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Abstract: Theoretically speaking, the data of a stated preference survey could be suggested for
the calibration of a stochastic route choice model. However, it is unrealistic to implement the
questionnaire survey for such a large number of alternative routes. Engineers generally determine the
parameter empirically. This experienced choice of perception parameter may cause higher errors in
the route flows. In our calibration model of the perception parameter, the data of the cellular network
is set as the input. This model consists of two levels. The upper level is to minimize the gap squares
of the route choice ratio between the C-logit model and the cellular network data. The stochastic
user equilibrium (SUE) in terms of the C-logit model is used as the lower level. The simulated
annealing (SA) algorithm is used to solve the model, where the route-based gradient projection (GP)
algorithm is used to solve the inner SUE. A case study is used to validate the convergence of the
model calibration. A real-world road network is used to demonstrate the objective advantage of an
equilibrium constraint over a nonequilibrium constraint and explain the feasibility of the candidate
routes assumption.
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1. Introduction

The traffic conditions on a road network under continuous change from minute to minute,
and it is hard for travelers to forecast the traffic in the future or understand the real-time traffic
situation. This situation of incomplete information results in the stochastic perceptions in the travel
costs for the travelers. Stochastic choice models are widely used to describe people’s route choice
behavior. These models are used to solve the problem of finding link (route) flows on a given traffic
network between the origins and the destinations. If an extra assumption that no driver can improve
his/her perceived travel time by unilaterally changing routes is added, it becomes a stochastic user
equilibrium (SUE) assignment problem.

A stochastic route choice model requires a random variable representing the error term being
determined, i.e., the difference between the perceived travel time and the actual one. The Gumbel
distribution and multivariate normal distribution have been tested as the distributions of the random
variable in the logit and the probit route choice model. The logit-based model has been more widely
tested by researchers due to its relatively low computational complexity.

The independence of irrelevant alternatives (IIA) is an assumption in the general multinomial
logit (MNL) model. This means that if a route is added into a candidate set, the IIA feature simply
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assumes that this route has no common links with pre-existing routes. In most cases, overlaps in parts
of the routes are common. For this reason, many researchers developed improved logit models such
as C-logit, nested logit, path size logit, etc. [1–3], and the C-logit model is accepted widely due to its
simplicity [4].

As to the C-logit-based SUE model, the variance of the random variable is indicated by the
perception parameter θ of the error term. It is an essential parameter in these models since it scales the
error term and describes the accuracy of the perceived travel time. Therefore, this parameter of the
error term can have a significant impact on the road flow results.

In the calibration of this perception parameter, most researchers have realized that the general
maximum likelihood approach is invalid because the number of route alternatives is large and the
stated preference survey is difficult to be implemented. Therefore, the parameter value is determined
empirically in most applications. Engineers generally select several numbers for each neighbor with
equal gaps first. These numbers are taken as parameter value candidates. The best fit value is
determined by testing the routing choice results of several origin–destination (OD) pairs. Only a few
researchers have discussed the process of an optimization model to set this parameter. One suggested
using a least squares approach in the calibration [5], given the route and link flows. They set the
minimization of the gap square between the real-world route choice ratio and the model-based ratio
as the objective, while the MNL-based SUE model was set as the constraint. Again, a common link
problem was not considered in the proposed method and the given route flows were difficult to obtain
through a traditional traffic field investigation.

Flows of routes or aggregated routes are the basic data for SUE model calibration. The collection
of the data is a significant issue. In the age of big data, the spatial–temporal positioning data of cell
phones are related to route flows and may be an effective data source in calibrating a C-logit-based
SUE model.

The GPS data of cell phones are more likely to be used in the problem of travel route choice.
Previous route choice analysis with GPS data was focused on map matching (MM). MM algorithms
are generally used to infer from GPS data based on the corresponding elements in the transportation
network, including locations, links, and paths. A comprehensive review of 35 MM algorithms for
navigation applications since 1989 was presented by Quddus et al. (2007) [6]. Most MM algorithms
are designed to conduct point-to-point matching by detecting the correct link for each GPS point.
However, the closest edge or shape point is not guaranteed to be the correct one, especially in
urban road networks with a high density in small regions. Recent studies on MM focus not
only on the localization of GPS samples on a map, but also on the inference of the travel path
(Schuessler et al. 2009 [7]; Bierlaire et al. 2010 [8]; Ozdemir et al. 2018 [9]). Schuessler et al. (2009) [7]
calculated a score of dissimilarity between GPS points and arcs based on distance, speed, and/or
heading difference. The authors matched a route via these scores. However, their method required a
set of dense and accurate GPS data. As for the condition that sparse GPS samples are on the travel
routes, Bierlaire et al. (2010) [8] and Ozdemir et al. (2018) [9] used a path size logit model and a hybrid
hidden Markov model to solve the MM problem separately.

Our research uses base station identity (ID) positioning data to analyze the route choice, which is
different from the GPS data. The tower data’s precision is not as high as GPS data. Every cell phone’s
position is determined by its tower’s position. In this case, it is not possible to precisely determine the
relationship between the route and the cell phone trajectory. The one-by-one route matching method is
not suitable in this condition even though it is available in the route choice model with the GPS data.
The authors deal with all the routes and cell phone data together. Technically, unlike the previous logit
route choice model of maximizing the likelihood function, in the proposed method, the gap of the
route choice results and the cell phone trajectory data were minimized to obtain the parameter of the
route choice model.

The base station ID positioning method is generally used to determine the cellphone user’s
position and time information. Each time when a mobile phone user enters/exits the signal coverage
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of a base station, the station ID will be recorded together with the timestamp. A series of base
station IDs and timestamps represent the user’s trip in terms of his or her phone ID path. The ID
path information has been used in the field of transportation, such as OD demand estimation [10],
route flow calculation [11], and link density analysis [12]. More recently, some new applications have
been developed. For instance, Jiang et al. (2017) [13] used cellphone data to develop an activity-based
model in generating an overall daily activity pattern.

Recently, researchers explored the relationship between road routes and ID paths.
Chiou et al. (2015) [14] investigated the travel time for each road route and ID path. The authors
used a minimum gap to make the matching work. Leontiadis et al. (2014) [15] proposed a more refined
method to conduct matching. First, the authors considered the map as an aggregation of 15 × 15 m
grids. Then, by calculating the association probabilities among the grids, road links, and ID stations,
they applied the A-star algorithm to find the best matched routes.

The above route-matching studies with base station ID paths take road routes as the reference;
all ID paths are projected onto these road routes. In this paper, the authors developed a reverse process
to conduct the matching work, in which the ID path was the reference and the road routes were to
be aggregated. By taking the driver’s stochastic route-choice behavior into account, the relationship
between the ID path and the road route was generated. This work provides an alternative for the
matching work of an ID path and a road route. On the other hand, this work contributes to the
perception parameter calibration of a C-logit route choice SUE model with base station ID path data,
which is quite different from the calibration of GPS data. Compared to GPS data, the base station ID
path data have a lower positioning accuracy and a different positioning mechanism. Thus, in this
paper, the authors embedded the ID path data and individual route data matching algorithm inside
the bilevel model.

2. Methodology

A bilevel optimization model was proposed to solve the interactive process between the perception
parameter and the road flows. The process was in a top-down sequential manner. The lower level had
the freedom to generate road flows within the broad range set of the top level. Furthermore, the output
depended on the degree of interaction between the two levels, which were somewhat similar to the
static two-person Stackelberg game. The interaction process of this parameter calibration problem was
illustrated as Figure 1.
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2.1. Model of Upper Level

Minimization of Flow-Ratio Gap Square

The C-logit route choice model shows the selection probability for the corresponding route.
Equation (1) is the C-logit route choice model, in which ηr is the selection probability for the road
route r, θ is the perception parameter to be calibrated (it is a positive parameter, which is inversely
proportional to the perception variance and describes the degree of dispersion of the network), and Rw

is a set of road routes for the given OD pair w.

ηr = exp(−θ · cr)/ ∑
r=Rw

exp(−θ · cr) (1)

Specifically, cr is the total travel cost for route r; its expression is as follows in Formula (2).

cr = ∑
a∈A

δarta + ρr (2)

where A is the set of all road links. δar is the dummy variable of the relation between link a and travel
route r (1, related; 0, otherwise). ta is the travel time of link a, and it can be calculated by the BPR
(Bureau of Public Road) function shown in Formula (3).

ta = t0
a ·
[
1 + 0.15 · ( fa/ua)

4
]
∀a ∈ A (3)

where t0
a is the free-flow travel time of link a. ua is the capacity of link a. fa is the flow of link a.

Assuming R is the route set, fa could be changed into the expression of route flow hr.

fa = ∑
r∈R

δarhr ∀a ∈ A (4)

In Formula (2), ρr is the common factor for travel route r. The calculation of ρr is as follows.
In Formula (5), Lr is the length of the travel route r; Llr is the overlapped length of l and r, and β is
a parameter. If this parameter is equal to zero, the C-logit collapses to the MNL route choice model.
If this parameter is equal to 1, the C-logit choice probabilities in the limiting case of N coincident paths
tend to be 1/N of those calculated with an MNL model applied when considering the coincident paths
as a single path. In this article, we assume that β is equal to 1 for all OD pairs.

ρr = β ln ∑
l∈Rw

(
Llr/

√
Ll · Lr

)
∀r ∈ Rw, w (5)

Our aim is to minimize the flow-ratio difference between the aggregated routes and the
corresponding ID path. This objective function for the θ calibration model is as follows.

min
θ

z = ∑
e∈Ew

(
Pe − ∑

r∈Rw,e

ηr

)2

(6)

where e represents the path of a base station antenna ID (it is a more refined ID that originated from
base station ID). Ew is a set of base station antenna ID paths for the OD pair w. Rw,e is a specific set
of road routes for OD pair w; these routes are inside the corresponding antenna signal coverages,
and their moving direction is the same as that of the ID path e. Pe is the share of the demand covered
by the mobile phone path e versus the whole demand of the related OD pair (Pe can be obtained by
analyzing the collected mobile phone data).

The relationship between the road route and the base station antenna ID path in the objective
function was described in a small case (see Figure 2). Firstly, the authors explained the difference
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between the signal coverages of the base station and the base station antenna. The boundary of the
base station signal coverage (Thiessen Polygon) is shown in a black hexagon in the figure, where the
antenna signal of the corresponding base station could be received by users. As for the antenna signal,
generally, one-directional antennas can only offer 120 degrees of coverage of signal. For the purposes
of an omnidirectional coverage, there were three antennas for each base station. The signal coverage of
different directional antennas in the neighbor base stations generally formed hexagons. Its boundaries
are shown in blue hexagons in the figure. Each hexagon is covered by three antennas of three base
stations nearby, and each hexagon is thus named as the common signal zone (CSZ). The variable ai,j
was used to represent the location ID for the directional antenna j in the base station i. This zone is an
overlapping part of the Thiessen polygon and the CSZ. In this article, the authors assumed that each
zone of the location ID ai,j represented a traffic analysis zone (TAZ). Variable si,j was used to represent
this zone. It is easy to collect zone ID from mobile phone data, so the base station antenna ID path
was directly defined as follows: a set of TAZs constitutes the path of a base station antenna. For the
purposes of convenience, the name ID path was used to represent the meaning of the base station
antenna ID path in this article.
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For a given OD pair w (s2,2 to s6,1), the road route set Rw was assumed to consist of r1,
r2, and r3. It can be seen in Figure 2 that the travel routes r1 and r2 can be matched up to
the same ID path s2,2 ⇒ s2,1 ⇒ s4,1 ⇒ s6,3 ⇒ s6,1 , and the travel route r3 can be matched up to
s2,2 ⇒ s3,3 ⇒ s3,1 ⇒ s5,2 ⇒ s5,1 ⇒ s6,2 ⇒ s6,1 . If the shared portion of the collected demand for the ID
path s2,2 ⇒ s2,1 ⇒ s4,1 ⇒ s6,3 ⇒ s6,1 is P1, while s2,2 ⇒ s3,3 ⇒ s3,1 ⇒ s5,2 ⇒ s5,1 ⇒ s6,2 ⇒ s6,1 is P2,
then the θ calibration model of Formula (6) can be changed to a special style:

min
θ

z =

(
P1 − ∑

r=1,2
exp(−θ · cr)/ ∑

r=1,2,3
exp(−θ · cr)

)2

+

(
P2 − exp(−θ · c3)/ ∑

r=1,2,3
exp(−θ · cr)

)2

(7)
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2.2. Model of Lower Level

(1) Unbalanced condition

If we only consider the unbalanced condition, it means that the perceived travel time is not related
to link flows. The upper level model can obtain the variable θ directly. Thus, we should not construct
the lower level model. Furthermore, we can use the following C-logit model to calculate the route flow.

hr = Dw · exp(−θ · cr)/ ∑
r∈Rw

exp(−θ · cr) ∀r ∈ Rw, w (8)

where Dw is the total travel demand of the OD pair w.

(2) Balanced condition

Function (9) is the SUE in terms of the C-logit model, and thus it also becomes the lower level
model of θ calibration.

min
hr

∑
a∈A

∫ fa

0
ta(x)dx+

1
θ ∑

w
∑

r∈Rw

hr ln hr + ∑
w

∑
r∈Rw

hrρr ∀hrhr ≥ 0 ∀r ∈ Rw, w (9)

Formula (9) is a function of route flow, and it is also known as Fisk’s SUE model.
Fortunately, only one constraint is included in this model, and this constraint is that route flow must
not be less than zero. Fisk’s SUE model is a strictly convex programming problem and has an optimal
route flow solution hr.

3. Solution Algorithms

The complexity of the above problem is similar to the traffic network design problem. It is also a
Non-deterministic Polynomial problem, and the heuristic method is a common approach to this kind
of problem. According to previous research [16], many researchers use the genetic algorithm (GA) and
the simulated annealing (SA) algorithm. It is noted that when the variable is continuous such as in
continuous network design problems, the application of SA is higher because its performance is better
in this condition [16]. The reason is that the SA is less sensitive to the size of the solution space when
compared to other methods such as the GA. In this article, since the variable is continuous, the SA
is adopted.

3.1. Adopted SA Algorithm

The SA is a probabilistic technique for approximating the global optimum of a function. It comes
from annealing in metallurgy, a technique that involves the heating and the controlled cooling of a
material to increase the size of its crystals and to reduce their defects. Initially, a high temperature
is set. As the temperature decreases in each step, the change of the objective function ∆z is
evaluated. If the new solution can generate a better objective value, the solution will be accepted.
Otherwise, the solution will be accepted conditionally with the possibility of exp(−∆z/T), in which T
is the related temperature in that state. The conditional acceptance of inferior solutions enables the
SA to avoid local optima. The SA repeats M times at each controlled temperature to achieve a heat
balance. The M is a control parameter, which is also known as the Markov length. The above step is
repeated until a given computational budget has been exhausted.

Figure 3 shows the flowchart for the proposed SA. It is obvious that there are two feedback
loops. In the outer cooling loop, if the number of iterations n ≥ 12, then temperature T = 0.5T and
n = n + 1; otherwise, T = 0.8T, n = n + 1, and the algorithm will return to the inner loop. In the proposed
algorithm, the temperatures in the consecutive two iterations are different for pre-stage and post-stage
iterations. T would decrease slowly in the pre-stage iteration but would drop quickly in the post-stage
iteration, which could increase the probability of escaping from the local optimum in the pre-stage
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iteration. When iterations of the decision variable θ in the inner loop are conducted, the related random
variable U follows a uniform distribution in the range

[
−
√

3,
√

3
]
.

3.2. Objective Function Calculation Inside SA Algorithm

The procedures for the calculation of the objective function for the given θ in the SA are as follows:
first, the SUE model is solved by using the gradient projection (GP) method, and the route flows are
then obtained. Based on the route flows, the travel costs in the objective function are updated and an
objective function value z(θ) in the grey box of Figure 3 is achieved.Information 2018, 9, x FOR PEER REVIEW  7 of 13 
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In Fisk’s SUE model, the total route cost cr is not simply an accumulation of the link cost
ta; therefore, there is a need for a route-based method rather than a general traffic assignment
method to solve this problem [17]. The GP method is a route-based method, and thus it was chosen.
Another reason for adopting the GP method is that it is a requirement of the nonzero constraint for the
route flow. If the superior solution of a certain iteration is not in the feasible solution space, the GP
method can lead to a superior solution to be orthogonally projected into the feasible solution space.
The orthogonally projected vector would be in a non-obtuse angle relation with the steepest descent
vector; therefore, the GP algorithm is a feasible direction method. The GP algorithm is as follows:
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Step 1: Initialization

Use the C-logit model to assign the initial route flow hr,0 and update the initial link flow fa,0,
then set up the convergence threshold φ and iteration m = 0;

Step 2: Update of the costs of link and route

Use fa,m as the input data to update the link travel cost ta,m; use hr,m to update the mapping
Cr,m = ∑

a∈A
δarta,m + (1 + ln hr,m)/θ + ρr, which is the derivative of the objective Function (9) with

respect to hr,m;

Step 3: Search of the reference routes

Search the reference routes ζw for the OD pair w based on ζw = arg min
r∈Rw
{Cr,m};

Step 4: Projection of route flow

Use the following formula to calculate the non-reference route flow:

hr,m+1 = max
{

0, hr,m −
(
Cr,m − Cζw ,m

)
/(m + 1)

}
∀r ∈ Rw, r 6= ζw (10)

Update non-reference and reference route flows:

hr,m+1 = hr,m+1 (11)

hζw ,m+1 = Dw − ∑
r∈Rw ,r 6=ζw

hr,m+1 (12)

Update the link flow fa,m+1 based on the conservation between link and route flows;

Step 5: Stop criteria

If
√

∑
r
(hr,m+1 − hr,m)

2/|R| ≤ φ, exit (|R| is total route number); otherwise, m = m + 1, return to

Step 2.

The GP algorithm selects the reference route per iteration according to the following criterion:
the unit increase of flow results in the minimum increase in the objective function value. Other routes
are chosen to be the non-reference routes. In other words, the reference route is the best search
direction in the feasible solution space. The flow in the non-reference route is transferred to the
reference route. To ensure that the transferred route flow vector hr is not negative, the negative vectors
will be automatically set to be zero. To prove that the transferred hr is the orthogonal projection
of the original vector in the feasible solution space, we will explain this as follows. Assume that
there is a full space vector y1, and y2 is its orthogonal projection vector in the feasible solution space.
Then, the sufficient and necessary conditions (|y1 − y2| ≤ |y1 − y3|) should be satisfied according to
the GP principle. y3 in this condition is the arbitrary vector in the feasible solution space. The above
condition for y1 and y2 indicates that the orthogonally projected vector has the closest distance to the
original vector. In our route-flow searching case, the non-negative space is set as the feasible solution
space. We set the negative elements in y1 to be zero to ensure that the converted y1 is the one that is
the closest to the primary y1. This operation can accurately make the converted y1 equal to y2 such
that the orthogonal procession is workable.

4. Case Study

4.1. Small-Sized Network

Figure 4 is a model convergence illustration of a small-sized network. Four alternative routes from
A to B are listed in Table 1. The travel route and the ID path is in a one-to-one relation. The collected
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demands for the four ID paths are (240, 230, 215, 210) vehicles per hour. The free flow travel time for
each link is (2, 2, 0.5, 3, 4, 2, 0.5, 4, 2, 1) min, so the total travel time for the four routes is (5, 7, 9, 10)
min. Assume that the parameter ρr = 1. Assume that the link travel time is independent to the link
flow, so the θ calibration model becomes a one-variable model without any constraints. This case uses
a simple golden selection method to solve the parameter. The convergence criterion for the error is
0.001. The last three steps of the method are listed in Table 2. θ is 0.0274, which is the average value at
the last iteration. The objective value converged to 6.7367 × 10−6.Information 2018, 9, x FOR PEER REVIEW  9 of 13 
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Table 1. The travel routes and the ID paths.

# Travel Route ID Path

1 A-1-2-3-7-B s7 ⇒ s6 ⇒ s5 ⇒ s4
2 A-1-2-6-10-B s7 ⇒ s6 ⇒ s3 ⇒ s4
3 A-1-5-9-10-B s7 ⇒ s2 ⇒ s3 ⇒ s4
4 A-4-8-9-10-B s7 ⇒ s1 ⇒ s2 ⇒ s3 ⇒ s4

Table 2. The convergence of the golden selection method in the last three steps.

Iteration Interval Solution at 0.382 Objective Value at 0.382 Solution at 0.618 Objective Value at 0.618

[0.0263,0.0288] 0.0273 6.7451 × 10−6 0.0278 6.8870 × 10−6

[0.0263,0.0278] 0.0269 6.9731 × 10−6 0.0273 6.7451 × 10−6

[0.0269,0.0278] – – – –

Figure 5 is the convergence of the objective value when using SA. When it is converged, the value
in the longitudinal axis point is−11.9079. This value is the same as the logarithmic form of the objective
value obtained in the golden selection method. It demonstrated the validity of SA in some sense.

If the assumption of an independent link cost is relaxed, the BPR function can be used to calculate
link travel time. As for the BPR function, the multiplier and exponent parameters can be 0.15 and 4.
The capacity of each link can be 1000 vehicles per hour. The final θ = 0.03 is obtained when the objective
value reaches 1.3185 × 10−5. The demand and total travel costs for the four routes are shown in
Table 3. It was observed that when the travel cost increased, the demand of the related route decreased
accordingly. This corresponds with the rule of stochastic equilibrium.
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Table 3. The demand and total cost of each travel route.

# of Travel Route Demand Total Cost

1 242.6 6.0817
2 228.3 8.1091
3 215 10.1046
4 209.1 11.0389

4.2. Case Study for Urban Street Network

A data set on 23 December 2016 was obtained from the local telecommunications company for
an urban area (Figure 6a). The data set includes call records, browsing records, and usage records of
cellphone applications such as WeChat and QQ (Figure 6b). During the rush time window of 5:00
p.m.–6:00 p.m., there were 114.1 thousand records which were transferred into 10.9 thousand cellphone
users’ paths. Firstly, an initial screening process was performed. Then, the ID paths were collected for
use in the parameter calibration in the stochastic route choice model.

Figure 7 illustrates the difference between equilibrium and nonequilibrium assignments for a
given θ. The Root Mean Square Error (RMSE) is the difference between the ID path flow inferred in
reverse from the traffic assignment model and the data records from the telecommunication company.
It was clear that the equilibrium assignment performed better than the nonequilibrium assignment
in most of the RMSE results. Therefore, the equilibrium assignment model may be more realistic.
Moreover, the optimal solution of the SA algorithm was obtained when θ = 0.23, which is also close to
the result of enumeration in Figure 7.
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Figure 7. A comparison of equilibrium and nonequilibrium assignments.

To effectively match the travel route and the ID path, the travel route set for each OD pair has
already been generated in the initial step. The assignment of the travel route set follows these rules:
(1) ensure each ID path has a related travel route; (2) the travel route set is developed based on the
K-shortest path algorithm; and (3) the maximum number of route alternatives for an OD pair is less
than 7. To validate the candidate-generation method, we analyze the route flow variation under the
influence of demand variation between TAZs s5,2 and s43,1. As is demonstrated in Figure 8, flows exist
in all five candidate routes (the flow in the sixth alternative is very small so it is omitted in the figure).
It is also observed that the variance of the flows in different alternatives is small under different
demand factors, which means that the assumption of the limited number of alternatives is stable and
could be feasible.
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5. Conclusions

The contribution of this article is the application of mobile phone data in calibrating the
C-logit-based SUE route choice model. This work can not only contribute to the perception parameter
calibration of the route choice model, but also provide an alternative for the matching work of an ID
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path and a road route. The specific difference of the proposed model comes from the construction
of the gap squared function, in which the flow of the base station antenna ID path was taken as the
reference point and matched the covered road routes up to this cell phone trajectory. To validate the
proposed model, two cases were discussed. The small case considered unbalanced and balanced
conditions separately. The unbalanced condition corresponds to the one-level problem, whose precise
result can be acquired by the golden selection method. The convergence procedure by the reference
of precise results was shown. This case also took SUE as the constraint, and it obtained a feasible
route flow. Another complex case was discussed in terms of a city’s network. The matching work
between the phone data trajectory and the route was performed in this case, and the unbalanced and
balanced conditions were tested. It is obvious that the equilibrium assignment performs better than
the nonequilibrium in most RMSE results. Furthermore, the SUE constraints were considered to test
the feasible number of candidate routes. The results revealed that five candidate routes are enough
for candidate routes, and the assumption of the limited number of alternatives is stable and feasible.
In the future, the proposed method will be applied to more urban areas to demonstrate its convergence
and validity.
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