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Abstract: To solve the multi-attribute decision making (MADM) problems with Pythagorean uncertain
linguistic variable, an extended bi-directional projection method is proposed. First, we utilize the
linguistic scale function to convert uncertain linguistic variable and provide a new projection model,
subsequently. Then, to depict the bi-directional projection method, the formative vectors of alternatives
and ideal alternatives are defined. Furthermore, a comparative analysis with projection model
is conducted to show the superiority of bi-directional projection method. Finally, an example of
graduate’s job option is given to demonstrate the effectiveness and feasibility of the proposed method.

Keywords: multi-attribute decision making; projection model; bi-directional projection model;
Pythagorean uncertain linguistic variable

1. Introduction

Multi-attribute decision making (MADM) problem is to select the optimal alternative(s) or get
the ranking order of all alternatives with multiple attributes. For the complexity of the decision
making environment and the limitation of decision makers’ knowledge, vagueness and uncertainty are
typical factors we must take into account. To describe the vague and uncertain information accurately,
Zadeh [1] proposed the concept of fuzzy set. However, applying fuzzy set to solve decision making
problems is confined to the lacking of information. Intuitionistic fuzzy set (IFS) as the extension of
fuzzy set, can capture uncertain information more appropriately. Recently, IFS have been extensively
applied to MADM area, because the superiority in dealing with vague and uncertain information [2–5].
Whereas, IFS is difficult to depict vague and uncertain information when the sum of membership
degree and non-membership degree is bigger than 1.

To express fuzzy information more effectively, Yager [6] proposed the Pythagorean fuzzy set
(PFS) to capture the vague and uncertain information. Different from IFS, the sum of membership
degree and non-membership degree of PFS may be bigger than one, but the square sum of them is
less than one. As a useful extension of IFS, the PFS can depict the problem which the IFS cannot.
For example, if the membership degree and non-membership degree are 0.8 and 0.6, respectively. It is
easily to see, the IFS cannot describe this situation because of 0.8 + 0.6 > 1, but the PFS can effectively
solve the issue due to 0.82 + 0.62 ≤ 1. Since PFS appeared, multi-attribute decision making problems
under PFS environment have got a lot of attention, and some research results have been obtained.
Du et al. [7] proposed a new score function and a new accurate function of PFS. Liang et al. [8],
Liang and Xu [9], and Zhang and Xu [10] extended the TOPSIS (Technique for Order Performance by
Similarity to Ideal Solution) method under PFS and hesitant Pythagorean fuzzy set circumstances,
respectively. A new closeness index of Pythagorean fuzzy set was proposed by Zhang [11] and
the QUALIFLEX (QUALItative FLEXible multiple criteria method) method was extended based on
the closeness index subsequently. Ren et al. [12] presented an extended TODIM (An Acronym in
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Portuguese of Interactive and Multiple Attribute Decision Making) method based on PFS, and made
an emulational analysis for the result. Chen [13] proposed a new distance formula for PFS and an
extended VIKOR (the Serbian name: Vlsekriterijumska Optimizacijia I Kompromisno Resenje) method
was presented based on the distance formula. Following the pioneering work of Yager, Garg [14,15]
developed a new relevant coefficient of PFS and an extended accurate function of interval Pythagorean
fuzzy set (IPFS), respectively. A new MADM method was proposed by Peng and Dai [16] based on
prospect theory and regret theory. Furthermore, Xue et al. [17] defined the concept of entropy of PFS
and extended the LINMAP (The Linear Programming Technique for Multidimensional Analysis of
Preference) method based on the concept. Liang et al. [18] developed a weighted Pythagorean fuzzy
geometric mean operator and extended the projection method based on the geometric mean operator.
Peng and Yang [19] proposed an extended ELECTRE (ELimination Et Choice Translating REality)
method based on IPFS. The new accurate function and similarity measure of PFS were developed by
Zhang [20], respectively.

The projection model can simultaneously consider the angle and distance between two evaluative
values [18]. Therefore, the projection model has been widely applied to replace the single distance
measure in multi-attribute decision making domain. Tsao and Chen [21] developed a projection model
of interval intuitionistic fuzzy set (IIFS) and an extended VIKOR method was proposed based on
the projection model. Sun et al. [22] proposed a projection model of hesitant linguistic variable and
extended the multi-attributive border approximation area comparison (MABAC) method to hesitant
linguistic circumstance. To overcome the drawback of the extant TODIM method, Ji et al. [23] developed
a projection-based TODIM method with multi-valued neutrosophic sets (MVNSs). Wu et al. [24]
proposed an extended projection model based on hesitant linguistic variable to handle the hospital
management problem. Inspired by the advantage of projection model, Liang et al. [25] proposed
an extended PROMETHEE (Preference Ranking Organization Method for Enrichment Evaluations)
method based on the projection model.

Recently, projection model has been extensively applied to solve the MADM problems due to
the advantage of capturing vague and uncertain information. However, projection model cannot
effectively get the ranking order when alternatives distribute on the perpendicular bisector of ideal
alternatives [26]. Motivated by the drawback of the projection model and the advantage of linguistic
variables, we developed an extended bi-directional projection model of Pythagorean uncertain
linguistic variables [27]. Our model can not only utilize the advantage of both Pythagorean uncertain
linguistic variable and projection models but it can also effectively overcome the defects of the
projection model.

This paper is organized as follows. Section 2 presents some basic definitions of IFS, linguistic
variables, and the Pythagorean uncertain linguistic variables. In Section 3, we propose a new
bi-directional projection model. Comparative analysis of the proposed model and projection model is
provided in Section 4 and the MADM Procedures are listed in Section 5. In Section 6, the effectiveness
of the proposed method is demonstrated by a practical MADM problem. Finally, Section 7 comes to
some conclusions.

2. Preliminaries

Definition 1 [2]. Let X be a crisp set, an intuitionistic fuzzy set on X can be defined as

A = 〈x, uA(x), vA(x)|x ∈ X〉.

where, uA(x): X → [0, 1] and vA(x): X → [0, 1] denote membership function and non-membership function
of x ∈ X, respectively, with 0 ≤ uA(x) + vA(x) ≤ 1. π(x) = 1− uA(x)− vA(x) denote the hesitation
function of x ∈ X.
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Definition 2 [28]. Let S = {si|i = 0, 1, · · · , 2z} be linguistic term set, where z is a positive integer and si
denotes an evaluation value of linguistic variable. We call s̃ =

[
sα, sβ

]
as the uncertain linguistic variable,

where sα, sβ ∈ S and 0 ≤ α ≤ β ≤ z, besides, α and β are positive integers. sα, sβ denote the upper bound and
the lower bound, respectively.

Definition 3 [27]. Let X be a fixed set. α̃ =
{〈

xi|
([

sα, sβ

]
, P̃
(

u p̃(xi), v p̃(xi)
))〉
|xi ∈ X

}
denote the

Pythagorean uncertain linguistic variable on X, where function u p̃(x): X → [0, 1] and v p̃(x): X → [0, 1]
denote membership function and non-membership function of x ∈ X, respectively, with u2

p̃(x) + v2
p̃(x) ≤ 1.

To expediently depict the evaluation value, we call α =
〈[

sα, sβ

]
, P̃
(

u p̃(xi), v p̃(xi)
)〉

as the Pythagorean
uncertain linguistic number.

Definition 4 [25]. If ηi ∈ [0, 1] is a numerical value, then the linguistic scale function f can defined as
f : si → ηi(i = 0, 1, · · · , 2z) , where 0 ≤ η0 < η1 < · · · < η2z. ηi represent the preference of decision maker

on the chosen linguistic term si.

f (si) = ηi =


zδ−(z−i)δ

2zδ , 0 ≤ i ≤ z
zγ+(i−z)γ

2zγ , z < i ≤ 2z
(1)

where δ, γ denote the sensibility coefficient, δ, γ ∈ [0, 1] and f is a monotone increasing function.

Definition 5 Let Xp =
(〈[

spj, spj

]
, P̃
(
upj, vpj

)〉)
and Xq =

(〈[
sqj, sqj

]
, P̃
(
uqj, vqj

)〉)
be two Pythagorean

uncertain linguistic variable on X. If we convert Xp and Xq to Xp =
(〈[

f
(

spj

)
, f
(
spj
)]

, P̃
(
upj, vpj

)〉)
and

Xq =
(〈[

f
(

sqj

)
, f
(
sqj
)]

, P̃
(
uqj, vqj

)〉)
via linguistic scale function, then the formative vector of Xp and Xq

is computed as
XpXq =

(〈[
min f

(
spj
)
, max f

(
spj
)]

, P̃
(∣∣uqj − upj

∣∣, ∣∣vqj − vpj
∣∣)〉) (2)

where
min f

(
spj
)
= min

(∣∣∣ f(sqj

)
− f

(
spj

)∣∣∣, ∣∣ f (sqj
)
− f

(
spj
)∣∣)

max f
(
spj
)
= max

(∣∣∣ f(sqj

)
− f

(
spj

)∣∣∣, ∣∣ f (sqj
)
− f

(
spj
)∣∣)

Example 1. Let Xp =
(〈

[s3, s5], P̃(0.6, 0.5)
〉)

and Xq =
(〈

[s4, s5], P̃(0.7, 0.4)
〉)

be two Pythagorean
uncertain linguistic numbers, where z = 4, α = 0.6, γ = 0.8.

According to Definition 4, we can obtain

Xp =
(〈

[0.28, 0.66], P̃(0.6, 0.5)
〉)

Xq =
(〈

[0.5, 0.66], P̃(0.7, 0.4)
〉)

Then, the formative vector of Xp and Xq is obtained via (2).

XpXq =
(〈

[0, 0.22], P̃(0.1, 0.1)
〉)
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3. Bi-Directional Projection Model

3.1. Projection Model

Let α =
〈[

sαj
, sαj

]
, P̃
(

uαj , vαj

)〉
and β =

〈[
sβ j

, sβ j

]
, P̃
(

uβ j , vβ j

)〉
, which are two Pythagorean

uncertain linguistic variables, then the cosine of α and β is defined as

cos(α, β) =

n
∑

j=1

(
f
(

sαj

)
· f
(

sβj

)
+ f
(

sαj

)
· f
(

sβj

)
+u2

αj
·u2

βj
+v2

αj
·v2

βj

)
√√√√ n

∑
j=1

(
f
(

sαj

))2
+
(

f
(

sαj

))2
+
(

uαj

)4
+
(

vαj

)4
·

√√√√ n
∑

j=1

(
f
(

sβj

))2
+
(

f
(

sβj

))2
+
(

uβj

)4
+
(

vβj

)4
(3)

|α| =
√√√√ n

∑
j=1

(
f
(

sαj

))2
+
(

f
(

sαj

))2
+
(

uαj

)4
+
(

vαj

)4
and |β| =

√√√√ n
∑

j=1

(
f
(

sβj

))2
+
(

f
(

sβj

))2
+
(

uβj

)4
+
(

vβj

)4
denote the

modules of α and β. f is linguistic scale function.
Therefore, the projection of α and β is defined as

prjβ(α) = |α| · cos(α, β)

=

n
∑

j=1

(
f
(

sαj

)
· f
(

sβj

)
+ f
(

sαj

)
· f
(

sβj

)
+u2

αj
·u2

βj
+v2

αj
·v2

βj

)
√√√√ n

∑
j=1

(
f
(

sβj

))2
+
(

f
(

sβj

))2
+
(

uβj

)4
+
(

vβj

)4

(4)

Theorem 1 [25]. The cosine of α and β meets the following several properties

(1) cos(α, β) = cos(β, α)

(2) 0 ≤ cos(α, β) ≤ 1
(3) α = β⇔ cos(α, β) = 1

3.2. Bi-Directional Projection Model

Let Xi =
〈[

f
(

sij

)
, f
(
sij
)]

, P̃
(
uij, vij

)〉
be an alternative with Pythagorean uncertain linguistic

variable information. The positive and negative ideal alternatives are denoted as:
X+=

〈[
max

1≤i≤m
f(sij), max

1≤i≤m
f(sij)

]
,P̃
(

max
1≤i≤m

uij, min
1≤i≤m

vij

)〉
and X− =

〈[
min

1≤i≤m
f(sij), min

1≤i≤m
f(sij)

]
,P̃
(

min
1≤i≤m

uij, max
1≤i≤m

vij

)〉
,

respectively, m represents the number of alternatives. Then, the formative vectors of Xi and ideal
alternatives are denoted as

X−X+ =
〈[

f
(

st
ij

)
, f
(

st
ij

)]
, P̃
(

ut
ij, vt

ij

)〉
(5)

X−Xi =
〈[

f
(

s−ij
)

, f
(

s−ij
)]

, P̃
(

u−ij , v−ij
)〉

(6)

XiX+ =
〈[

f
(

s+ij
)

, f
(

s+ij
)]

, P̃
(

u+
ij , v+ij

)〉
(7)

where

f
(

st
ij

)
= min

((
max

1≤i≤m
f
(

sij

)
− min

1≤i≤m
f
(

sij

))
,
(

max
1≤i≤m

f
(
sij
)
− min

1≤i≤m
f
(
sij
)))

f
(

st
ij

)
= max

((
max

1≤i≤m
f
(

sij

)
− min

1≤i≤m
f
(

sij

))
,
(

max
1≤i≤m

f
(
sij
)
− min

1≤i≤m
f
(
sij
)))

ut
ij = max

1≤i≤m
u2

ij − min
1≤i≤m

u2
ij, vt

ij = max
1≤i≤m

v2
ij − min

1≤i≤m
v2

ij

f
(

s−ij
)
= min

((
f
(

sij

)
− min

1≤i≤m
f
(

sij

))
,
(

f
(
sij
)
− min

1≤i≤m
f
(
sij
)))
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f
(

s−ij
)
= max

((
f
(

sij

)
− min

1≤i≤m
f
(

sij

))
,
(

f
(
sij
)
− min

1≤i≤m
f
(
sij
)))

u−ij = u2
ij − min

1≤i≤m
u2

ij, v−ij = v2
ij − min

1≤i≤m
v2

ij

f
(

s+ij
)
= min

((
max

1≤i≤m
f
(

sij

)
− f

(
sij

))
,
(

max
1≤i≤m

f
(
sij
)
− f

(
sij
)))

f
(

s+ij
)
= max

((
max

1≤i≤m
f
(

sij

)
− f

(
sij

))
,
(

max
1≤i≤m

f
(
sij
)
− f

(
sij
)))

u+
ij = max

1≤i≤m
u2

ij − u2
ij, v+ij = max

1≤i≤m
v2

ij − v2
ij

(1)

The modules are computed as

∣∣X−X+
∣∣ =

√√√√ n

∑
j=1

((
f
(

st
ij

))2
+
(

f
(

st
ij

))2
+
(

ut
ij

)4
+
(

vt
ij

)4
)

(8)

∣∣X−Xi
∣∣ =

√√√√ n

∑
j=1

((
f
(

s−ij
))2

+
(

f
(

s−ij
))2

+
(

u−ij
)4

+
(

v−ij
)4
)

(9)

The cosine of X−X+ and X−Xi is expressed as

cos
(
X−Xi, X−X+

)
=

n
∑

j=1

(
f
(

st
ij

)
· f
(

s−ij
)
+ f

(
st

ij

)
· f
(

s−ij
)
+
(

ut
ij · u

−
ij

)2
+
(

vt
ij · v−αij

)2
)

|X−X+| · |X−Xi|
(10)

The projection value of X−Xi on X−X+ and X−X+ on XiX+ are calculated as

prjX−X+(X−Xi) = |X−Xi| · cos(X−Xi, X−X+)

=

n
∑

j=1

(
f
(

st
ij

)
· f
(

s−ij
)
+ f
(

st
ij

)
· f
(

s−ij
)
+
(

ut
ij ·u
−
ij

)2
+
(

vt
ij ·v
−
ij

)2
)

|X−X+ |

(11)

prjXiX+(X−X+) = |X−X+| · cos(XiX+, X−X+)

=

n
∑

j=1

(
f
(

st
ij

)
· f
(

s+ij
)
+ f
(

st
ij

)
· f
(

s+ij
)
+
(

ut
ij ·u

+
ij

)2
+
(

vt
ij ·v

+
ij

)2
)

|XiX+ |

(12)

Theorem 2. The bigger the value of prjX−X+(X−Xi), the closer the alternative Xi to positive ideal alternative
X+. Analogously, the bigger the value of prjXiX+(X−X+), the closer the alternative Xi will be to negative ideal
alternative X− (as shown in Figure 1 [29]).
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.
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4. Comparative Analysis of Projection Model and Bi-Directional Projection Model

Let Xi =
〈[

f
(

sij

)
, f
(
sij
)]

, P̃
(
uij, vij

)〉
and Xl =

〈[
f
(

sl j

)
, f
(

sl j

)]
, P̃
(

ul j, vl j

)〉
, which are two

alternatives with Pythagorean uncertain linguistic variable information, the positive and negative ideal

alternatives are defined as X+ =

〈[
max

1≤i≤m
f
(

sij

)
, max

1≤i≤m
f
(
sij
)]

, P̃
(

max
1≤i≤m

uij, min
1≤i≤m

vij

)〉
and X− =〈[

min
1≤i≤m

f
(

sij

)
, min

1≤i≤m
f
(
sij
)]

, P̃
(

min
1≤i≤m

uij, max
1≤i≤m

vij

)〉
, respectively. The Xi and Xl distribute on the

perpendicular bisector of X− and X+ (shown as Figure 2). We compare the Xi and Xl via projection
and bi-directional projection models, respectively.
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4.1. Projection Model

Step 1: Compute the projection of Xi and Xl on the positive and negative ideal alternatives via (4).

prjX+(Xi) = |Xi| · cos(Xi, X+)

=

n
∑

j=1

(
f (sij)· max

1≤i≤m
f (sij)+ f (sij)· max

1≤i≤m
f (sij)+u2

ij · max
1≤i≤m

u2
ij+v2

ij · min
1≤i≤m

v2
ij

)
√√√√ n

∑
j=1

(
max

1≤i≤m
f (sij)

)2
+

(
max

1≤i≤m
f (sij)

)2
+

(
max

1≤i≤m
uij

)4
+

(
min

1≤i≤m
vij

)4
(13)

prjX−(Xi) = |Xi| · cos(Xi, X−)

=

n
∑

j=1

(
f (sij)· min

1≤i≤m
f (sij)+ f (sij)· min

1≤i≤m
f (sij)+u2

ij · min
1≤i≤m

u2
ij+v2

ij · max
1≤i≤m

v2
ij

)
√√√√ n

∑
j=1

(
min

1≤i≤m
f (sij)

)2
+

(
min

1≤i≤m
f (sij)

)2
+

(
min

1≤i≤m
uij

)4
+

(
max

1≤i≤m
vij

)4
(14)

prjX+(Xl) = |Xl | · cos(Xl , X+)

=

n
∑

j=1

(
f (sl j)· max

1≤l≤m
f (sl j)+ f (sl j)· max

1≤l≤m
f (sl j)+u2

l j · max
1≤l≤m

u2
l j+v2

l j · min
1≤l≤m

v2
l j

)
√√√√ n

∑
j=1

(
max

1≤l≤m
f (sl j)

)2
+

(
max

1≤l≤m
f (sl j)

)2
+

(
max

1≤l≤m
ul j

)4
+

(
min

1≤l≤m
vl j

)4
(15)

prjX−(Xl) = |Xl | · cos(Xl , X−)

=

n
∑

j=1

(
f (sl j)· min

1≤l≤m
f (sl j)+ f (sl j)· min

1≤l≤m
f (sl j)+u2

l j · min
1≤l≤m

u2
l j+v2

l j · max
1≤l≤m

v2
l j

)
√√√√ n

∑
j=1

(
min

1≤l≤m
f (sl j)

)2
+

(
min

1≤l≤m
f (sl j)

)2
+

(
min

1≤l≤m
ul j

)4
+

(
max

1≤l≤m
vl j

)4
(16)

Step 2: Calculate the closeness degree of Xi and Xl to ideal alternatives, respectively.

C(Xi) =
prjX+(Xi)

prjX−(Xi) + prjX+(Xi)
(17)



Information 2018, 9, 104 7 of 12

C(Xl) =
prjX+(Xl)

prjX−(Xl) + prjX+(Xl)
(18)

we can see prjX+(Xi) = prjX−(Xi) and prjX+(Xl) = prjX−(Xl) because the Xi and Xl distribute on
the perpendicular bisector of X− and X+. Therefore, C(Xi) = C(Xl) =

1
2 , Xi~Xl .

Where the closeness degree is ranking indicators. The bigger value of the closeness degree,
the better the preference order of the alternatives.

4.2. Bi-Directional Projection Model

Step 1: Compute the formative vector: XiX+, X−Xi, XlX+, X−Xl , respectively.

X−X+ =
〈[

f
(

st
ij

)
, f
(

st
ij

)]
, P̃
(

ut
ij, vt

ij

)〉
(19)

X−Xi =
〈[

f
(

s−ij
)

, f
(

s−ij
)]

, P̃
(

u−ij , v−ij
)〉

(20)

XiX+ =
〈[

f
(

s+ij
)

, f
(

s+ij
)]

, P̃
(

u+
ij , v+ij

)〉
(21)

XlX+ =
〈[

f
(

s+l j
)

, f
(

s+l j
)]

, P̃
(

u+
l j , v+l j

)〉
(22)

X−Xl =
〈[

f
(

s−l j
)

, f
(

s−l j
)]

, P̃
(

u−l j , v−l j
)〉

(23)

Step 2: Calculate the projection value of formative vector X−Xi and X−Xl to X−X+, denoted as
prjX−X+(X−Xi), prjX−X+(X−Xl), and the projection value of formative vector X−X+ to XiX+

and XlX+, denoted as prjXiX+(X−X+), prjXl X+(X−X+), respectively (shown as Figure 3).

prjX−X+(X−Xi) = |X−Xi| · cos(X−Xi, X−X+)

=

n
∑

j=1

(
f
(

st
ij

)
· f
(

s−ij
)
+ f
(

st
ij

)
· f
(

s−ij
)
+
(

ut
ij ·u
−
ij

)2
+
(

vt
ij ·v
−
ij

)2
)

|X−X+ |

(24)

prjXiX+(X−X+) = |X−X+| · cos(XiX+, X−X+)

=

n
∑

j=1

(
f
(

st
ij

)
· f
(

s+ij
)
+ f
(

st
ij

)
· f
(

s+ij
)
+
(

ut
ij ·u

+
ij

)2
+
(

vt
ij ·v

+
ij

)2
)

|XiX+ |

(25)

prjX−X+(X−Xl) = |X−Xl | · cos(X−Xl , X−X+)

=

n
∑

j=1

(
f
(

st
l j

)
· f
(

s−l j
)
+ f
(

st
l j

)
· f
(

s−l j
)
+
(

ut
l j ·u
−
l j

)2
+
(

vt
l j ·v
−
l j

)2
)

|X−X+ |

(26)

prjXl X+(X−X+) = |X−X+| · cos(XlX+, X−X+)

=

n
∑

j=1

(
f
(

st
l j

)
· f
(

s+l j
)
+ f
(

st
l j

)
· f
(

s+l j
)
+
(

ut
l j ·u

+
l j

)2
+
(

vt
l j ·v

+
l j

)2
)

|XiX+ |

(27)

Step 3: Compute the closeness degree of Xi and Xl to ideal alternatives.

C(Xi) =
prjX−X+(X−Xi)

prjX−X+(X−Xi) + prjXiX+(X−X+)
(28)

C(Xl) =
prjX−X+(X−Xl)

prjX−X+(X−Xl) + prjXl X+(X−X+)
(29)

We can see prjX−X+(X−Xi) = prjX−X+(X−Xl) because Xi and Xl distribute on the perpendicular
bisector of ideal alternatives, as shown in Figure 3 prjXl X+(X−X+) > prjXiX+(X−X+). Therefore,
C(Xi) > C(Xl), Xi � Xl .
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From the foregoing analysis, we can know the projection model is difficult to obtain the ranking
order of Xi and Xl , when they distribute on the perpendicular bisector of ideal alternatives. Whereas,
the bi-directional projection model can remarkably overcome the drawback and get the rational ranking
order of Xi and Xl .
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5. Decision Making Steps of Bi-Directional Projection Model

To solve certain decision making problems, we propose a new bi-directional projection model
based on Pythagorean uncertain linguistic variables. X = {X1, X2, · · · , Xn} denotes the set of
alternatives, the set of attributes are denoted by C = {C1, C2, · · · , Cn} and the weights are represented

by W = {w1, w2, · · · , wn}, where wj ∈ [0, 1],
n
∑

j=1
wj = 1. α =

〈[
sij, sij

]
, P̃
(
uij, vij

)〉
is the evaluation

value of Xi under Cj with Pythagorean uncertain linguistic variable information. The linguistic term set
is S = {s0, s1, · · · , s2z}, Ib and Ic denote the benefit attribute and cost attribute, respectively. In general,
the proposed method involves the following steps:

Step 1: Construct the decision making matrix α =
(
αij
)

with Pythagorean uncertain linguistic
variable information, and normalize the decision matrix.

αij =

{
αij , bene f it attribute Ib(

αij
)c, cost attribute Ic

where,
(
αij
)c is the complement of αij, and the form of

(
αij
)c is defined as

(
αij
)c

=〈[
f−
(

f (st)− f
(
sij
))

, f−
(

f (st)− f
(

sij

))]
, P
(
vij, uij

)〉
.

Step 2: Convert the Pythagorean uncertain linguistic variable to Pythagorean uncertain linguistic
function via the linguistic scale function.

Step 3: Determine the ideal alternatives β+ =
{

β+
1 , β+

2 , · · · , β+
n
}

and β− =
{

β−1 , β−2 , · · · , β−n
}

.

Where,

β+
j =

〈[
max

1≤i≤m
f
(

sij

)
, max

1≤i≤m
f
(
sij
)]

, P̃
(

max
1≤i≤m

uij, min
1≤i≤m

vij

)〉
β−j =

〈[
min

1≤i≤m
f
(

sij

)
, min

1≤i≤m
f
(
sij
)]

, P̃
(

min
1≤i≤m

uij, max
1≤i≤m

vij

)〉
Step 4: Compute the formative vector of ideal alternative and Xi via (2).
Step 5: Calculate the projection value of formative vector X−Xi to X−X+, denoted as

prjX−X+(X−Xi), and the projection value of formative vector X−X+ to XiX+, denoted as
prjXiX+(X−X+), respectively.
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Step 6: Develop a closeness degree formula based on TOPSIS method, and obtain the ranking order
of all alternatives via closeness degree.

C(Xi) =
prjX−X+(X−Xi)

prjX−X+(X−Xi) + prjXiX+(X−X+)

6. Numerical Example

It is essential to choose the right enterprise for graduates’ future development. In order to
provide reasonable employment guidance for graduates, we get the influence factors by questionnaires
of 260 college graduates of Shandong province. After eliminating the invalid and incomplete
questionnaires, seven main attributes are selected to evaluate the alternative companies according
to 210 valid questionnaires. The set of attributes is: {prospects of company, working strength, wage level,
personal prospects, social insurance and house funding, professional relevance, geographical}. For the sake
of convenience, the set of attributes is denoted by {C1, C2, C3, C4, C5, C6, C7}. C2 is cost attribute and
the rest are benefit attributes. The detailed guidance process of a graduate is shown as follows:
The set of companies are denoted as: {A1, A2, · · · , A10} and the weights are {w1, w2, · · · , w7},
where, w1 = 0.12, w2 = 0.06, w3 = 0.2, w4 = 0.24, w5 = 0.1, w6 = 0.21, w7 = 0.07, which are
given by experts, α =

〈[
sij, sij

]
, P̃
(
uij, vij

)〉
is the evaluation value of Xi under Cj with Pythagorean

uncertain linguistic variable information. The linguistic term set is: S = {s0 = extremely bad, s1 = very
bad, s2 = bad, s3 = slightly bad, s4 = fair, s5 = good, s6 = slightly good, s7 = very good, s8 = extremely good}.
Determine the ranking order of the 10 companies based on bi-directional projection model.

Step 1: Construct the decision making matrix α =
(
αij
)

with Pythagorean uncertain linguistic
variable information, and normalize the decision matrix.

c1 c2 c3 c4 c5

A1 〈[s4, s6], (0.8, 0.6)〉 〈[s5, s6], (0.6, 0.8)〉 〈[s5, s7], (0.8, 0.6)〉 〈[s4, s6], (0.7, 0.6)〉 〈[s4, s5], (0.8, 0.6)〉
A2 〈[s5, s7], (0.8, 0.4)〉 〈[s4, s7], (0.6, 0.7)〉 〈[s6, s7], (0.9, 0.3)〉 〈[s7, s8], (0.8, 0.3)〉 〈[s6, s7], (0.9, 0.2)〉
A3 〈[s4, s7], (0.7, 0.6)〉 〈[s4, s6], (0.6, 0.7)〉 〈[s4, s6], (0.8, 0.5)〉 〈[s4, s5], (0.6, 0.5)〉 〈[s6, s8], (0.7, 0.4)〉
A4 〈[s4, s5], (0.7, 0.5)〉 〈[s5, s8], (0.5, 0.7)〉 〈[s3, s5], (0.6, 0.5)〉 〈[s5, s6], (0.7, 0.4)〉 〈[s4, s5], (0.6, 0.3)〉
A5 〈[s5, s7], (0.8, 0.4)〉 〈[s5, s7], (0.5, 0.8)〉 〈[s5, s6], (0.6, 0.4)〉 〈[s6, s7], (0.6, 0.5)〉 〈[s3, s6], (0.6, 0.5)〉
A6 〈[s6, s8], (0.7, 0.5)〉 〈[s6, s7], (0.4, 0.5)〉 〈[s3, s5], (0.8, 0.5)〉 〈[s4, s7], (0.7, 0.5)〉 〈[s5, s7], (0.7, 0.4)〉
A7 〈[s5, s6], (0.6, 0.5)〉 〈[s6, s8], (0.6, 0.7)〉 〈[s4, s5], (0.6, 0.5)〉 〈[s6, s8], (0.7, 0.3)〉 〈[s6, s7], (0.7, 0.5)〉
A8 〈[s4, s6], (0.7, 0.6)〉 〈[s5, s6], (0.3, 0.9)〉 〈[s5, s7], (0.6, 0.4)〉 〈[s4, s5], (0.6, 0.4)〉 〈[s4, s5], (0.8, 0.5)〉
A9 〈[s6, s8], (0.7, 0.6)〉 〈[s4, s7], (0.4, 0.8)〉 〈[s4, s5], (0.7, 0.5)〉 〈[s5, s6], (0.6, 0.5)〉 〈[s4, s7], (0.6, 0.5)〉
A10 〈[s4, s7], (0.8, 0.5)〉 〈[s3, s5], (0.5, 0.7)〉 〈[s4, s6], (0.6, 0.5)〉 〈[s4, s6], (0.7, 0.5)〉 〈[s4, s5], (0.7, 0.4)〉

c6 c7

A1 〈[s6, s7], (0.7, 0.6)〉 〈[s6, s8], (0.8, 0.5)〉
A2 〈[s6, s8], (0.8, 0.6)〉 〈[s6, s7], (0.8, 0.4)〉
A3 〈[s4, s5], (0.7, 0.5)〉 〈[s4, s7], (0.6, 0.4)〉
A4 〈[s5, s6], (0.6, 0.4)〉 〈[s5, s7], (0.6, 0.5)〉
A5 〈[s5, s7], (0.7, 0.4)〉 〈[s4, s7], (0.7, 0.4)〉
A6 〈[s5, s8], (0.7, 0.3)〉 〈[s5, s7], (0.8, 0.6)〉
A7 〈[s6, s7], (0.8, 0.4)〉 〈[s4, s6], (0.7, 0.5)〉
A8 〈[s4, s5], (0.9, 0.3)〉 〈[s6, s7], (0.7, 0.6)〉
A9 〈[s4, s6], (0.6, 0.4)〉 〈[s7, s8], (0.6, 0.3)〉
A10 〈[s5, s7], (0.7, 0.5)〉 〈[s4, s5], (0.7, 0.4)〉
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Step 2: Convert the Pythagorean uncertain linguistic variable to Pythagorean uncertain linguistic
function via the linguistic scale function, where α = 0.6, γ = 0.8.

c1 c2 c3 c4 c5

A1 〈[0.5, 0.79], (0.8, 0.6)〉 〈[0.66, 0.79], (0.6, 0.8)〉 〈[0.66, 0.9], (0.8, 0.6)〉 〈[0.5, 0.79], (0.7, 0.6)〉 〈[0.5, 0.66], (0.8, 0.6)〉

A2 〈[0.66, 0.9], (0.8, 0.4)〉 〈[0.5, 0.9], (0.6, 0.7)〉 〈[0.79, 0.9], (0.9, 0.3)〉 〈[0.9, 1], (0.8, 0.3)〉 〈[0.79, 0.9], (0.9, 0.2)〉

A3 〈[0.5, 0.9], (0.7, 0.6)〉 〈[0.5, 0.79], (0.6, 0.7)〉 〈[0.5, 0.79], (0.8, 0.5)〉 〈[0.5, 0.66], (0.6, 0.5)〉 〈[0.79, 1], (0.7, 0.4)〉

A4 〈[0.5, 0.66], (0.7, 0.5)〉 〈[0.66, 1], (0.5, 0.7)〉 〈[0.28, 0.66], (0.6, 0.5)〉 〈[0.66, 0.79], (0.7, 0.4)〉 〈[0.5, 0.66], (0.6, 0.3)〉

A5 〈[0.66, 0.9], (0.8, 0.4)〉 〈[0.66, 0.9], (0.5, 0.8)〉 〈[0.66, 0.79], (0.6, 0.4)〉 〈[0.79, 0.9], (0.6, 0.5)〉 〈[0.28, 0.79], (0.6, 0.5)〉

A6 〈[0.79, 1], (0.7, 0.5)〉 〈[0.79, 0.9], (0.4, 0.5)〉 〈[0.28, 0.66], (0.8, 0.5)〉 〈[0.5, 0.9], (0.7, 0.5)〉 〈[0.66, 0.89], (0.7, 0.4)〉

A7 〈[0.66, 0.79], (0.6, 0.5)〉 〈[0.79, 1], (0.6, 0.7)〉 〈[0.5, 0.66], (0.6, 0.5)〉 〈[0.79, 1], (0.7, 0.3)〉 〈[0.79, 0.9], (0.7, 0.5)〉

A8 〈[0.5, 0.79], (0.7, 0.6)〉 〈[0.66, 0.79], (0.3, 0.9)〉 〈[0.66, 0.9], (0.6, 0.4)〉 〈[0.5, 0.66], (0.6, 0.4)〉 〈[0.5, 0.66], (0.8, 0.5)〉

A9 〈[0.79, 1], (0.7, 0.6)〉 〈[0.5, 0.9], (0.4, 0.8)〉 〈[0.5, 0.66], (0.7, 0.5)〉 〈[0.66, 0.79], (0.6, 0.5)〉 〈[0.5, 0.9], (0.6, 0.5)〉

A10 〈[0.5, 1], (0.8, 0.5)〉 〈[0.28, 0.66], (0.5, 0.7)〉 〈[0.5, 0.79], (0.6, 0.5)〉 〈[0.5, 0.79], (0.7, 0.5)〉 〈[0.5, 0.66], (0.7, 0.4)〉

c6 c7

A1 〈[0.79, 0.9], (0.7, 0.6)〉 〈[0.79, 1], (0.8, 0.5)〉

A2 〈[0.79, 1], (0.8, 0.6)〉 〈[0.79, 0.9], (0.8, 0.4)〉

A3 〈[0.5, 0.66], (0.7, 0.5)〉 〈[0.5, 0.9], (0.6, 0.4)〉

A4 〈[0.66, 0.79], (0.6, 0.4)〉 〈[0.66, 0.9], (0.6, 0.5)〉

A5 〈[0.66, 0.9], (0.7, 0.4)〉 〈[0.5, 0.9], (0.7, 0.4)〉

A6 〈[0.66, 1], (0.7, 0.3)〉 〈[0.66, 0.9], (0.8, 0.6)〉

A7 〈[0.79, 0.9], (0.8, 0.4)〉 〈[0.5, 0.79], (0.7, 0.5)〉

A8 〈[0.5, 0.66], (0.9, 0.3)〉 〈[0.79, 0.9], (0.7, 0.6)〉

A9 〈[0.5, 0.79], (0.6, 0.4)〉 〈[0.9, 1], (0.6, 0.3)〉

A10 〈[0.66, 0.9], (0.7, 0.5)〉 〈[0.5, 0.66], (0.7, 0.4)〉

Step 3: Determine the positive and negative ideal alternatives X+ and X−.

X+ = {〈[0.79, 1], (0.8, 0.4)〉, 〈[0.79, 1], (0.6, 0.5)〉, 〈[0.79, 1], (0.9, 0.3)〉, 〈[0.9, 1], (0.8, 0.3)〉, 〈[0.79, 1], (0.9, 0.3)〉,

〈[0.79, 1], (0.9, 0.3)〉, 〈[0.9, 1], (0.8, 0.3)〉}

X− = {〈[0.5, 0.66], (0.6, 0.6)〉, 〈[0.28, 0.66], (0.3, 0.9)〉, 〈[0.28, 0.66], (0.6, 0.6)〉, 〈[0.5, 0.66], (0.6, 0.6)〉, 〈[0.28, 0.66], (0.6, 0.6)〉,

〈[0.5, 0.66], (0.6, 0.6)〉, 〈[0.5, 0.66], (0.6, 0.6)〉}

Step 4: Compute the formative vector of ideal alternative and Xi via (2).

X−X+ = {〈[0.29, 0.34], (0.2, 0.2)〉, 〈[0.34, 0.51], (0.3, 0.4)〉, 〈[0.34, 0.51], (0.3, 0.3)〉, 〈[0.34, 0.4], (0.2, 0.3)〉,
〈[0.24, 0.51], (0.3, 0.3)〉, 〈[0.29, 0.34], (0.3, 0.3)〉, 〈[0.34, 0.4], (0.2, 0.3)〉}

Similarly, we can get the formative vector of ideal alternative and .
Step 5: Calculate the projection value of formative vector X−Xi to X−X+, denoted as

prjX−X+(X−Xi), and the projection value of formative vector X−X+ to XiX+, denoted as
prjXiX+(X−X+), respectively.

prjX−X+(X−Xi) 0.487 0.822 0.429 0.357 0.508 0.59 0.607 0.412 0.467 0.341
prjXiX+(X−X+) 1.39 2.057 1.322 1.288 1.488 1.395 1.512 1.261 1.403 1.269

Step 6: Compute the closeness degree and obtain the ranking order of all alternatives via
closeness degree.

C(Xi) 0.259 0.285 0.245 0.217 0.254 0.297 0.287 0.246 0.25 0.212
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where,

C(X6) > C(X7) > C(X2) > C(X1) > C(X5) > C(X9) > C(X8) > C(X3) > C(X4) > C(X10)

Therefore, A6 � A7 � A2 � A1 � A5 � A9 � A8 � A3 � A4 � A10, and A6 is the best company
for this graduate.

7. Conclusions

To solve multi-attribute decision making (MADM) problems with Pythagorean uncertain linguistic
variables, we proposed an extended bi-directional projection model. The extended model can take the
advantages of the Pythagorean uncertain linguistic variable and projection models, and effectively
overcome the drawbacks of the single distance measure. The feasibility of the proposed method is
demonstrated by the graduates’ job-hunting problem.

The superiority of our bi-directional projection model is that it can consider the angle and distance
between two evaluation values simultaneously. Compared with projection model, the proposed model
can handle the real-life case of alternatives distribution on the perpendicular bisector of positive and
negative ideal alternatives, which made it widely suitable in MADM. However, the proposed method
does not consider the psychological risk factors of decision makers in this paper, which will be explored
in the future research.
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