31 (6) 33.30 0.0301 0.00101 0.000101 5

G3 101
30 75 (4) 76.84 0.0130 0.00015 0.000015 9
45 69 (1) 73.01 0.0137 0.00023 0.000023 9
70 60 (4) 62.63 0.0160 0.00028 0.000028 9

G4 160
30 107 (4) 111.08 0.0090 0.00019 0.000019 20
45 92 (6) 96.57 0.0104 0.00026 0.000026 19
70 75 (2) 79.48 0.0126 0.00032 0.000032 18

G5 161
30 65 (2) 69.28 0.0144 0.00028 0.000028 11
45 51 (1) 54.17 0.0185 0.00050 0.000050 11
70 37 (1) 40.84 0.0245 0.00085 0.000085 10

G6 254
30 121 (4) 128.23 0.0078 0.00022 0.000022 156
45 99 (1) 107.13 0.0093 0.00032 0.000032 40
70 82 (4) 88.01 0.0114 0.00039 0.000039 29

G7 401
30 238 (1) 251.82 0.0040 0.00009 0.000009 101
45 207 (1) 217.45 0.0046 0.00010 0.000010 88
70 169 (2) 178.71 0.0056 0.00014 0.000014 66

G8 425
30 217 (1) 230.19 0.0043 0.00010 0.000010 103
45 189 (1) 199.94 0.0050 0.00012 0.000012 85
70 150 (1) 164.54 0.0061 0.00017 0.000017 71

G9 709
30 339 (1) 354.39 0.0028 0.00006 0.000006 198
45 280 (3) 293.35 0.0034 0.00008 0.000008 167
70 235 (2) 247.62 0.0040 0.00009 0.000009 167

G10 1297
30 338 (1) 355.85 0.0028 0.00008 0.000008 524
45 281 (1) 295.32 0.0034 0.00009 0.000009 451
70 221 (1) 236.72 0.0040 0.00012 0.000012 420

In general, when solving the ABEB, the EEB method usually produces good results in terms of
the number of bundles and the α angle constraint. On the other hand, some bundles may have edges
that differ significantly in length. Therefore, as expected, the ABEB usually produces bundles with low
scale compatibility between the edges (see Figure 8).

(a) (b)

Figure 8. Bundles with edges that differ significantly in length: (a) original graph; (b) graph
with bundles.
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7.2. Comparison of EEB and an Exact Approach for the ABEB Problem

We now establish a qualitative point of view of the complexity of the edge bundling problems
discussed in this paper and attempt to show that the EEB algorithm is a promising approach. To do
this, we present (in terms of number of bundles and runtime execution) the best solution (over
100 independent executions) obtained by EEB for the ABEB problem for the graphs Synthetic (1),
ZacharyClub (G2) and PlanarGD2015 (G3). We then compare numerical results with those generated
by an exact method based on an integer programming (IP) model for the ABEB problem, published
in [1]. The exact method was implemented using the Gurobi solver [37] and a more powerful
computer (a DELL M630 server with 128 GB of RAM and two processors with 10 cores each and
hyperthreading—resulting in 40 visible cores of 3–3.6 Ghz). The EEB method was executed on the
simpler computer previously described. More α angles were used this time. The results are reported in
Table 2. The fourth and fifth columns present the number of bundles in the best solutions found by
EEB and by the exact IP method, respectively. A line with a dash means that no solution was produced
by the IP method even after several hours of execution.

Table 2. Comparison of number of bundles generated by EEB with an exact method (IP) for ABEB.

Graph Edges α(◦) EEB IP Time Time
EEB (s) IP (s)

G1 28

30 17 17 2 0.31
45 16 16 1 0.41
70 13 13 1 0.35
90 11 11 1 0.17

110 10 10 1 0.17

G2 78

30 45 45 6 12,070.30
45 37 36 6 1103.77
70 31 29 5 135.931
90 27 25 4 445.188

110 25 25 4 801.322

G3 101

30 75 74 9 125.65
45 69 69 9 656.14
70 60 58 9 1210.29
90 53 50 9 1275.27

110 48 - 9 -

The values in this table show that the IP method was effective in generating the optimal solutions
only for small numerical instances and took an inordinate amount of time to solve some of the larger
instances. For the graph G3 with 101 edges, the IP method failed to find a solution with a maximum
angle of 110◦. In general, the exact method is not practical for medium-sized ABEB and CBEB problems,
as it requires excessive computation time.

Conversely, the EEB approach was usually successful in finding close-to-optimal solutions.
In addition, the execution time of EEB is significantly lower than that of the IP method for the
larger graphs, even when using a less powerful computer.

7.3. Results for the CBEB Problem

The second experiment was conducted in order to improve the earlier results by introducing
the compatibility criteria of the CBEB problem. Table 3 summarizes the experimental results for this
problem. It follows the same structure as Table 1 and includes one new column representing the average
compatibility measure of the best solutions in 100 trials (for the USAirline graph, G10, fewer trials
were conducted, due to the long processing time needed to solve this instance). The stochastic nature
of the EEB algorithm associated with the size of the search space led to solutions significantly different
from each other in terms of fitness. However, the standard error reflects a low sampling fluctuation.



Information 2018, 9, 154 16 of 27

Note that similar results did not occur for the USAirline graph, first because the experiment was
repeated for only 15 independent trials and also because the number of edges significantly increased
the size of the search space. These results highlight how the number of edges can dramatically increase
the set of candidate solutions for the CBEB problem.

Figure 9b shows the best solution produced by EEB for the LesMiserables (G6) graph for the CBEB
problem. Note that, although the number of bundles has increased, the solution for CBEB has bundles
with more similar edges than the solution produced for ABEB (Figure 9a). The figures show that some
of the bundles in the ABEB solution were split and some different bundles are part the CBEB solution.

As the CBEB problem has multiple objectives, best solutions to it are not always those with the
least number of bundles. This is because the final solution depends on the weights in the objective
function and on the compatibility values.

Table 3. Results for the CBEB problem, averaged over 100 independent runs, u = 150, pc = 0.98,
pm = 0.4, w1 = 0.2, w2 = 0.8 and Ts = 0.890 (*G10 was used in 15 trials).

Graph Edges α(◦)
Bundles Avg. Compa- Avg. Avg. Std. Dev. Std. Error Avg.

of Best Solution Tibility Bundles Fitness Fitness Fitness Time (s)

G1 28
30 20 9.48 20.01 1.935 0.026 0.003 2
45 16 13.27 18.17 2.700 0.299 0.030 2
70 16 20.22 16.82 4.093 0.248 0.025 2

G2 78
30 56 22.69 58.49 4.552 0.246 0.025 11
45 48 35.87 50.72 7.190 0.490 0.050 13
70 36 69.97 39.10 14.015 0.861 0.086 15

G3 101
30 81 23.23 83.86 4.655 0.336 0.034 12
45 76 34.94 81.10 6.999 0.808 0.081 13
70 65 84.31 69.05 16.874 0.618 0.062 18

G4 160
30 129 29.49 132.78 5.904 0.407 0.041 31
45 112 50.48 119.24 10.102 0.669 0.067 39
70 89 108.68 94.89 21.744 1.451 0.145 47

G5 161
30 76 136.71 83.90 27.305 2.185 0.219 33
45 60 218.55 69.79 43.721 4.240 0.424 36
70 50 387.42 52.88 77.500 5.803 0.580 35

G6 254
30 174 121.04 180.17 24.212 2.086 0.209 103
45 137 206.14 147.32 41.233 3.009 0.301 111
70 97 426.76 101.97 85.361 4.747 0.475 101

G7 401
30 305 170.56 312.62 34.114 1.687 0.169 300
45 260 266.62 270.62 53.328 2.489 0.249 315
70 209 501.12 213.89 100.227 4.689 0.469 363

G8 425
30 303 148.28 314.20 29.659 1.871 0.187 209
45 267 241.85 274.03 48.373 3.121 0.312 240
70 208 472.18 213.04 94.440 6.095 0.610 273

G9 709
30 452 410.16 464.50 82.034 4.589 0.459 684
45 379 663.31 395.09 132.663 4.627 0.4631 834
70 312 1108.79 318.49 221.761 9.519 0.952 828

G10* 1297
30 530 2152.49 536.33 430.500 15.501 4.002 19,184
45 428 3249.19 437.40 649.840 22.675 5.855 11,110
70 318 5774.74 327.73 1154.950 57.564 14.863 6859

7.4. Results for the GBEB Problem

The results for the GBEB problem are reported in Table 4. The fourth column of the table shows
the number of bundles in the best solution. It can be seen that the number of bundles in solutions
to GBEB is usually lower than in solutions to CBEB. Fewer trials were conducted due to the long
processing time needed to solve this instance, emphasizing the complexity of the GBEB problem.
The best solution was obtained from 20 trials and using a more powerful computer as described above.
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For the BooksUSPolitics (G7) and Flare (G9), the experiments were repeated only for five independent
trials. The results for USAirline graphs (G10) are related to the best solution obtained from one trial.

(a) (b)

Figure 9. LesMiserables (G6) with α = 70◦: (a) ABEB solution with 82 bundles; (b) CBEB solution with
97 bundles.

Table 4. Results for the GBEB problem, averaged over 20 independent runs, u = 150, pc = 0.98,
pm = 0.4, w1 = 0.4, w2 = 0.6, Ts = 0.70, Tp = 0.96, Tv = 0.72 and Td = 0.96 (*G7 and *G9 were used in
5 trials, and G10** was used in 1 trial).

Graph Edges α(◦)
Bundles Avg. Compa- Avg. Avg. Std. Dev. Std. Error Avg.

of Best Solution Tibility Bundles Fitness Fitness Fitness Time (s)

G1 28
30 12 189.54 12.65 75.863 5.595 1.251 30
45 14 45.28 15.20 18.153 0.774 0.173 22
70 16 36.96 16.05 14.821 0.564 0.126 22

G2 78
30 27 445.86 28.85 178.367 20.645 4.616 128
45 38 94.77 39.35 37.923 3.245 0.725 312
70 40 73.44 42.35 29.390 3.319 0.742 153

G3 101
30 48 402.42 49.45 160.981 13.570 3.034 198
45 63 80.59 68.05 32.243 4.185 0.936 194
70 67 56.12 72.95 22.456 4.026 0.900 185

G4 160
30 59 614.27 66.60 245.719 31.456 7.034 584
45 89 122.76 96.10 49.111 8.323 1.861 686
70 101 83.82 107.45 33.535 5.270 1.178 645

G5 161
30 46 1641.42 50.75 656.579 70.408 15.744 526
45 62 378.49 67.65 151.405 17.442 3.900 511
70 70 276.21 73.65 110.494 11.425 2.555 509

G6 254
30 88 1482.56 92.75 593.030 83.764 18.730 1670
45 126 314.21 129.10 125.687 15.674 3.505 1899
70 140 222.38 145.55 88.956 13.924 1.501 2154

G7* 401
30 160 2303.84 164.40 921.541 24.908 8.303 3351
45 242 413.07 250.00 165.232 12.064 4.021 4374
70 267 258.51 294.00 103.401 27.584 9.195 3955

G8 425
30 133 2527.92 137.15 1011.172 75.617 16.910 3032
45 199 502.24 208.95 200.900 9.550 2.135 3991
70 216 379.37 230.20 151.750 7.549 1.689 4215

G9* 709
30 294 2919.86 297.00 1167.947 52.315 23.396 6381
45 429 594.10 435.20 237.641 9.467 4.234 7565
70 461 446.09 473.40 178.438 10.286 4.600 8501

G10** 1297
30 404 12,801.08 404.00 5129.434 - - 9489
45 619 2359.84 619.00 943.937 - - 12,503
70 723 1481.55 723.00 592.623 - - 13,558
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The high standard deviation for the average of the fitness shows that the data are widely spread,
especially for the smaller angles, with 20 independent trials performed.

The average of the runtime (reported in the last column) is much higher when compared to the
other problems investigated in this paper. In particular, the results appear to imply that the removal of
the adjacency constraint increases the difficulty of the problem.

The drawing of the best generated solution is consistent with the predetermined thresholds.
Figures 10 and 11 display the solutions for the PlanarGD2015 and Word Adjacencies graphs,
respectively. Note that the solutions have bundles with both adjacent and non-adjacent edges.
Varying the maximum angle caused the sets of bundles and the overall structure of the drawing
to be significantly different. In addition, the level of ambiguity has increased. For example, it is difficult
to individually track the edges joined in the bundles.

7.5. Comparison of the Results for the Proposed Problems

Figures 12 and 13 compare the results of the three experiments. Figure 12 illustrates the average
number of bundles in the best solution for each problem and given angle constraint parameter.
In general, the solutions to the CBEB problem have less bundles than ABEB and the number of bundles
in the solutions to GBEB problem is lower for the smaller graphs, with some exceptions when the
angles α = 45◦ and α = 70◦.

(a) original graph (b) α = 30◦

(c) α = 45◦ (d) α = 70◦

Figure 10. Effects of the angle in the Planar graph (G3) for the GBEB problem.
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(a) original graph (b) α = 30◦

(c) α = 45◦ (d) α = 70◦

Figure 11. Effects of the angle in the Word Adjacencies (G8) for the GBEB problem.
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Figure 12. Comparison of average of number of bundles of the best solution for each problem and
angle parameter.
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Figure 13. Comparison of average of convergence generation for each problem and angle parameter.
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Figure 13 shows the average convergence, in terms of number of iterations. The ABEB problem
was solved most quickly, with the GBEB problem requiring significantly more time for the ten
graphs tested. As already mentioned, this behavior is a reflection of both the evolutionary method
implemented (which differs from the earlier methods by using multiple populations) and the relative
complexities of the problems.

Figure 14 depicts the solutions that were found for the graph BookUSPolitics with α = 30◦ by
implementing the EEB approach with the overall objective of minimizing the number of bundles.
Note that the solutions to the three problems ABEB, CBEB and GBEB are quite different from each
other. This is no surprise as ABEB prioritizes the angle constraint, CBEB optimizes compatibility
measures and GBEB allows bundles with non-adjacent edges.

It is possible to introduce other objectives to the edge bundling optimization problems such as:
minimizing the amount of clutter (or maximizing the white area), minimizing the number of edge
crossings, minimizing the number of bundles with a single edge, etc. The purpose of this is to produce
solutions according to what the user desires. However, it would be necessary to use a multi-objective
optimization approach in order to optimize multiple objectives simultaneously.

(a) solution for ABEB problem
with 238 bundles

(b) solution for CBEB problem
with 305 bundles

(c) solution for GBEB problem with 160 bundles

Figure 14. Comparison of solutions of BookUSPolitics graph (G7) and α = 30◦ for each problem.

Another interesting observation relates to the importance of defining an effective routing method
for edge bundling. Even though the solution to the GBEB problem drawn in (Figure 14c) has a relatively
low number of bundles, the drawing is more cluttered than the drawings of the other solutions. In the
present paper, the EEB approach does not focus on, or attempt to optimize, the trajectory (routing) of
the edges directly. Instead, the final edge bundling drawing is generated by a standard post-processing
procedure that draws each bundle individually. As a consequence, larger bundles that intersect with
several other bundles may make the drawing confusing. Possible ways of addressing this issue include:
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using a better rendering function that considers the interaction between bundles and routes them
rationally, increasing the weight of the compatibility criteria in the objective function in order to avoid
long edges, or including edge crossing as a additional objective to be minimized in the edge bundling
optimization problem.

7.6. Effects of Parameters at the Final Solution

Various parameters can be set up in the EEB approach. We believe that one of the benefits of
investigating edge bundling as an optimization problem is the possibility that users may be able
configure the parameters they consider important in order to find the “best solution” according to their
needs. Later in the present section, we provide an analysis of the effect of the existence of multiple
parameters in the final bundling solution.

In general, in multi-objective problems, there is no single solution that is globally optimal,
since there are multiple, possibly conflicting objectives [38]. This is the case with the CBEB and GBEB
problems. Minimizing the number of bundles may mean worsening the compatibility value between
the edges in a bundle. This is the kind of scenario that requires the intervention of a decision maker,
through a precise definition of the search criteria. We attempted to address this issue by transforming
the CBEB and GBEB problems into single-objective problems via weighted, linear functions whose
weights reflect user preferences.

The weights w1 and w2 of the components of the objective function (see Equation (2)), for the
CBEB and GBEB, were chosen empirically. Changes to these weights may affect the quality of solutions
obtained, in terms of number of bundles and level of compatibility. Figure 15 shows various solutions
to the CBEB problem for the graph LesMiserables, generated by varying the weight coefficients.
The rectangles mark areas that have a different set of bundles. Various weights were tried and it was
found that w1 = 0.2 and w2 = 0.8 achieved the best visual results for CBEB and w1 = 0.4 and w2 = 0.6
for GBEB.

Another aspect that helps guide the search towards an optimal solution is the definition of
thresholds for the compatibility measures, including α and part of the threshold Tα. From the results
shown in Tables 1, 3 and 4, it can be seen that varying the angle parameter generated completely
different numerical results and different drawings (see Figure 7). This shows that it is possible, via
parametrization of the compatibility values, to give users the power to decide which type of drawing
they want. For example, Figure 16c–e shows three different configurations for the graph USAirlines
(G1) for the GBEB problem with different α parameters. Note that the visual solutions produced are not
far from the one created by the MINGLE approach [18] (Figure 16b). However, varying the parameter
generates different structural aspects of the graph drawing. We did not formalize detailed experiments
involving the other thresholds, but preliminary tests with them demonstrated the possibility of
controlling other aspects of the results by exploring those thresholds. The parameters described in the
Section 7 were defined empirically and based on the personal perception of the authors.

Finally, the parameters of the evolutionary method are characteristics of the optimization
approach and may be useful in determining both the speed of convergence and population diversity.
The parameters of an evolutionary algorithm are the control inputs that enable the search to be as
comprehensive and as fast as possible [28,39]. For the EEB approach, the values were chosen during
an extensive preliminary testing process. We believe that adapting the values to the type of graph
could have produced better results for the larger graphs. However, we have chosen to be as pragmatic
as possible, keeping the set of parameters constant in all tests, so as to ensure that the results can be
meaningfully compared.

As expected, the results of the experiments indicate that different parameterization produces
distinct solutions. In order to illustrate the importance of parameterization in edge bundling approaches
Policis et al. [40] investigated a search for "optimal" parameters for edge bundling algorithms.
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(a) original graph

(b) w1 = 0.2, w2 = 0.8, bundles = 97
and compatibility = 479.29

(c) w1 = 0.8, w2 = 0.2, bundles = 93
and compatibility = 501.90

(d) w1 = 0.4, w2 = 0.6, bundles = 96
and compatibility = 486.70

(e) w1 = 0.6, w2 = 0.4, bundles = 95
and compatibility = 504.63

Figure 15. Effects of weight in the LesMiserables graph (G6), CBEB problem and α = 70◦.
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(a) original graph

(b) solution generated by MINGLE [18] (c) solution generated by EEB, with α = 30◦

(d) solution generated by EEB, with α = 45◦ (e) solution generated by EEB, with α = 70◦

Figure 16. Comparison of solutions for USAirline graph (G10), GBEB problem.

8. Visualization

Most existing edge bundling methods draw edges individually and then route them. In contrast,
the EEB approach only outputs sets of edges representing bundles. Those groups of edges form star
subgraphs. After the execution of the evolutionary algorithm, the subgraphs of the best-found solution
can then be submitted to a rendering module to produce an edge bundling drawing.

In order to allow an adequate visual interpretation of the EEB results (especially the
comprehension of the relational patterns between the nodes), two visualizations are now proposed.
The first one shows bundled edges as a colored cubic Bézier curve, going from red to green by default
(see Figures 7 and 9). The red color represents the source (the central node of the bundles) and the
destination is colored green. Single edges that constitute a bundle by themselves are drawn as straight
lines and colored light gray. Nodes that correspond to a vertex cover set of the graph are colored red
and the others are colored black. Other combinations of colors could be used as we can see in the
figures throughout this paper.

The rendering/routing method of the visualization is a specialized implementation of the
force-directed edge bundling (FDEB) approach of Holten and Wijk [5] that receives the bundles
as input and draws them individually. The version of the FDEB was implemented as defined by
the authors. The EEB approach creates a list of bundles and passes it to the rendering function,
which draws each subgraph induced by set of bundled edges individually. For example, if the final
solution has 10 bundles, the FDEB will be run 10 times. The level of ambiguity may vary in the final
drawing, depending on the parameterization made for the FDEB (number of iterations, etc). This is
only a visual aspect, independent of the choice of bundles.
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The force-based algorithm attempts to ensure that the individual axial symmetry of each bundle
looks plausible. However, overall graph symmetry is sampled poorly for some graphs because the
algorithm does not identify the route of the bundles to maximize symmetry (see Figures 7 and 9).
This visualization is identified as the “primary view”. It allows the user to identify connections
between nodes and to trace individual edges.

Even though the just mentioned visualization process will reveal relational patterns at the node
level, for graphs with a high level of clutter, edge crossings can still impede their legibility. To reduce
the number of edge crossings and highlight the relational patterns, we followed the strategy of [2,41]
that uses the idea of partial edge drawings. Thus, the drawing of a curve is divided into three parts,
and the middle part is drawn using a partial transparency. Figure 17d illustrates this visualization.
In addition, the parts of an edge incident with its endpoints can be colored using different colors.
Various aspects (such as colors, transparency level and highlight options) can be chosen by the user.
Such choices promote smooth visualization by enabling the tracking of individual edges. This is similar
to the layout process used by the “sideknot” approach [2] (see Figure 17c).

(a) Divided Edge Bundling [6] (b) Stub Bundling [9]

(c) SideKnot [9] (d) EEB with partial edges, α = 70◦.

Figure 17. Comparison of solutions for USAirlines (G10).

9. Discussion

As was mentioned earlier, there is a significant difference between most classical edge bundling
methods and the approach proposed here. The earlier methods attempt to create drawings with
reduced clutter. Some of these methods focus on minimizing a particular aspect of the drawing that
can be mathematically formalized, for example, reducing ink used or the number edges that cross.
However, they do not search for an optimal solution, but instead, merely employ heuristic methods to
produce solutions [42]. On the other hand, our approach involves an optimization algorithm with the
purpose of finding high-quality solutions for a formal and precise problem definition. Thus, comparing
the EEB approach with previous methods in an informative manner is not straightforward, since the
other approaches are not based on an explicit and well-defined edge-bundling optimization problem.

In addition, as can be observed in Figure 17a, methods based on force (such as
divided edge bundling [6]) produce layouts that are significantly different from the ones created by
EEB because they do not focus on showing the connection trends of a node. It is hard to establish
which nodes are connected to each other in those layouts. Some exceptions are the stub bundling [9] and
the sideknot [2] approaches (Figure 17b,c), which are more similar to EEB. They join only adjacent edges
with the aim of indicating directions at the endpoints of the edges, highlighting node-level connections
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and tracing individual edges. Those methods, however, are not designed for an optimization-based
problem as there is no formal mathematical definition of what is being investigated.

Furthermore, if we attempt to formally define the implicit problem studied by those techniques,
then differences with the proposed approach are found. For example, the stub bundling approach
attempts to find sets only containing adjacent edges with respect to the following constraints: “the angle
between any two half-edges in a bundle must be at most α, and the angle between two consecutive
edges in a bundle has to be at most γ” [9]. This is similar to the ABEB problem except that the edges
are half-edges, i.e., they can be shared by two bundles and there is no clear attempt to minimize the
number of edge bundles.

A quantitative comparison of the efficacy of earlier methods in terms of the number of bundles is
not possible, since the traditional approaches usually do not provide that information. A visual
comparison of Figure 17b–d reveals the efficiency of the EEB approach for the CBEB problem,
with threshold α = 70◦. The algorithm generated 241 bundles with more than one edge and 77
single-bundled edges. It is clear that the group of bundles is markedly different from the solutions
generated by the stub bundling and sideknot methods since, in our approach, they are formed with
respect to model constraints. Overall, the experimental results suggest that the main disadvantage of
the EEB framework is its long running time for large graphs. As with most population-based search
algorithms, the running time for EEB is influenced by the population size, the number of generations,
the size of the graph and other parameters. The evolutionary parameters were adjusted to attempt to
find a near-optimal solution, which greatly increased the running time.

Possible runtime reduction strategies that might be implemented in the future include: performing
recombination without the repair procedure (which would imply changing the representation of the
individual solutions), using only the genetic operator of mutation, or updating the fitness function
only for what has been changed in the individual solutions.

10. Conclusions

This paper describes a new approach to edge bundling via an approximate evolutionary algorithm
(EBB). We examined maximum angle-based edge bundling that restricts angles between adjacent edges,
compatibility-based edge bundling that group edges with compatible directions and lengths and
general edge bundling that joined adjacent and non-adjacent edges in the same bundle. A previously
defined combinatorial optimization problem (ABEB) and two new problems (CBEB and GBEB) were
discussed and solved using the evolutionary algorithm. As far as we know, this is the first proposal
of an evolutionary algorithm for edge bundling modeled as a combinatorial optimization problem.
The algorithm was tested on a number of graphs and found to be efficient at finding near-optimal
solutions when the goal is mainly to create bundled graphs with the minimum number of bundles
and with only adjacent edges being joined. Furthermore, this appears to be a promising approach
to the challenge of grouping non-adjacent edges. Many other edge bundling problems, based on
extensions of the present work, can be devised and studied using EEB. Future research could focus on:
extending the fitness function to include new compatibility and aesthetic criteria; investigating a new
rendering function that improves the routing of the edges belonging to a bundle; and conducting some
user-controlled studies in order to check whether the solutions for the proposed optimization-based
edge-bundling problems are visually appealing or effective for users.
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