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Abstract: Social tag information has been used by recommender systems to handle the problem
of data sparsity. Recently, the relationships between users/items and tags are considered by most
tag-induced recommendation methods. However, sparse tag information is challenging to most
existing methods. In this paper, we propose an Extended-Tag-Induced Matrix Factorization technique
for recommender systems, which exploits correlations among tags derived by co-occurrence of tags to
improve the performance of recommender systems, even in the case of sparse tag information.
The proposed method integrates coupled similarity between tags, which is calculated by the
co-occurrences of tags in the same items, to extend each item’s tags. Finally, item similarity based on
extended tags is utilized as an item relationship regularization term to constrain the process of matrix
factorization. MovieLens dataset and Book-Crossing dataset are adopted to evaluate the performance
of the proposed algorithm. The results of experiments show that the proposed method can alleviate
the impact of tag sparsity and improve the performance of recommender systems.
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1. Introduction

Collaborative filtering is one of the most popular recommendation techniques. It is divided
into two categories: memory-based collaborative filtering and model-based collaborative filtering.
Memory-based collaborative filtering [1–4], known as neighbor-based methods, using some similarity
measures, discovers neighbors of active users and neighbors of target items. Once the neighbors are
found, the ratings of neighbors are usually used to predict the rating of target item by memory-based
algorithms. Model-based filtering makes use of user-item rating matrix to learn a predictive model
by statistical and machine learning methods firstly, thereafter the model predicts the rating of the
target item. Recently, matrix factorization, which discovers latent preferences of users and items
and deals with very large user-item rating matrix effectively, has developed as a very popular
recommendation algorithm.

In the last years, developed recommendation systems use of different sources of information,
including social information, social behaviors of users, information of items, etc., to provide
recommendations of items to users [5]. For example, the contextual description was combined
with usage patterns to predict behaviors of users and provide effective recommendation services [6].
The detailed categories of extra information integrated by hybrid recommendation methods are listed
in Table 1.
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Table 1. The categories of extra information.

Categories Detailed Description

Social information the “credibility” of users [7], social relationships of users discovered by
social networks [8]

Social behaviors of users Users’ browsing behaviors [9], users’ point of interest [10]

Opinions of users Comments given by users [11,12]

Information of items Items’ reputations, semantic contents [6] and items’ attributes [5,13]

Tag information Tags annotated by users and tags provided by systems [14]

Beside the basic descriptions of users and items, tag information, which has been incorporated
into hybrid CBF/CF algorithms by being used to calculate user-based and item-based similarity
measures [14], is a kind of useful semantic information for recommendation systems.

Nowadays, collaborative tagging system, which improves the interaction between users and
systems, has been applied in several recommender systems. In collaborative tagging system, users
are allowed to annotate sources with some specific tags in terms of their comprehensions. To some
extent, characteristics of sources can be reflected by tags as users utilize tags to annotate the features
and categories of sources. Therefore, more accurate classification of sources can be achieved through
analyzing tag information. Meanwhile, personalized preferences of users can be explored by analyzing
tag information, because the diversity among annotating tags represents the different personalized
information among users. Hence, tag information, as a kind of vital data, brings new challenges and
opportunities to recommender systems.

At present, many studies [15] focus on utilizing tags to improve recommendation algorithms
and provide more personalized recommendations. To relieve the influence of rating data sparsity, tag
information has been introduced to reinforce the relationship of users and items. Peng et al. [16]
proposed the method of probabilistic model by considering each tag as a specific topic and
measuring the probability of a tag used by a user to annotate an item. Blaze et al. [17] proposed
a tensor factorization exploiting the content of items and users’ tag assignments through a relevance
feedback mechanism for identifying the optimal number of conceptually similar items. Tag-aware
method [18] regarded tagging information as a data source for extending user-item rating vectors.
TagiCoFi proposed by Yi Zhen et al. [19] exploits tagging information to regularize the matrix
factorization procedure of probabilistic matrix factorization. Huang et al. [20] proposed a content-based
collaborative filtering using tagging information to alleviate cold start problem and sparsity problem
in the collaborative filtering recommendation algorithms. To provide an enhanced recommendation
quality derived from user-created tags, Kim et al. [21] proposed a collaborative filtering method which
uses collaborative tags as an approach to grasp and filter users’ preferences for items. Nguyen et al. [22]
studied different content-boosted matrix factorization techniques which integrate content information
into the matrix factorization collaborative filtering methods. They also found that these approaches
not only improve recommendation accuracy, but also provide useful insights about the contents,
as well as make the recommendation more easily interpretable. Huang et al. [23] constructed
a personalized user interest by incorporating frequency, recency and tag-based information and
performed collaborative recommendations using user’s social network in social resource sharing
websites. Rawashdeh et al. [24] showed a novel personalized search algorithm building two models
of which one is user-tag relation model that reflects how a certain user assign tags which are similar
to a given tag, the other one is tag-item relation model that captures how a certain tag is annotated
to items which are similar to a given item. Kim et al. [25] proposed a recommender system based on
graph model providing recommendations to a group of users instead of a single user, and this system
not only considers positive feedbacks from users but also negative feedbacks from users. Three-factor
factorization model is used to learn user preference vectors based on the tags annotated by users and
item feature vectors based on the keywords corresponding to items [26]. The co-occurrences between
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tags annotated by users and keywords corresponding to items are utilized to create the relationships
of tags and keywords, which requires all user have tags and all items have keywords.

Most existing methods compute similarities of users and similarities of items based on match of
tags, while few methods consider the tag sparsity problem. Tag sparsity is one of the difficult problems
in collaborative recommendation algorithms based on tags. There are two causes of tag sparsity, one is
user rarely annotate tags to items or merely annotate very few tags to items, and the other is some
tags are different but similar in semantic due to different comprehensions of users. Because of the
significant impact and applying value of tags to recommendation techniques, resolving the tag sparsity
problem is a crucial task to improve recommendation techniques. As shown in Figure 1, User1 gives a
rating to Item1 and annotate Item1 with “psychology” and “clever”; User2 gives a rating to Item2 and
annotate Item2 with “clever” and “genius”; Item3 is merely annotated with “genius” by User1 and
without any rating. At that time, it is difficult to obtain the similarities of these three items based on
ratings and match of tags.
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Figure 1. The example of the recommendation with the association of tags.

Fang et al. [27] considered correlations among tags to construct a tag co-occurrence matrix transfer
model to regularize the procedure of learning user latent factors and item latent factors. However,
the similarities of items based on similar tags is not considered, which is not accurate to capture the
item latent factors. Therefore, to alleviate the deviation of similarities of items based on sparse tags,
an Extended-Tag-Induced Matrix Factorization (ETIMF) method, which extends tags of items and
exploits extended tags to generate similarities of items, is proposed in this paper. Considering the latent
feature factors between coupling items similar when their corresponding extended tags are similar,
the proposed method uses extended tags to constrain the process of matrix factorization via an item
relationship regularization term. The recommender system using the proposed method contain two
processing modules, namely tags processing module and recommendation module. Tags processing
module carries out the inputting tags and extends them. Once recommendation module receives the
extended tags, it uses them to control the process of rating matrix factorization. After that, it predicts
and ranks the ratings of the target user. Finally, the Top N items would recommend to the target user.
The overview of the recommender system is shown in Figure 2. The results of experiments show
that the proposed method can alleviate the impact of tag sparsity and improve the performance of
recommender systems.
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2. Materials and Methods

2.1. Primary Definition

In a typical scenario, a recommender system contains a set of M user U = {u1, u2, · · · , um} and a
set of N items I = {v1, v2, · · · , vn}. The user preference of items is usually represented by a user-item
rating matrix R ∈ Rm×n. Each entry Ru,v denotes the rating given by user u on item v. In general, Ru,v

is an integer and falls into [1, 5], where Ru,v = 0 represents user u has not yet given rating to item i.
Higher values of Ru,v means user u has a better satisfaction on item v.

The tags of an item are denoted by a set of tags TI = {t1, t2, · · · , tk} and the sizes of the sets on
various items can be different. Table 2 shows the tags of some items.

Table 2. The tags of some items.

Items Tags

I1 {history, space, genius, psychology}
I2 {revenge, violent, visual, psychology}
I3 {teen, adventure, dancing, fantasy}
I4 {romance, touching, fantasy}
I5 { robots, sci-fi, quirky, genius}

2.2. Matrix Factorization

Matrix factorization is widely used and applied to research due to its high efficiency in resolving
large-scale user-item rating matrices. Based on the assumption that latent preferences of users and
latent characteristics of items can be represented by a certain number of factors, matrix factorization
algorithm decomposes user-item rating matrix into two low rank latent feature matrices, namely
P ∈ Rk×m and Q ∈ Rk×n, where k� min(m, n), and then uses P and Q to rebuild a predictive rating
matrix R∗ ∈ Rm×n. As a result,

R∗ = PTQ =


pT

1
pT

2
· · ·
PT

m

[q1, q2, · · · , qn] (1)

where the column vectors pu and qv represents the K-dimensional user latent feature vector
corresponding to user u and K-dimensional item latent feature vector corresponding to item v
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respectively. Once getting the low rank vectors, we can use the inner product of pu and qv to estimate
the rating given by user u to item v, which is Ru,v

∗ = pT
u qv.

The user latent feature matrix and the item latent feature matrix are learning by minimizing the
following loss function,

` = ∑
(u,v)∈Ω

(Ru,v − pT
u qv)

2
+ λ1

∣∣∣∣∣∣P∣∣∣|2F + λ2

∣∣∣∣∣∣Q∣∣∣|2F (2)

where λ1 and λ2 denotes regularization parameters [28], which is used to prevent overfitting.
∣∣∣∣·∣∣|2F is

Frobenius norm [29], and Ω indicates the set of the (u, v) tuples for known ratings.
Generally, the stochastic gradient descent algorithm (SGD) [30] is applied to seek a local minimum

of loss function given by Equation (2). The matrix factorization is a widely applied collaborative
filtering method, thus the matrix factorization algorithm is regard as baseline approach. However, data
sparsity and cold start problem are main challenges of matrix factorization recommendation algorithm.

2.3. Extended-Tag-Induced Matrix Factorization

Extended-Tag-Induced Matrix Factorization method (ETIMF) aiming at recommending items
has three stages. Firstly, tag-tag co-occurence matrix is created by analyzing co-occurrences of tags in
the same items. Secondly, extended tag vectors of each coupled items are rebuilt according to tag-tag
co-ocurrence matrix and item similarity is estimated by the extended tag vectors. Finally, the item
similarity obtained by the second stage is used as a regularization term to constrain the process of
matrix factorization.

2.3.1. Tag-Tag Co-Occurrence Matrix

Tags of an item assigned by different users might be different due to the various comprehensions
of users. Thus, the similarities of users and the similarities of items only measured by match of users’
tags and items’ tags are inaccurate. Each two tags’ frequencies of co-occurrence in items can be used to
evaluate similarity of the two tags. Therefore, tag-tag co-occurrence matrix is created to extend tags.
Cosine similarity is used to evaluate co-occurrence distribution of each two tags as follow:

p(t, z) =
∑i∈N(t)∩N(z) nt,i·nz,i√
∑i∈N(t) n2

t,i·∑i∈N(z) n2
z,i

(3)

where nt,i indicates the number of tag t annotated to item i and nz,i indicates the number of tag z
annotated to item i. N(t) is the set of items annotated as tag t and N(z) is the set of items annotated
as tag z. N(t) ∩ N(z) is the set of items annotated as tag t and tag z. p(t, z) falls into [0,1] and p(t, z)
closer to 1 represents tag t and tag z are more similar. The co-occurrence distribution of tag “sci-fi”
and other tags is evaluated by Equation (3) and tags co-occurring with “sci-fi” whose co-occurrecne
probability ranking top 10 are listed in Table 3. These 10 tags are relevant to “sci-fi” in semantic.

Definition 1: Tag-tag co-occurrence matrix T ∈ Rk×k:

T =


p(t1, t1) p(t1, t2) · · · p(t1, tk)

p(t2t1) p(t2, t2) · · · p(t2, tk)

· · · · · · · · · · · ·
p(tk, t1) p(tk, t2) · · · p(tk, tk)

 (4)

where each entry of above matrix Tij = p(ti, tj) represents the similarity of tag ti and tag tj. In terms of
tag-tag co-occurrence matrix, the relationships of all tags can be obtained.
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Table 3. TOP-10 tags co-occurring with “Sci-fi”.

Rank Tags Co-Occurrence Probability

1 space 0.5917
2 space opera 0.5262
3 aliens 0.5136
4 special effects 0.5116
5 action 0.4965
6 future 0.4914
7 spaceships 0.4855
8 science fiction 0.4822
9 futuristic 0.4766
10 far future 0.4577

2.3.2. Tag Vectors of Item to Item

Before evaluating item similarities based on tags, tags of each two items are mapped to the shared

tag space of these two items. We define vector ni,j = [n(1)
i,j , . . . , n

(N(Ti)+N(Tj)−N(Ti∩j))

i,j ] as tag vector of

item i corresponding to item j and vector nj,i = [n(1)
j,i , . . . , n

(N(Ti)+N(Tj)−N(Ti∩j))

j,i ] as tag vector of item
j corresponding to item i. Here, N(Ti) and N(Tj) are the number of tags of item i and the number
of tags of item j respectively, and N(Ti∩j) is the number of total tags annotated to item i and item j.

The entry n(k)
i,j is the frequency of tag k annotated to item i and n(k)

i,j = 0 if tag k has been annotated to

item j but not been annotated to item i. Similarly, the entry n(k)
j,i is the frequency of tag k annotated to

item j and n(k)
j,i = 0 if tag k has been annotated to item i but not been annotated to item j.

2.3.3. Extended Tag Vectors of Item to Item

The item similarities are inaccurate based on above tag vectors of item to item due to the diversity
of tags. Tag-tag co-occurrence matrix is used to extend tags and reconstruct extended tag vectors of
item to item. For the tag z, which has been annotated to item j but has not item i, we estimate the
possible frequency of tag z annotated to item i according to co-occurrence distributions between tag z
and all tags annotated to item i. We estimate the possible frequency as follow:

nz∗
i,j =

∑
t∈Ti

(nt
i ∗ p(t, z))

Nt∈Ti

(5)

where Ti denotes the set of tags annotated to item i and nt
i denotes the frequency of tag t annotated to

item i. p(t, z) is the co-occurrence probability between tag t and tag z, namely the entry (t, z) of tag-tag
co-occurrence matrix. Nt∈Ti indicates the number of total tags annotated to item i.

2.3.4. Similarities of Items Based on Extended Tags

After recreating extended tag vectors of item to item, cosine similarity is used to evaluate the
similarity of each two items as follow:

Sim(vi, vj) =
∑k∈T∗i,j

nik·njk√
∑k∈T∗i

n2
ik·
√

∑k∈T∗j
n2

jk

(6)

where T∗i,j indicates the set of tags shared by item i and item j after extending tags. T∗i and T∗j indicate
the set of tags annotated to item i and the set of tags annotated to item j, respectively. sim(i, j) belongs
to [0, 1], and item i is more similar to item j if the value of sim(i, j) is closer to 1.
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Definition 2: item-item similarity matrix based on tags S ∈ RN×N :

S =


sim(v1, v1) sim(v1, v2) · · · sim(v1, vn)

sim(v2, v1) sim(v2, v2) · · · sim(v2, vn)

· · · · · · · · · · · ·
sim(vn, v1) sim(vn, v2) · · · sim(vn, vn)

 (7)

where the entry Sij = sim(vi, vj) of this matrix indicates the similarity of item i and item j.

2.3.5. The Process of Matrix Factorization

The main idea of the proposed algorithm is to utilize similarities of items based on extended tags
to regularize the process of matrix factorization, and consequently deal with tag sparsity problem
and cold start item problem. The similarities of items based on extended tags are converted to an
item relationship term. We suppose that two item latent feature vectors qi and qj are similar if these
two items have similar tags according to extended tags.

To make two item latent vectors qi and qj as similar as possible if they are annotated as similar
tags according to extended tags, an item relationship regularization term based on extended tags is
added into matrix factorization to constrain the baseline matrix factorization (MF).

Definition 3: The item relationship regularization term:

β

2

N

∑
i=1

N

∑
j=1

Si,j

∣∣∣∣∣∣qi − qj

∣∣∣|2F (8)

where β indicates a regularization parameter to control the influence of similarities of items based
on extended tags. Si,j indicates the similarity between item i and item j based on extended tags.
Higher values of Si,j illustrate the distance between two item latent feature vectors is relatively shorter
and vice versa. Therefore, the item regularization term makes two latent feature vectors closer if these
two items have more similar tags.

Then, we convert the item relationship regularization term as follow:

β
2

N
∑

i=1

N
∑

j=1
Si,j
∣∣∣∣qi − qj

∣∣|2F
= β

2

N
∑

i=1

N
∑

j=1
[Si,j

K
∑

k=1
(qki − qkj)

2]

= β
2

K
∑

k=1
Qk∗LQT

k∗

= β
2 tr(QLQT)

(9)

where Q = [q1, q2, . . . , qn] is item latent feature matrix which is consist of n item latent feature vectors.
The dimensions of each item latent feature vector are K, thus qki is the value of latent feature vector
of item i in the kth demension. Similarly qkj is the value of latent feature vector of item j in the kth
dimension. L = D− S represents the Laplacian matrix [30] and D is a diagonal matrix with diagonal
elements Dii = ∑j Sij. tr(·) is the function to calculate the trace of inputting matrix.

After adding item relationship regularization term into loss (Equation (2)), the proposed
extended-tag-induced matrix factorization method can be formulated as follow:

`1 = min
P,Q

1
2 ∑

(u,i)∈Ω
(Ru,i − pT

u qi)
2
+

λ1

2
||P||2F +

λ2

2
||Q||2F +

β

2

N

∑
i=1

N

∑
j=1

Si,j

∣∣∣∣∣∣qi − qj

∣∣∣|2F (10)
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where λ1 and λ2 is the regularization parameter which controls complexity and prevents
overfitting [18]. Combining Equations (9) and (10), the loss function is converted to

`2 = min
P,Q

1
2
||W ◦ (R− PTQ)||2F +

λ1

2
||P||2F +

λ2

2
||Q||2F +

β

2
tr(QLQT) (11)

where ◦ is the Hadamard product, W is the indicator matrix and Wu,i = 1 indicates user u has given a
rating to item i.

Through gradient descent algorithm [31], the local minimum of loss function can be obtained.
In each iteration, the gradients of P and Q are shown by Equations (12) and (13), respectively.

∂`2

∂P
= −Q(W ◦W ◦ R)T + Q(W ◦W ◦ (PTQ))

T
+ λ1P (12)

∂`2

∂Q
= −P(W ◦W ◦ R) + P(W ◦W ◦ (PTQ)) + λ2Q + βQL (13)

To summarize, the proposed extended-tag-induced matrix factorization algorithm is described in
Algorithm 1.

Algorithm 1. The Framework of Proposed Recommendation Algorithm ETIMF

Input: User-item rating matrix R ∈ Rm×n, the set of tags TI = {t1, t2, · · · , tk}, the dimension of latent feature
vector K, the number of iteration W, the step size of gradient descent η, parameters λ1, λ2 and β.
Output: The user latent feature matrix P and the item latent feature matrix Q.

1: Compute tag-tag similarity matrix by using Equation (3)
2: Create tag vectors of item to item
3: Recreate extended tag vectors of item to item
4: Using Equation (6) compute similarities of items according to extended tag vectors of item to item
5: Initialize P ∈ Rk×m and Q ∈ Rk×n randomly
6: for w = 1 to W do
7: for k = 1 to K do
8: Pw

∗k ← Pw−1
∗k − η ∂`2

∂Pw−1
∗k

9: Qw
k∗ ← Qw−1

k∗ − η ∂`2
∂Qw−1

k∗
10: end for
11: end for

3. Results

MovieLens and Book-Crossing datasets were utilized to perform several groups of experiments.
The first group consisted of comparing experiments for evaluating the performance of the proposed
method. The second group analyzed the influences of regularization parameter β and the dimension of
latent feature vector K. The third group was performed to discuss efficiency performances of different
methods. The proposed method in the case of sparse tags was evaluated by the fourth group. The last
group was designed to verify whether the proposed method can alleviate the cold start item problem.

3.1. Dataset

Several datasets have been adopted to evaluate the performance of recommendation algorithms.
MovieLens 20M dataset [32] and Book-Crossing datasets [33] were applied to perform the experiments.
MovieLens 20M dataset, which contains 20 million ratings and 465,000 tag applications applied to
27,000 movies by 138,000 users, is provided by GroupLens in 2015. Book-Crossing dataset contains
278,858 users providing 1,149,780 ratings about 271,379 books.

First, we filtered the original datasets to gain appropriate experimental datasets. For MovieLens
20M dataset, the movies rated by at least 20 users were extracted as usual movies. Tags annotated
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by at least five users and assigned to at least five usual movies were kept as distinct tags. For users,
we only kept those users who annotated at least three distinct tags in the tagging history as distinct
users. For movies, we only kept those movies that were annotated by distinct users and annotated as
distinct tags as final distinct movies. For Book-Crossing dataset, the books rated by at least 20 users
were extracted from the original dataset as usual books. For tag information, authors who had written
at least three usual books and presses that hadpublished at least 15 usual books were kept as distinct
tags. We only considered those items with tags in the experiments, but ETIMF method can be used in
the case that items are without any tags. For items without any tags, the similarities between them and
other items are 0, which means the item regularization term (Equation (9)) will have no effect on those
items. Consequently, ETIMF method changes into basic MF. For evaluating the effectiveness of the
proposed method, we only kept those items which had been annotated as tags and given ratings from
original datasets.

After filtering the datasets, for MovieLens 20M dataset, 2161 distinct movies were kept, of which
999 were selected as the final distinct movies; for Book-Crossing dataset, 122,433 distinct books were
kept, of which 10,000 were selected as the final distinct books. Each movie is rated using a discrete
scale from 1 to 5 in MovieLens dataset, and each book is rated using a discrete scale from 1 to 10 in
Book-Crossing dataset. General statistics about the final datasets are summarized in Table 4.

Table 4. Statistics of MovieLens 20M and Book-Crossing.

Statistic MovieLens 20M Book-Crossing

No. of Ratings 375,873 12,931
No. of Users, m 7711 1851
No. of Items, n 999 10,000
No. of tag records 187,100 145,707
No. of tags 1968 1210

In the experiments, the above datasets were required to be divided into training set which is for
learning the parameters of models and test set which is for evaluating the models. Thus, the rating
records were randomly split into two parts, each of which contained 50% of known ratings. One part
was used as a test set, which was kept the same in all experiments. The other part was used as data
pool to generate different training sets. For example, the size of the training set of 20% represents 20%
of records were selected from the data pool as a training set. For each training set size, 10 different
training sets were selected from data pool to perform 10 experiments and the average result was the
final result.

3.2. Performance Evaluation

Mean Absolute Error (MAE), which gives average absolute deviation between the real ratings
and predictive ratings, was utilized to measure the recommendation quality of the proposed method
compared with other recommendation algorithm. Formally,

MAE =
∑i ∑j Wij◦

∣∣∣Rij − R∗ij
∣∣∣

∑i ∑j Wij

where Rij and R∗ij represent real ratings and predictive ratings respectively. In general, a lower MAE
means a lower deviation between real values and predictive values, namely ahigher quality of the
recommendation algorithm.

3.3. Recommendation Quality Comparisons

To evaluate the performance of the proposed method, the following state-of-the-art approaches
were chosen for comparison.
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1. MF: Proposed by Koren et.al [34], MF learns user latent feature matrix and item latent feature matrix
by minimizing the sum-of-squared errors between real ratings and predictive ratings. The number of
latent feature vector K is 10.
2. TagiCoFi: Proposed by Yi Zhen et.al [19], TagiCoFi exploits tagging information to regularize the
MF procedure of PMF. More specifically, it seeks to make two user latent feature vectors as similar as
possible if the two users have similar tagging history. Here, we modify this algorithm to constrain item
latent feature vectors by tagging information of items. The number of latent feature vector K is 10.
3. Tag Matrix Transfer(TMT) model: Proposed by Fang et.al [27], TMT model uses a tag co-occurrence
matrix, which is generated by Bayesian method, as the third factor into matrix factorization to improve
the quality of recommender system. The number of latent feature vector K is the number of tags.

To make a fair comparison, we set parameters of each method according to respective references
or based on the best performance of our experiments. For MovieLen 20M dataset, we set λ1 = λ2 = 0.1
and the learning rate η to be 0.05, and the control parameters of β in TagiCoFi and ETIMF were set to
0.1 and 1.3 respectively. For Book-Crossing dataset, we set λ1 = λ2 = 0.1 and the learning rate η to be
0.01, and the control parameters of β in TagiCoFi and ETIMF were set to be 0.1 and 4.5, respectively.
In the comparisons, we used training sets size of 20%, 50% and 80% and report the average results on
test sets.

The results of comparisons on these methods are shown in Tables 5 and 6. We can observe that,
no matter in which dataset, ETIMF achieves the best performance among all compared methods.
Comparing with MF, the main difference of TagiCoFi, TMT and ETIMF lies in the extra tagging
information. The results demonstrate that the recommendation quality can be improved by exploiting
tagging information. Furthermore, ETIMF extends the tags of each item for supplementing the
tagging information. The observations of the comparisons in two datasets demonstrate that ETIMF,
which exploits extended tagging information, can further improve the recommendation quality.
Therefore, extended tagging information is helpful to generate a better recommendation.

Table 5. The comparison of different recommendation method in MovieLens 20M.

Training
Set

K = 10 K = 30 K = 50 K = Number
of Tags

MF TagiCoFi ETIMF MF TagiCoFi ETIMF MF TagiCoFi ETIMF TMT

20% 0.7535 0.7480 0.7269 0.7487 0.7424 0.7236 0.7457 0.7397 0.7231 0.7242
50% 0.7380 0.7345 0.7231 0.7322 0.7289 0.7220 0.7322 0.7299 0.7195 0.7251
80% 0.7312 0.7280 0.7215 0.7239 0.7235 0.7189 0.7255 0.7234 0.7166 0.7198

Table 6. The comparison of different recommendation method in Book-Crossing.

Training
Set

K = 10 K = 30 K = 50 K = Number
of Tags

MF TagiCoFi ETIMF MF TagiCoFi ETIMF MF TagiCoFi ETIMF TMT

20% 2.1079 1.9175 1.7743 2.0600 1.9095 1.7636 2.0231 1.9025 1.7445 1.7710
50% 1.9741 1.8708 1.7315 1.9605 1.8508 1.7261 1.9029 1.8503 1.7118 1.7301
80% 1.9249 1.8375 1.6904 1.8717 1.8038 1.6884 1.8556 1.7903 1.6847 1.6895

3.4. The Influence of Tagging Information

The value of the parameter β in ETIMF controls the influence of extended tags of items in learning
each item latent feature vector. The higher value of β representswe put a larger weight in extended
tags of items. The extended tags of items are added to learning item latent feature vectors and make
two item latent feature vectors as similar as possible if the two item have similar tags and extended
tags. When β = 0, ETIMF is reduced to basic matrix factorization. Hence, it is necessary to analyze
the influence of β. In this section, we only use the training set of size 20% and fix the dimensions K
of latent feature vector as 10. For MovieLens 20M dataset, we perform a group of experiments by
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changing β from 0.1 to 2.9. For Book-Crossing dataset, we perform a group of experiments by changing
β from 3 to 6.

The results of changing are shown in Figure 3. MAE decreases along with the value of β increase,
MAE is the smallest when β reaches 1.3/4.5, and MAE increases along with the value of β increase
when it is beyond 1.3/4.5. It illustrates that only using user-item rating matrix by abandoning tagging
information or excessively using tagging information cannot achieve reliable recommendation.Information 2018, 9, 143 11 of 15 
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Figure 3. The impact of tagging information: (a) the impact of β in MovieLens 20M; and (b) the impact
of β in Book-Crossing.

3.5. The Influence of Dimension of Latent Feature K

The dimensions K of latent feature vectors is another parameter. In this section, based on
training set of size 20%, we perform the experiments of TagiCoFi and ETIMF with K from 10 to
50. For MovieLens 20M dataset, the β of TagiCoFi is set to 0.1 while the β of ETIMF is set to 1.3.
For Book-Crossing dataset, the β of TagiCoFi is set to 0.1 while the β of ETIMF is set to be 4.5. The
results of TagiCoFi and ETIMF with different K are shown in Figure 3. As K increases, the values of
MAE decreases. As we known, the larger is the value of K, the more preference can be represented by
the latent features. However, Figure 4 show that the improvement gets smaller when the value of K
continually increases. It illustrates that the existing latent features can represent useful information
when the value of K reaches a certain threshold, and the value of K passing the threshold may introduce
noise into the loss function. Form the experimental result, we can observe that ETIMF can gain good
performance with K taking a large range of values.
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3.6. Efficiency Comparisons

The MAE of ETIMF starts better than that of TMT when the dimensions K of latent feature vectors
in ETIMF is equal to 50. Therefore, based on the training set of size 20%, K is set to 50 in MF, TagiCoFi
and ETIMF to compare the efficiencies of MF, TagiCoFi, TMT and ETIMF. In the group of experiments,
the values of β in TagiCoFi and ETIMF are set to 0.1 and 1.3, respectively. For MovieLens 20M dataset,
the values of β in TagiCoFi and ETIMF are set to 0.9 and 4.5, respectively.

The statistic of running time (the unit is second) of recommendation methods is shown in Table 7.
For the training set with the same size, no matter MovieLens 20M dataset or Book-Crossing dataset,
the running time of ETIMF is larger than that of MF and that of TagiCoFi, but it is much smaller than
that of TMT, which illustrates that the efficiency performance of ETIMF is better than that of TMT.
Although the efficiency of ETIMF is worse than that of MF and that of TagiCoFi, the MAE of ETIMF is
lowest in all comparison methods.

Table 7. The statistic of running time in two datasets.

Training
Set

MovieLens 20M Book-Crossing

MF TagiCoFi TMT ETIMF MF TagiCoFi TMT ETIMF

20% 657 650 805 648 199 198 362 198
50% 971 969 1244 978 634 632 893 634
80% 1108 1104 1488 1127 1197 1189 1588 1199

3.7. Performance of Sparse Tagging Information

Tag sparsity usually has two representations, one is users only annotate a few items with tags, and
the other is only a small number of items are annotated with tags. In the case of tag sparsity, the tags
annotated to items cannot represent the characteristics of items clearly. Hence, the similarities of items
only measuring existing tags of items are inaccurate. In this section, we perform the experiments of
TagiCoFi and ETIMF by using a part of tags (10%, 30%, 50% and 80%) randomly selected from existing
tags. In this group of experiments, the value of K is set to be 50 uniformly in TagiCoFi and ETIMF.
For MoiveLens 20M dataset, the values of β in TagiCoFi and ETIMF are set to 0.1 and 1.3, respectively.
For Book-Crossing dataset, the values of β in TagiCoFi and ETIMF are set to 0.9 and 4.5, respectively.

Tables 8 and 9 show the impact of tagging information size for 20% MovieLens 20M training
set and that for 20% Book-Crossing training set respectively. From these results, we can see that the
performance of ETIMF is obviously better than that of TagiCoFi and TMT. Furthermore, the value of
MAE in ETIMF has no obvious decrease with sparse tags. The experimental results demonstrate that
ETIMF performs better in the case of tag sparsity.

Table 8. The Impact of tag information size in MovieLens 20M.

Algorithm Tag Information Size

80% 50% 30% 10%

TagiCoFi 0.7402 0.7413 0.7429 0.7445
TMT 0.7323 0.7307 0.7318 0.7326

ETIMF 0.7283 0.7286 0.7288 0.7292

Table 9. The Impact of tag information size in Book-Crossing.

Algorithm Tag Information Size

80% 50% 30% 10%

TagiCoFi 1.9592 1.9735 1.9893 2.0117
TMT 1.7962 1.8432 1.8660 1.9060

ETIMF 1.7885 1.8343 1.8752 1.8973
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3.8. Performance of Item Cold Start Problem

Cold start problem is one of the most difficult challenges of recommendation algorithms.
Recommender system are required to recommend items to the user who has not rated any items
and recommend the item which has not been rated by any user to users. Most collaborative filtering
recommendation algorithms, such as matrix factorization algorithms, have poor performances in the
case of cold start problem due to lack of preference information.

In this section, based on the training set of size 20%, we randomly removed the rating records
of 50 and 100 items from the training set. Those removed items are regarded as cold start items,
namely new items in the recommender system. In this group of experiments, the value of K is set to be
50 uniformly in TagiCoFi and ETIMF. For MoiveLens 20M dataset, the values of β in TagiCoFi and
ETIMF are set to 0.1 and 1.3, respectively. For Book-Crossing dataset, the values of β in TagiCoFi and
ETIMF are set to 0.9 and 4.5, respectively.

The performances of TagiCoFi, TMT and ETIMF in cold-start setting for different datasets are
shown in Tables 10 and 11. The performance of ETIMF for two datasets is distinctly better than that of
TagiCoFi and TMT. It demonstrates ETIMF can integrate extended tags well to recommend new items
to users.

Table 10. MAE comparison in MovieLens 20M cold-start setting.

Type 50 Cold-Start Items 100 Cold-Start Items

TagiCoFi TMT ETIMF TagiCoFi TMT ETIMF

Cold-start
items 1.0373 0.8983 0.8439 1.1728 0.9903 0.8851

All items 0.9678 0.8123 0.7729 1.1335 0.8603 0.8205

Table 11. MAE comparison in Book-Crossing cold-start setting.

Type 50 Cold-Start Items 100 Cold-Start Items

TagiCoFi TMT ETIMF TagiCoFi TMT ETIMF

Cold-start
items 2.1477 2.0606 2.0571 2.2643 2.1953 2.1552

All items 1.9137 1.7299 1.7023 2.1456 2.0647 2.0223

4. Discussion and Conclusions

An extended-tag-induced matrix factorization method is proposed for recommender systems
in this paper. The proposed method makes a pair of item latent feature vector as similar as
possible if they are annotated as similar tags according to extended tags. An item relationship
regularization term based on extended tags is added into matrix factorization to constrain the baseline
matrix factorization. Experimental results on real datasets demonstrate the proposed algorithm
can outperform state-of-the-art collaborative filtering algorithms, including some recommendation
methods which use tagging information. Furthermore, it can not only cope with the cold start item
problem but also alleviate tag sparsity.

Tagging information not only contains the description of items but also the sentiment of users.
For improving the development of recommendation techniques, our future work is to integrate tagging
information into recommendation algorithms. One of our future research directions is filling the
missing ratings by tagging information before learning latent features. Moreover, we plan to analyze
the sentiment of tags to discard noisy tags and classify the remaining tags precisely. More extra
information, such as social behaviors of users and social information, will be considered to combine
with tag information to provide more precise user profile and item profile to recommender system.
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