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Abstract: The use of online social networks has become a standard medium of social interactions
and information spreading. Due to the significant amount of data available online, social network
analysis has become apropos to the researchers of diverse domains to study and analyse innovative
patterns, friendships, and relationships. Message dissemination through these networks is a complex
and dynamic process. Moreover, the presence of reciprocal links intensify the whole process of
propagation and expand the chances of reaching to the target node. We therefore empirically
investigated the relative importance of reciprocal relationships in the directed social networks
affecting information spreading. Since the dynamics of the information diffusion has considerable
qualitative similarities with the spread of infections, we analysed six different variants of the
Susceptible–Infected (SI) epidemic spreading model to evaluate the effect of reciprocity. By analysing
three different directed networks on different network metrics using these variants, we establish the
dominance of reciprocal links as compared to the non-reciprocal links. This study also contributes
towards a closer examination of the subtleties responsible for maintaining the network connectivity.

Keywords: epidemic models; information diffusion; reciprocal links; simulation of social networks;
social dynamics; social evolution

1. Introduction

In recent years, information spreading on social networks has witnessed a massive surge due to
the emergence of online social media as communication channels.

In today’s virtual world, the exchange of information takes place through online social networks
with the users as nodes and their relationships as the connectors between nodes. Due to the diffusion
of information from one user to another, there is a rapid growth in the amount of information present
online [1]. Social network analysis (SNA) is a graph-theoretic based approach to understand and
analyse human social interactions, wherein the users are interdependent actors, and links are the
channels for flow of information [2]. Amongst other inferences, SNA assists in determining the
importance of structural relations to analyse observed behaviours and investigate community structure
of other formal and informal networks [3]. With the rapid growth in social networks, these relationships
and interactions play a significant role as a user may add some of their followers with factors such
as homophily as their neighbours. The terms like “reciprocity”, “intensity” and the “durability” of
a network express the quality of relations [4]. Reciprocity is a behavioural response to perceived
kindness and unkindness, where kindness comprises of both, the distributional fairness as well as
intentional fairness. It is defined as the ratio of the number of bidirectional L↔ links, to the total
number of links L [5]. As is evident from the published studies, reciprocity is a robust determinant
of human behaviour. Durability quantifies the longevity of the underlying relations and obligations
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activated in particular transactions. Intensity parameter determines the strength of the obligations in
relation and reflects the strength of the commitment or the multiplicity of the relationship.

Based on the experiments and questionnaire investigations performed by the researchers of
different domains, it is established that reciprocity implies a practice that cannot be justified merely in
terms of selfish and purely outcome-oriented preferences.

By their edge properties, online social networks are broadly classified into two classes: directed
and undirected networks. Undirected networks such as Flickr and Facebook do not allow users to have
a connection unless both acknowledge the friendship, whereas networks such as Anybeat and Twitter
can have both unidirectional and bidirectional links known as directed networks. Directed networks
have a crucial role in identifying local and community networks to study social interactions [6,7].
In the directed networks, reciprocal links have noticeable effects on dynamical processes, network
growth, and higher-order structures such as motifs and communities [8]. Different empirical studies
related to the determination of influence (or centrality) or popularity, community finding, and viral
marketing have been reported in the literature [9–13].

Previous studies explore the issues related to current and future paths of diffusion, identification
of influential nodes and impact of the removal of certain links [14–17].

This study is motivated by the previous work of Zhu et al. [18] who analysed the significance of
reciprocal links in social networks using parameters of structural robustness, i.e., Susceptibility, Giant
component size and Average network distance. The work presented here, however, employed variants
of epidemic models based information spreading mechanism to empirically investigate the relative
importance of reciprocal links using a different set of network characteristics.

In recent years, the information diffusion models originated from a disease spreading mechanisms
have drawn the attention of social scientists. Epidemic models approximate real-world scenario.
Understanding of information spreading using these models is investigated by different authors and is
reasonably accepted by the community [19–21]. Researchers [22–24] have made ongoing improvements
based on classical models, developing new models to study the diffusion process more precisely.
In addition, Woo J and Chen H [25] exclaimed the importance of epidemic models showing that the SIR
model is a plausible model to describe the diffusion process of a topic. When applied to social networks,
the researchers have developed pertinent models by considering parameters like influence, trust [26],
reciprocity [18], information content, time, network structure and social factors [27]. Zhu et al. [18]
developed a directed SI model by adopting the classic SI model on directed social networks and
considered the transmission probability as one of the prominent factors. Xu et al. [20] developed
a single layer SEIR model (S-SEIR) to affirm the impact of user’s behaviour and value of information,
both, on the transmission of information. J Cannarella and J Spechler [22] proposed another variation,
irSIR, and simulated the adoption and abandonment of user views. Feng et al. [23] suggested another
variation (FSIR) to incorporate the effect of neighbours in shaping individual’s opinion to spread the
information. Wang et al. [24] proposed another variant (ESIS) by adding an “Emotions” component.
In their study, the fraction of information with some emotional context was modeled as edge weight.
Other specific features of information spreading include tie strength, decaying effect, information
contents, non-redundancy of contacts, memory effects, and social reinforcement [13,27–33].

Further, the structure of the network (number of nodes, reciprocity, clustering coefficients,
betweenness centrality, community size, etc.) determines the speed and the level of diffusion in
random networks. Different centrality measures like betweenness, degree centrality have a positive
correlation in the information spreading, while other centrality measures, such as eccentricity and
the information index, have a negative correlation. A positive correlation implies that choosing
a node with the maximum centrality value will influence the largest number of users, while negative
correlation deals with selecting the node with the lowest centrality value to have the same effect [34].
In this study, we used one of the centrality measures (closeness centrality) to select the opinion leader
node for information spreading. However, other measures such as “percolation centrality” and “trust
relationships” have also been reported in the literature [35,36]. Further, small world and artificial
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networks display high clustering coefficients, power law distributions and individual communities
between any couple of nodes [37,38] (see Section 3). Watts [39] initiated the importance of strong
connections or reciprocity in diffusion rather than the number of initially affected nodes. Considering
topologies in identifying the dynamics of random and scale-free networks using evolutionary game
theoretic and graph theoretic techniques have also been appraised as well [40,41].

In this study, we empirically analysed the impact of reciprocal links in a directed network affecting
the information dissemination. We used three different directed networks of sufficient size, i.e.,
Epinions, Google+ and LiveJournal, along with varying factors of the network. This study considered
one of the variants of the classic epidemic spreading model Susceptible–Infected (SI) model [42] to
evaluate the effect of reciprocal links. This study affirms the preponderance of reciprocal links over
the non-reciprocal ones. Due to the high variability of both the message and frequency of human
responses, dynamic and multiple diffusion models are also introduced in this work where the person
can be susceptible again.

This paper is structured as follows. Section 2 gives an overview of information spreading measures
and relevant metrics. Section 3 provides the network characteristics of the datasets along with the
preprocessing steps. Section 4 elaborates the proposed variations of SI epidemic models and discusses
the derived results in light of the network’s structural metrics. In Section 5, we present the conclusions
and future directions of our research.

2. Information Spreading Mechanisms and Measures

The dissemination of information is one of the essential purposes of social networks (e.g., massive
online social networks) that can range anywhere from rumors to news or from messages to opinions.
The process of message diffusion is similar to an epidemic model spreading process [15,43]. In epidemic
spreading, there are two types of users: (1) those infected with pathogens; and (2) those susceptible to
the pathogens. Similarly, in social networks, information can be transmitted from the communicators
to the recipients. The epidemic models explain the individual’s characteristics’ effect on aggregate
diffusion dynamics. The SI models are broadly categorised into compartmental models: SIS and SIR
models. The SIS model assumes that the nodes are initially Susceptible (S) and are infected once
encountered with Infected (I) neighbour and can Recover (R) and may become susceptible again
(S). However, SIR model exclaims that the infected person will not become susceptible again. In the
diffusion process, the probability by which individuals may become susceptible is known as the
transmission probability.

Table 1 outlines essential enhancements of the classical SI model.
Figure 1 elucidates the user’s behaviour towards the incoming messages in a network. The message

spreading process begins with the opinion leader of the network to obtain maximum diffusion rate.
The leader can have different mind sets regarding the further dissemination of information. The leader
may agree with the message and have the willingness to spread the message to its neighbours.
The neighbouring nodes may, however, either diffuse the message in the network or reject it. Further,
a case may arise where the neighbours of the leader may partially accept that message. In another
scenario, the opinion leader itself is not interested in sharing the information amongst its peers and
refuses to spread the message to its immediate neighbours. In this exposition, we use transmission
probability to model the willingness of a user to spread the information received.

The reciprocity correlates the closeness of a node with its neighbours, thereby identifying the
relationship closeness in a network [44]. Further, the reciprocity of the neighbour of an influential node
affects the social density (strength of relationships) of the network. In prior studies, Yoganarasimhan
(2012) [45] examined the role of size and structure of a network along with the position of initial seed
in the spread of the popularity of youtube’s videos. Although many previous studies consider static
network structures [46,47], few consider dynamically evolving community [48] to analyse networks.
However, this study examines the importance of the influential spreaders’ effect that diminishes
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with time and changing behaviour. The distance from the influential spreader affects the diffusion
proficiency underlying the centralities and density.

The succeeding section outlines commonly used centrality measures along with their potential
use in the identification of an opinion leader.

Figure 1. Illustration of user’s behaviour towards the incoming messages in a network.

Table 1. Comparison of different variants of epidemic model.

Model Researcher Definition

SIR Kermack and
McKendrick [49]

The SIR model deals with the modeling of diseases with long-lasting
immunity to immunising infections. Thus, it is partitioned into three
disjoint groups: S, I and R. Susceptible (S) represents node susceptible to
a disease, “Infected” (I) states node infected by a disease, “Recovered”
(R) represents the people who are infected and immune to the infection.

SIS Pastor-Satorras [42]

The SIS compartmental model segregates compartments through
non-immune infections, such infections do not give immunisation upon
recovery from infection, and individuals become susceptible again.
Thus it segregates into two compartments: Susceptible (S) and Infected
(I). In the spreading process, infected individuals infect their susceptible
neighbours with a certain probability (β) and return to S state with
a certain probability (γ).

SEIR Wang et al. [19]

SEIR model has an additional compartment which consists of exposed
individuals in the latent period. The individual is in an exposed
compartment “E” (exposed) when he is infected but not yet infectious .
These models make the following assumptions: (1) susceptible
individuals can get infected from infected individuals via contacts; and
(2) an infected individual becomes immune after recovering from the
disease.

SEIS Wan and Cui [50]

SEIS compartmental model considers the exposed or latent period of the
disease, thus introducing an additional compartment E. The infection
does not leave any immunity, therefore individuals that have recovered
return to being susceptible.

SIRL Yang et al. [51]

SIRL model is a modified SIR model, in which each node is assigned
with an identical capability of active contacts, L. It stands for the
spreading with limited contacting ability. At each step, the infected
individuals will generate L contacts. Multiple contacts with one
neighbour are allowed, and contacts that are not between susceptible
and infected ones are also counted just like the standard SIR model.
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2.1. Opinion Leaders

Centrality is a structural characteristic of individuals in the network indicating the fitness of
an individual within the network. Therefore, it is a natural choice to find the most critical node
(opinion leader) [16]. It can help to maximise or minimise diffusion of exhibited behaviour within the
network. The most commonly used centrality measures include degree centrality, closeness centrality,
betweenness centrality, eccentricity centrality and eigenvector centrality [52,53]. No single measure of
centrality, however, suits all applications. We use these centrality measures to disintegrate the network
with a minimum number of steps, thereby minimising the diffusion area. Among different measures
to identify the influential spreaders in a network, K-core [54–56] and centrality based measures [52]
are the most popular ones. However, K-core works well with the undirected graphs, though other
analogous measures have been proposed for directed graphs as well [57].

Since diffusion processes are triggered when the message is passed on to the opinion leader,
the centrality measures prove to be the criteria for identification:

2.1.1. Degree Centrality

The degree centrality assigns the highest score (in terms of the number of incident edges) to the
vertex having the largest number of first-neighbours. Degree centrality is defined analogously to the
degree of a node but normalised over the maximum number of the neighbours this node can have.
In the message dissemination or infection, it refers to the probability of receiving information or being
infected [52]. Degree centrality (Cd) of a node v is calculated as:

Cd (v) .
=

kv

n− 1
= Σj∈G

avj

n− 1
(1)

where kv is the degree of a node, n is the total number of the nodes in the network, and avj is number
of nodes j that are adjacent to node v.

2.1.2. Radius Centrality

Radius Centrality chooses the node with the smallest value of the longest shortest path starting
from each node [52]. Thus, it can identify the most influential node for the most remote nodes.

Radius centrality (Cr) of a node v is measured as:

Cr (v) =
1

maxuj ∈ G dij (v)
(2)

where dij is the shortest path between vertex i and j.

2.1.3. Closeness Centrality

The closeness centrality is based on the idea of communicating between different vertices and the
vertex, which is “closer” to all vertices. The farness of a node u is defined as “the sum of its distances
to all other nodes”, and similarly its closeness is defined as “the inverse of the farness” [58]. Closeness
is considered as a temporal factor for spreading of information sequentially within a network [59].
Closeness Centrality (Cc(v)) of a node v is calculated as:

Cc (v) = Σ
1

distance(v, t)
(3)

where v and t are the nodes of G.
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2.1.4. Betweenness Centrality

In between two randomly chosen vertices, the vertices that have a high probability to occur on
a randomly chosen shortest path between those two vertices have a high betweenness. Thus, the more
times the node acts as a bridge between the randomly chosen shortest path of two vertices, higher is
its betweenness centrality [52]. Hence, concerning diffusion, more a vertex is in between, more are its
chances of participating in the information spreading process. Betweenness Centrality of a node v is
measured as:

Cb (v) = Σi 6=v 6=j
σij (v)

σij
, (4)

where σij is total number of shortest paths from node i to node j and σij (v) is the number of those
paths that intersect node v in graph G.

We take closeness centrality measure to find the starting node as “opinion leader”, because
members occupying central locations concerning closeness can be very influential in disseminating
information to other members of the given network [60]. Thereafter, the starting node transmits the
initial message to the network beginning from this node. Furthermore, we have also used degree
centrality measure because the nodes with high degree centrality usually have increased interactiveness
and thus are more likely to engage in information dissemination (see Section 4.7.2) [46].

3. Methods and Material

3.1. Data and Analysis

In this paper, we consider three publicly available datasets that support the follower–followee
relationship: Epinions [61], Google+ [62,63] and LiveJournal [7,64,65]. Figure 2 describes the procedural
workflow employed in this study to conduct empirical analysis. The basic description of different
datasets used is as follows :

1. Epinions: This is a who-trust-whom online social network of a general consumer review site
Epinions.com. Users of the site form “trust” relationships by deciding whether to “trust”
each other.

2. Google+: It is a social networking service offered by Google, where the user can add any other
user of the network to his circles, thereby creating a directed social network.

3. LiveJournal: It is an online social network that allows members of the web site to maintain their
journals, individual and group blogs, and it allows people to declare which other members are
their friends.

Figure 2. An overview of the methodology used in the empirical analysis.
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Owing to the significantly larger size LiveJournal dataset (4,847,571 vertices and 68,475,391 edges),
we sample it to a manageable size using the following procedure. The other datasets (Epinions and
Google+) have been utilised wholly. To establish the similarity of the sampled and the original network
of LiveJournal, we compare the global clustering coefficients of the sampled graphs to the unsampled
graph. The global clustering coefficient C measures the transitivity of the network [38]. It is defined as
the fraction of the number of closed triplets to the total number of triplets in the network, where one
closed triplet is equivalent to 3 × Number of triangles. This measure can be applied to both undirected
and directed networks and is often referred as transitivity [66].

C =
3 × Number o f triangles

Number o f connected triplets o f vertices
(5)

The value of global clustering coefficient for the original data set (Live Journal) as calculated by
the equation is 0.12, while for the sampled data set is 0.409. Both the values affirm the randomness in
the network owing to tending the value towards 0, and not a small-world network. The variance in
the values is not rapid, thus implying that the sampling percentage used (2.41%) is under threshold
value at which the network breaks [67]. Leskovec (2006) [68] demonstrated that a sampling percentage
up to the mark of 15% is usually suitable to match the characteristics of the real graph.

Table 2 describes the specific parameters of three datasets including LiveJournal dataset after
sampling. The total nodes represent the total number of users; total edges represent the summation
of all the links that exhibit the follower–followee relationship between the users. Reciprocity is
calculated using the formula mentioned in the Section 1. Leader Node is the node having the highest
closeness centrality and is treated as the starting node to which the message is given in the first place
during diffusion.

Table 2. Characteristics of the social networks used in the empirical analysis.

Dataset Total Total Reciprocal Non Reciprocal Recipro Clustering Opinion Leader
Nodes Edges Links Links -City Coefficient Node ID 1

Epinions 12,209 508,837 206,194 302,643 0.399 0.137 645
Google+ 211,187 1,506,896 726,970 779,926 0.479 0.145 197,967

Live Journal 10,608 1,656,116 1,166,146 489,970 0.697 0.327 4
1 calculated using closeness centrality measure.

4. Results and Discussion

4.1. Simple Diffusion

It mimics the SI epidemic model but also includes the transmission probability to model the
user’s decision. As illustrated in Algorithm 1, a user (opinion leader) broadcasts a message m to all its
neighbours. All nodes that receive the message m may choose to disseminate this message to their
adjacent nodes with a probability p (transmission probability), which shows the willingness of the
user to forward the message further. This process gets repeated until the message m diffuses to all the
achievable nodes.

This mechanism is implemented using a sequence of steps, as illustrated in Algorithm 1. Initially,
we evaluate the effects of reciprocal links on message diffusion by removing both reciprocal and
non-reciprocal links, where a single reciprocal link corresponds to two non-reciprocal links [18] and
calculate the total number of users who have received the given message m. Figure 3 illustrates
this comparison.

As depicted in Figure 3, the fall of reciprocal links is much faster as compared to the non-reciprocal
links. Epinions and Google+ tend to downfall at 0.12 and 0.08, respectively. LiveJournal represents
small fall in the non-reciprocal and altering steep-downfall in reciprocal links with clear distinction
at f = 0.16. The difference in the fraction of affected nodes on the removal of reciprocal links to the
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non-reciprocal is 0.24. Further, we consider the transmission probability p as 0.38 that can be varied as
per problem domain and requirements.

Algorithm 1: Simple diffusion process (Adapted from [18])
input :Graph G, opinion leader as starting node s, transmission probability p
output : f ractionO f A f f ectedNodes = (a f f ectedNodes/totalNodes)

1 foreach u in G.nodes do
2 visited[u]← white;
3 end

4 a f f ectedNodes← 1;
5 visited[s]← black;

6 queue← ∅;
7 foreach v ∈ Adj[s] do
8 queue← ENQUEUE(queue, v);
9 end

10 foreach node in queue do
11 a f f ectedNodes← a f f ectedNodes + 1;
12 visited[node]← gray;
13 end

14 while length(queue) != 0 do
15 node← DEQUEUE(queue);
16 visited[node]← black;
17 if random() < p then
18 foreach neighbour ∈ Adj[node] do
19 if visited[neighbour] = white then
20 visited[neighbour] = gray;
21 a f f ectedNodes← a f f ectedNodes + 1;
22 queue← ENQUEUE(queue, neighbour);
23 end
24 end
25 end

26 end
27 f ractionO f A f f ectedNodes← a f f ectedNodes/totalNodes;
28 return f ractionO f A f f ectedNodes;

4.2. Multiple Diffusion

A variant of the message spreading procedure mentioned above is described below. In the
previous procedure, if a user i receives a message m and chooses not to broadcast it, then this user
will not ever broadcast the message m in the future, even if the user i gets the same message multiple
number of times. This variant employs the Susceptible–Infected–Susceptible (SIS) epidemic model,
wherein a user who has already received a message, but chose not to broadcast it, may try again to
re-broadcast the same message. This process of spreading is discussed below.

• Broadcast a message m from a starting node (opinion leader) to all its neighbours (adjacent
nodes).

• Each node that receives the message, and has not already broadcasted can choose to re-broadcast
it to all adjacent nodes with a transmission probability p.
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Algorithm 2 illustrates the steps involved in the implementation of this variant. We observe the
influence of reciprocal and non-reciprocal links on message spreading by removing them continuously
and evaluating the total number of nodes affected.

Epinions and Google+ show a sharp decline and eventually collapse on the removal of reciprocal
links at f = 0.22 and f = 0.268, respectively (see Figure 4).

Algorithm 2: Multiple diffusion
input :Graph G, opinion leader as starting node s, transmission probability p
output : f ractionO f A f f ectedNodes = (a f f ectedNodes/totalNodes)

1 foreach u in G.nodes do
2 visited[u]← white;
3 end

4 a f f ectedNodes← 1;
5 visited[s]← black;

6 queue← ∅;
7 foreach v ∈ Adj[s] do
8 queue← ENQUEUE(queue, v);
9 end

10 foreach node in queue do
11 a f f ectedNodes← a f f ectedNodes + 1;
12 visited[node]← gray;
13 end

14 while length(queue) != 0 do
15 node← DEQUEUE(queue);

16 if random() < p then
17 visited[node]← black;
18 foreach neighbour ∈ Adj[node] do
19 if visited[neighbour] = white then
20 a f f ectedNodes← a f f ectedNodes + 1;
21 end
22 if visited[neighbour]! = black then
23 visited[neighbour]← gray;
24 queue← ENQUEUE(queue, neighbour);
25 end
26 end
27 end

28 end
29 f ractionO f A f f ectedNodes← a f f ectedNodes/totalNodes;
30 return f ractionO f A f f ectedNodes;
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Figure 3. Simple diffusion—fraction of affected nodes as a function of the fraction of removed links.

Figure 4. Multiple diffusion—fraction of affected nodes as a function of the fraction of removed links.

4.3. Dynamic Diffusion

Another variant depicting the information spreading mechanism share similarities to the above
model, but the retransmission probability p of a node increases by a constant factor each time user i
receives the message. Thus, if a node a gets a message m three times, its new transmission probability
becomes 3 × p. The transmission probability changes dynamically based upon the number of hits of
the same message on a given node. Algorithm 3 describes the implementation details of this variant.
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Algorithm 3: Dynamic diffusion
input :Graph G, opinion leader as starting node s, transmission probability p
output : f ractionO f A f f ectedNodes = (a f f ectedNodes/totalNodes)

1 foreach u in G.nodes do
2 visited[u]← white;
3 hits[u]← 0;
4 end

5 a f f ectedNodes← 1;
6 visited[s]← black;
7 hits[s]← hits[s] + 1;

8 queue← ∅;
9 foreach v ∈ Adj[s] do

10 queue← ENQUEUE(queue, v);
11 end

12 foreach node in queue do
13 a f f ectedNodes← a f f ectedNodes + 1;
14 visited[node]← gray;
15 hits[node]← hits[node] + 1;
16 end

17 while length(queue) != 0 do
18 node← DEQUEUE(queue);

19 if random() < (p + (0.1 ∗ hits[node])) then
20 visited[node]← black;
21 foreach neighbour ∈ Adj[node] do
22 if visited[neighbour] = white then
23 a f f ectedNodes← a f f ectedNodes + 1;
24 end
25 if visited[neighbour]! = black then
26 visited[neighbour]← gray;
27 hits[neighbour]← hits[neighbour] + 1;
28 queue← ENQUEUE(queue, neighbour);
29 end
30 end
31 end

32 end
33 f ractionO f A f f ectedNodes← a f f ectedNodes/totalNodes;
34 return f ractionO f A f f ectedNodes;

Figure 5 depicts the effect of reciprocal links in message spreading using this variation.
As illustrated in the figure, the fraction of both reciprocal and non-reciprocal links varies at the
start of simulations thus display no effect of the network density. However, the fall of reciprocal links
is much faster as compared to the non-reciprocal links. Epinions represent the impact on the fraction
of affected nodes due to the removal of non-reciprocal friendships from 0.51 to 0.479, but reciprocal
varies on the whole social web from 0.52 to 0.1825. Google+ also follows a similar trend as in Epinions.
LiveJournal being a large dataset exhibits a clear distinction at f = 0.08.
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Figure 5. Dynamic diffusion—fraction of affected nodes as a function of the fraction of removed links.

4.4. Edge Diffusion

This variant of information diffusion relates to the social networks, where the communication
is mostly one on one with p as the probability of the message travelling along an edge, instead of
a vertex’s broadcasting probability. This is similar to the innovation diffusion model (cascade model)
with an edge as the key spreader. If the connection is strong enough to share the information, user i
spreads the message to its both ends. Algorithm 4 outlines the implementation of edge based diffusion.

In Figure 6, we observe that in the three datasets, the fraction of affected nodes fall at a steeper
rate when the value of the fraction of removed links ( f ) reaches 0.08, 0.18 and 0.1825, respectively.

Figure 6. Edge diffusion—fraction of affected nodes as a function of the fraction of removed links.
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Algorithm 4: Edge diffusion
input :Graph G, opinion leader as starting node s, transmission probability p
output : f ractionO f A f f ectedNodes = (a f f ectedNodes/totalNodes)

1 foreach u in G.nodes do
2 visited[u]← white;
3 end

4 a f f ectedNodes← 1;

5 queue← ∅;
6 queue← ENQUEUE(s);

7 while length(queue) != 0 do
8 node← DEQUEUE(queue);
9 visited[node]← black;

10 foreach neighbour ∈ Adj[node] do
11 if random() < p then
12 if visited[neighbour] = white then
13 a f f ectedNodes← a f f ectedNodes + 1;
14 visited[neighbour]← black;
15 queue← ENQUEUE(queue, neighbour);
16 end
17 end
18 end

19 end
20 f ractionO f A f f ectedNodes← a f f ectedNodes/totalNodes;
21 return f ractionO f A f f ectedNodes;

4.5. Weighted Diffusion

Another way of information dissemination is illustrated below. In the previous models, the
network topology was not considered during the process of message diffusion. This model is a
variation of the traditional SI epidemic model that acknowledges the strength of each user with all its
neighbours. This “strength” of the user is calculated by considering the out-degree of each user. In an
edge (u, v), the weight of edge (u, v) is the “strength” (out-degree) of node v. Kamp [69] suggested
the spread of information in weighted networks by assigning weights to the users on the basis of the
interactions made with their corresponding neighbours. We, however, adopt their model by assigning
weights according to the “strength” of neighbouring nodes. The information diffusion in this model
follows the given steps and Algorithm 5 depicts the working procedure of this mechanism.

• A user i, who is considered as a start node, broadcasts a message m to all its neighbours.
• The maximum weighted node of all nodes that receive this message m can only broadcast the

message to its adjacent nodes with a probability p. Here, probability p is the same transmission
probability describing the willingness of the user to diffuse the given message m.

• The above process is repeated until the message m diffuses to all the achievable nodes.

Figure 7 represents the effect of reciprocal links in message spreading using this variation.
It further verifies the reciprocity’s effect on diffusion with lower number of people getting affected
on decreasing the removed links. Epinions shows a sharp decline in decreasing reciprocity with
a maximum difference of 0.116 in both the curves. Google+ shows only 9% of people being affected by
removal of reciprocal links at f = 0.3. LiveJournal follows a similar trend with only 62% of the nodes
being affected by the removal of 30% of the total links in the network at f = 0.3.
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Algorithm 5: Weighted diffusion
input :Graph G, opinion leader as starting node s, transmission probability p
output : f ractionO f A f f ectedNodes = (a f f ectedNodes/totalNodes)

1 foreach u in G.nodes do
2 cost[u]← ∞;
3 visited[u]← white;
4 end

5 priorityQueue← ∅;
6 cost[s]← 0;
7 visited[s]← black;
8 priorityQueue← ENQUEUE(cost[s], s);
9 a f f ectedNodes← 1;

10 while priorityQueue! = ∅ do
11 node← extractMax(priorityQueue);

12 foreach neighbour ∈ Adj[node] do
13 if visited[neighbour] = white then
14 costnode ← cost[node];
15 costneighbour ← cost[neighbour];
16 visited[neighbour]← black;
17 a f f ectedNodes← a f f ectedNodes + 1;
18 if (costneighbour > (costnode + weight(node, neighbour))) & random() < p then
19 costneighbour ← costnode + weight(node, neighbour);
20 priorityQueue← ENQUEUE(cost[neighbour], neighbour);
21 end
22 end
23 end

24 end
25 f ractionO f A f f ectedNodes← a f f ectedNodes/totalNodes;
26 return f ractionO f A f f ectedNodes;

4.6. Decay Diffusion

This model is built upon the traditional SI epidemic model keeping the distance between the
message generating source node and the current node into consideration. The decaying transmission
probability symbolises common interests of closer individuals. Here, we estimate the shortest
distance between the source node and the current node with a decaying transmission probability
as pd−1.75

ij , where dij is the distance in the organisational hierarchy between individuals i and j.
This decay in one-time transmission probability is adapted from the published study by Fang Wu [70].
The information diffusion in this model follows the given steps:

• A user i, who is considered as a start node, broadcasts a message m to all its neighbours.
• As the message spreads in the network, the transmission probability of each node decays by

a multiple of d−1.75
ij . The farther the message is from its origination source, the lesser is the

willingness of the user to share.
• The above process gets repeated until message m diffuses to all achievable nodes.

Algorithm 6 provides a detailed implementation insight of this variant. As evident in Figure 8,
the fraction of both reciprocal and non-reciprocal links varies, but the fall of reciprocal links is much
faster as compared to the non-reciprocal links. Further, Epinions shows non-reciprocal links facing
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abrupt downfalls and Google+ depicts reciprocal links fraction being least at every removed fractions
step. At f = 0.14, 0.24 and 0.3, the fraction of affected nodes in reciprocal and non-reciprocal, respectively,
are (0.016, 0.012), (0.0049, 0.012) and (0.007, 0.009) LiveJournal depicts a clear downfall following the
trend (see Figure 8).

Algorithm 6: Decay diffusion
input :Graph G, opinion leader as starting node s, transmission probability p
output : f ractionO f A f f ectedNodes = (a f f ectedNodes/totalNodes)

1 foreach u in G.nodes do
2 visited[u]← white;
3 end

4 a f f ectedNodes← 1;
5 visited[s]← black;

6 queue← ∅;
7 foreach v ∈ Adj[s] do
8 queue← ENQUEUE(queue, v);
9 end

10 foreach node in queue do
11 a f f ectedNodes← a f f ectedNodes + 1;
12 visited[node]← gray;
13 end

14 while length(queue) != 0 do
15 node← DEQUEUE(queue);
16 visited[node]← black;
17 dij ← shortestDistance(s, node);
18 if random() < p ∗ d−1.75

ij then
19 foreach neighbour ∈ Adj[node] do
20 if visited[neighbour] = white then
21 visited[neighbour] = gray;
22 a f f ectedNodes← a f f ectedNodes + 1;
23 queue← ENQUEUE(queue, neighbour);
24 end
25 end
26 end

27 end
28 f ractionO f A f f ectedNodes← a f f ectedNodes/totalNodes;
29 return f ractionO f A f f ectedNodes;

In Figure 9, Dynamic diffusion helps in disseminating maximum information, while Decay
diffusion propagates the least. Multiple, Weighted, Edge and Simple diffusion exhibit similar
decreasing effects. Decay diffusion shows the minimal spreading with 0.0910, 0.0391 and 0.6175
as the fraction of affected nodes in Epinions, Google+ and LiveJournal, respectively.
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Figure 7. Weighted diffusion—fraction of affected nodes as a function of the fraction of removed links.

Figure 8. Decay diffusion—fraction of affected nodes as a function of the fraction of removed links.
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Figure 9. A comparison of the performances of six diffusion algorithms for all the three datasets:
(a) Epinions; (b) Google+; and (c) LiveJournal.

4.7. Network Structure

We observe from the above results that the reciprocal links play an important role in information
spreading as compared to the non-reciprocal links. To explain the reason behind such behaviour,
we examine the effect of the removal of reciprocal and non-reciprocal links on the network’s structural
properties. Network properties are analysed using the following measures.

4.7.1. Network Density

A “potential connection” is a connection that could exist between two nodes, irrespective of
an actual connection. Hence, network density measures the portion of the potential connections in
a network that are actual connections. The network density for an undirected graphs is,

d =
2 m

n (n− 1)
(6)

and for directed graphs is,

d =
m

n (n − 1)
(7)

where n is the number of nodes and m is the number of edges in graph G.
Network density is recognised as one of the prominent factors in personal networks [48].

A network with high network density means a large number of connections, therefore, has an increased
possibility of being interconnected [17,71]. Since a high network density indicates high interconnectedness,
it allows natural information diffusion in the network. As illustrated in Figure 10, removal of reciprocal
links affects the network density more critically than the non-reciprocal links. The network density
falls at a higher rate with the removal of reciprocal links as compared to non-reciprocal links.

The network density shows a similar trend with Epinions and Google+ reaching the threshold
values at f = 0.24 and 0.27, whereas LiveJournal depicts straight lines. It shows identical network
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disorientation on the removal of reciprocal links and decreasing reciprocity’s effect on degree centrality
and network density.

Figure 10. Affected network density as a function of the fraction of removed links.

4.7.2. Degree Centrality

The centrality measures of a node can determine the degree of importance of the same node
(see Section 2.1.1). In Figure 11, we observe that the average degree centrality of the network falls
drastically on the removal of reciprocal links as compared to the removal of non-reciprocal links.
This severe fall of degree centrality on the removal of reciprocal links relates to the fall of interactiveness
amongst the nodes, therefore, justifies the superiority of the reciprocal links over non-reciprocal links.

Figure 11. Affected degree centrality as a function of the fraction of removed links.
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Herein, we observe that there is a rapid fall on removal of reciprocal links. Epinions and Google+
tend to reach threshold towards the end at f = 0.22 and f = 0.28, respectively, while LiveJournal exhibits
straight lines with an increasing downfall.

4.7.3. Community Size in a Network

A community structure is a set of internally connected nodes in a tightly knit groups [72]. Further,
assuming that there are two different types of links, i.e., strong links and weak links. A strong link
is an edge between two nodes in the same community, whereas a weak link is an edge connecting
two different communities [73]. While strong and weak links play different roles in the network
community, we observed that on removing reciprocal and non-reciprocal links the communities of
separate datasets varied differently. However, in each pair of results (Figure 12), the value of the size
of communities detected on the removal of reciprocal links was found to be smaller as compared to
non-reciprocal. We calculated the community size using the Mapping Flow model given by Rosvall
and Bergstrom [74]. The authors retained the information about the directions and the weights of the
links by mapping the system-wide flow induced by local interactions between nodes. The modularity
for a given partitioning of the network (community structure) into m modules is,

Q = Σ m
i=1

wii

w
−

win
i wout

i
w2 (8)

where wii is the total weight of links starting and ending in module i, win
i and wout

i are the total in- and
out-weight of links in module i, and w is the total weight of all links in the network. To estimate the
community structure in a network, the above equation is maximised over all possible assignments of
nodes into any number m of modules.

Figure 12. Affected community size as a function of the fraction of removed links.

We analysed the collapsing relationships’ effect on an individual community. Epinions shows
smaller communities with steeply increasing size by removing non-reciprocal links. Google+ shows
a clear distinction when the fraction of removed links tends to 0.14. LiveJournal showed the maximum
downfall with community’s size falling from 6993 to 1781 (refer to Equation (8) and Figure 12) on
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the removal of reciprocal links with an increment on the removal of non-reciprocal links. Since one
reciprocal link is equivalent to two non-reciprocal links, on removal of reciprocal links, the community
experiences an initial outbreak, meaning that breaking the few links connect the infected community
to the rest of the network [75].

4.7.4. Giant Component Size

A giant component is the size of a connected component (strongly connected component for
a directed network) in a large network. Let N1 be the size of a connected component C in a network of
size N ; then, C is a giant component if

lim
N→∞

(
N1

N

)
= c > 0 (9)

GCC characterizes the largest (giant) community of nodes in which all nodes are reachable from
one another while following the direction of the edges [76].

Figure 13 depicts that, on the removal of a certain fraction of edges, there is a decline in the
GCC value if the network disintegrates. Further, we observe that the GCC value declines at a higher
rate for reciprocal links as compared to that for non-reciprocal links, thereby endorsing the result of
the prior study by Zhu et al. [18]. The plots herein show a size declination of giant component size
with all the datasets following a similar trend. The collapsing of the giant component is observed in
Epinions, Google+ and LiveJournal at 0.22, 0.26, and 0.3, respectively, on removal of reciprocal links.
The reciprocity thus plays a major role in identifying clusters as visible with low rate of disintegration.

Figure 13. Affected giant component size as a function of the fraction of removed links.

5. Conclusions

Various social networks have emerged over recent years for people to stay connected with others
conveniently. Examining information spreading in online social networks is an intricate task because it
depends on the users, content, structure of the network and the diffusion process itself. Because of the
qualitative similarities between information diffusion and the spread of information, previous studies
have also used the epidemic models in the spread of ideas. We, however, consider six variations of
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standard the Susceptible–Infected (SI) epidemic spreading model to analyse three different directed
networks, i.e., Epinions, Google+ and LiveJournal, using various network topology metrics. Since
the leaders must initiate the information spreading, we use closeness centrality measures to identify
the most influential node. In these algorithms, we extend the epidemic models with social network
characteristics consorting the individual’s characteristics and relationships, and message’s popularity
and declining interests. The Simple diffusion defines the epidemic spreading. Multiple diffusion
employs the Susceptible–Infected–Susceptible (SIS) epidemic model, in which a user who has already
received a message but chose not to broadcast it in the earlier case can further choose to re-broadcast
it if he intends to. Dynamic diffusion accommodates increasing transmission probability each time
a node receives the message accounting to its dynamics. Edge diffusion relates to the innovation
diffusion model (cascade model) with an edge as the key spreader accounting the relationship between
nodes. Weighted diffusion acknowledges the strength of each user with all its neighbours. Decay
diffusion identifies the falling common interests of closer individuals. We conduct an extensive analysis
of the model parameters with diffusion algorithms to unveil the underlying importance of reciprocity
in the diffusion process. The results derived from this empirical study validate the claims laid in
previous studies that reciprocal link plays a more critical role in affecting the interconnectedness of the
network, with superiority of Dynamic diffusion over other algorithms in the dissemination of message
among the maximum number of user nodes and Decay diffusion being the least. Experimentation
with different parameters affecting information diffusion using different SI model variations while
also incorporating the error in perception has been left as the future work of this study. Furthermore,
different metrics such as degree centrality, betweenness, and radial centrality can also be used to
identify opinion leaders.
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