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Abstract: The aim of this paper is to introduce the concept of αψ-closed sets in terms of neutrosophic
topological spaces. We also study some of the properties of neutrosophic αψ-closed sets. Further,
we introduce continuity and contra continuity for the introduced set. The two functions and their
relations are studied via a neutrosophic point set.
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1. Introduction

Zadeh [1] introduced and studied truth (t), the degree of membership, and defined the fuzzy
set theory. The falsehood (f), the degree of nonmembership, was introduced by Atanassov [2–4]
in an intuitionistic fuzzy set. Coker [5] developed intuitionistic fuzzy topology. Neutrality (i),
the degree of indeterminacy, as an independent concept, was introduced by Smarandache [6,7] in 1998.
He also defined the neutrosophic set on three components (t, f , i) = (truth, f alsehood, indeterminacy).
The Neutrosophic crisp set concept was converted to neutrosophic topological spaces by Salama et al.
in [8]. This opened up a wide range of investigation in terms of neutosophic topology and its
application in decision-making algorithms. Arokiarani et al. [9] introduced and studied α-open sets
in neutrosophic topoloical spaces. Devi et al. [10–12] introduced αψ-closed sets in general topology,
fuzzy topology, and intutionistic fuzzy topology. In this article, the neutrosophic αψ-closed sets are
introduced in neutrosophic topological space. Moreover, we introduce and investigate neutrosophic
αψ-continuous and neutrosophic contra αψ-continuous mappings.

2. Preliminaries

Let neutrosophic topological space (NTS) be(X, τ). Each neutrosophic set(NS) in (X, τ) is called a
neutrosophic open set (NOS), and its complement is called a neutrosophic open set (NOS).

We provide some of the basic definitions in neutrosophic sets. These are very useful in the sequel.

Definition 1. [6] A neutrosophic set (NS) A is an object of the following form

U = {〈x, µU(x), νU(a), ωU(x)〉 : x ∈ X}
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where the mappings µU : X → I, νU : X → I, and ωU : X → I denote the degree of membership
(namely µU(x)), the degree of indeterminacy (namely νU(x)), and the degree of nonmembership (namely ωU(x))
for each element x ∈ X to the set U, respectively, and 0 ≤ µU(x) + νU(x) + ωU(x) ≤ 3 for each a ∈ X.

Definition 2. [6] Let U and V be NSs of the form U = {〈a, µU(x), νU(x), ωU(x)〉 : a ∈ X} and
V = {〈x, µV(x), νV(x), ωV(x)〉 : x ∈ X}. Then

(i) U ⊆ V if and only if µU(x) ≤ µV(x), νU(x) ≥ νV(x) and ωU(x) ≥ ωV(x);
(ii) U = {〈x, νU(x), µU(x), ωU(x)〉 : x ∈ X};
(iii) U ∩V = {〈x, µU(x) ∧ µV(x), νU(x) ∨ νV(x), ωU(x) ∨ωV(x)〉 : x ∈ X};
(iv) U ∪V = {〈x, µU(x) ∨ µV(x), νU(x) ∧ νV(x), ωU(x) ∧ωV(x)〉 : x ∈ X}.

We will use the notation U = 〈x, µU , νU , ωU〉 instead of U = {〈x, µU(x), νU(x), ωU(x)〉 : x ∈ X}.
The NSs 0∼ and 1∼ are defined by 0∼ = {〈x, 0, 1, 1〉 : x ∈ X} and 1∼ = {〈x, 1, 0, 0〉 : x ∈ X}.

Let r, s, t ∈ [0, 1] such that r + s + t ≤ 3. A neutrosophic point (NP) p(r,s,t) is neutrosophic set defined by

p(r,s,t)(x) =

{
(r, s, t)(x) i f x = p
(0, 1, 1) otherwise.

Let f be a mapping from an ordinary set X into an ordinary set Y. If V = {〈y, µV(y), νV(y), ωV(y)〉 :
y ∈ Y} is an NS in Y, then the inverse image of V under f is an NS defined by

f−1(V) = {
〈

x, f−1(µV)(x), f−1(νV)(x), f−1(ωV)(x)
〉

: x ∈ X}.

The image of NS U = {〈y, µU(y), νU(y), ωU(y)〉 : y ∈ Y} under f is an NS defined by
f (U) = {〈y, f (µU)(y), f (νU)(y), f (ωU)(y)〉 : y ∈ Y} where

f (µU)(y) =

 sup
x∈ f−1(y)

µU(x), i f f−1(y) 6= 0

0 otherwise

f (νU)(y) =

 inf
x∈ f−1(y)

νU(x), i f f−1(y) 6= 0

1 otherwise

f (ωU)(y) =

 inf
x∈ f−1(y)

ωU(x), i f f−1(y) 6= 0

1 otherwise

for each y ∈ Y.

Definition 3. [8] A neutrosophic topology (NT) in a nonempty set X is a family τ of NSs in X satisfying the
following axioms:

(NT1) 0∼, 1∼ ∈ τ;
(NT2) G1 ∩ G2 ∈ τ for any G1, G2 ∈ τ;
(NT3) ∪Gi ∈ τ for any arbitrary family {Gi : i ∈ J} ⊆ τ.

Definition 4. [8] Let U be an NS in NTS X. Then
Nint(U) = ∪{O : O is an NOS in X and O ⊆ U} is called a neutrosophic interior of U;
Ncl(U) = ∩{O : O is an NCS in X and O ⊇ U} is called a neutrosophic closure of U.

Definition 5. [8] Let p(r,s,t) be an NP in NTS X. An NS U in X is called a neutrosophic neighborhood (NN)
of p(r,s,t) if there exists an NOS V in X such that p(r,s,t) ∈ V ⊆ U.

Definition 6. [9] A subset U of a neutrosophic space (X, τ) is called
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1. a neutrosophic pre-open set if U ⊆ Nint(Ncl(U)), and a neutrosophic pre-closed set if
Ncl(Nint(U)) ⊆ U,

2. a neutrosophic semi-open set if U ⊆ Ncl(Nint(U)), and a neutrosophic semi-closed set if
Nint(Ncl(U)) ⊆ U,

3. a neutrosophic α-open set if U ⊆ Nint(Ncl(Nint(U))), and a neutrosophic α-closed set if
Ncl(Nint(Ncl(U))) ⊆ U.

The pre-closure (respectively, semi-closure and α-closure) of a subset U of a neutrosophic space (X, τ) is the
intersection of all pre-closed (respectively, semi-closed, α-closed) sets that contain U and is denoted by Npcl(U)

(respectively, Nscl(U) and Nαcl(U)).

Definition 7. A subset A of a neutrosophic topological space (X, τ) is called

1. a neutrosophic semi-generalized closed (briefly, Nsg-closed) set if Nscl(U) ⊆ G whenever U ⊆ G and G
is neutrosophic semi-open in (X, τ);

2. a neutrosophic Nψ-closed set if Nscl(U) ⊆ G whenever U ⊆ G and G is Nsg-open in (X, τ).

3. On Neutrosophic αψ-Closed Sets

Definition 8. A neutrosophic αψ-closed (Nαψ-closed) set is defined as if Nψcl(U) ⊆ G whenever U ⊆ G
and G is an Nα-open set in (X, τ). Its complement is called a neutrosophic αψ-open (Nαψ-open) set.

Definition 9. Let U be an NS in NTS X. Then
Nαψint(U) = ∪{O : O is an NαψOS in X and O ⊆ U} is said to be a neutrosophic αψ-interior of U;
Nαψcl(U) = ∩{O : O is an NαψCS in X and O ⊇ U} is said to be a neutrosophic αψ-closure of U.

Theorem 1. All Nα-closed sets and N-closed sets are Nαψ-closed sets.

Proof. Let U be an Nα-closed set, then U = Nαcl(U). Let U ⊆ G, where G is Nα-open. Since U is
Nα-closed, Nψcl(U) ⊆ Nαcl(U) ⊆ G. Thus, U is Nαψ-closed.

Theorem 2. Every Nsemi-closed set in a neutrosophic set is an Nαψ-closed set.

Proof. Let U be an Nsemi-closed set in (X, τ), then U = Nscl(U). Let U ⊆ G, where G is Nα-open in
(X, τ). Since U is Nsemi-closed, Nψcl(U) ⊆ Nscl(U) ⊆ G. This shows that U is Nαψ-closed set.

The converses of the above theorems are not true, as can be seen by the following counter
example.

Example 1. Let X = {u, v, w} and neutrosophic sets G1, G2, G3, G4 be defined by

G1 =
〈

x, ( u
0.3 , v

0.4 , w
0.2), (

u
0.5 , v

0.1 , w
0.2), (

u
0.2 , v

0.5 , w
0.6)
〉

G2 =
〈

x, ( u
0.6 , v

0.3 , w
0.4), (

u
0.1 , v

0.5 , w
0.1), (

u
0.3 , v

0.2 , w
0.5)
〉

G3 =
〈

x, ( u
0.6 , v

0.4 , w
0.4), (

u
0.1 , v

0.1 , w
0.1), (

u
0.2 , v

0.2 , w
0.5)
〉

G4 =
〈

x, ( u
0.3 , v

0.3 , w
0.2), (

u
0.5 , v

0.5 , w
0.2), (

u
0.3 , v

0.5 , w
0.6)
〉

G5 =
〈

x, ( u
0.3 , v

0.3 , w
0.3), (

u
0.5 , v

0.5 , w
0.4), (

u
0.3 , v

0.5 , w
0.3)
〉

G6 =
〈

x, ( u
0.6 , v

0.4 , w
0.5), (

u
0.1 , v

0.3 , w
0.1), (

u
0.3 , v

0.3 , w
0.4)
〉

G7 =
〈

x, ( u
0.2 , v

0.3 , w
0.3), (

u
0.5 , v

0.5 , w
0.2), (

u
0.3 , v

0.3 , w
0.5)
〉
.

Let τ = {0∼, G1, G2, G3, G4, 1∼}. Here, G6 is an Nα open set, and Nψcl(G5) ⊆ G6. Then G5 is
Nαψ-closed in (X, τ) but is not Nα-closed; thus, it is not N-closed and G7 is Nαψ-closed in (X, τ), but not
Nsemi-closed.
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Theorem 3. Let (X, τ) be an NTS and let U ∈ NS(X). I f U is an Nαψ-closed set and U ⊆ V ⊆
Nψcl(U), then V is an Nαψ-closed set.

Proof. Let G be an Nα-open set such that V ⊆ G. Since U ⊆ V, then U ⊆ G. But U is Nαψ-closed,
so Nψcl(U) ⊆ G, since V ⊆ Nψcl(U) and Nψcl(V) ⊆ Nψcl(U) and hence Nψcl(V) ⊆ G. Therefore V
is an Nαψ-closed set.

Theorem 4. Let U be an Nαψ-open set in X and Nψint(U) ⊆ V ⊆ U, then V is Nαψ-open.

Proof. Suppose U is Nαψ-open in X and Nψint(U) ⊆ V ⊆ U. Then U is Nαψ-closed and U ⊆ V ⊆
Nψcl(U). Then U is an Nαψ-closed set by Theorem 3.5. Hence, V is an Nαψ-open set in X.

Theorem 5. An NS U in an NTS (X, τ) is an Nαψ-open set i f and only i f V ⊆ Nψint(U)

whenever V is an Nα-closed set and V ⊆ U.

Proof. Let U be an Nαψ-open set and let V be an Nα-closed set such that V ⊆ U. Then U ⊆ V
and hence Nψcl(U) ⊆ V, since U is Nαψ-closed. But Nψcl(U) = Nψint(U), so V ⊆ Nψint(U).
Conversely, suppose that the condition is satisfied. Then Nψint(U) ⊆ V whenever V is an Nα-open
set and U ⊆ V. This implies that Nψcl(U) ⊆ V = G, where G is Nα-open and U ⊆ G. Therefore, U is
Nαψ-closed and hence U is Nαψ-open.

Theorem 6. Let U be an Nαψ-closed subset of (X, τ). Then Nψcl(U)−U does not contain any non-empty
Nαψ-closed set.

Proof. Assume that U is an Nαψ-closed set. Let F be a non-empty Nαψ-closed set, such that
F ⊆ Nψcl(U) − U = Nψcl(U) ∩ U. i.e., F ⊆ Nψcl(U) and F ⊆ U. Therefore, U ⊆ F. Since F
is an Nαψ-open set, Nψcl(U) ⊆ F ⇒ F ⊆ (Nψcl(U) − U) ∩ (Nψcl(U)) ⊆ Nψcl(U) ∩ Nψcl(U).
i.e., F ⊆ φ. Therefore, F is empty.

Corollary 1. Let U be an Nαψ-closed set of (X, τ). Then Nψcl(U)-U does not contain anynon-empty
N-closed set.

Proof. The proof follows from the Theorem 3.9.

Theorem 7. If U is both Nψ-open and Nαψ-closed, then U is Nψ-closed.

Proof. Since U is both an Nψ-open and Nαψ-closed set in X, then Nψcl(U) ⊆ U. We also have
U ⊆ Nψcl(U). Thus, Nψcl(U) = U. Therefore, U is an Nψ-closed set in X.

4. On Neutrosophic αψ-Continuity and Neutrosophic Contra αψ-Continuity

Definition 10. A function f : X → Y is said to be a neutrosophic αψ-continuous (briefly, Nαψ-continuous)
function if the inverse image of every open set in Y is an Nαψ-open set in X.

Theorem 8. Let g : (X, τ)→ (Y, σ) be a function. Then the following conditions are equivalent.

(i) g is Nαψ-continuous;
(ii) The inverse f−1(U) of each N-open set U in Y is Nαψ-open set in X.

Proof. The proof is obvious, since g−1(U) = g−1(U) for each N-open set U of Y.

Theorem 9. If g : (X, τ)→ (Y, σ) is an Nαψ-continuous mapping, then the following statements hold:

(i) g(NαψNcl(U)) ⊆ Ncl(g(U)), for all neutrosophic sets U in X;
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(ii) NαψNcl(g−1(V)) ⊆ g−1(Ncl(V)), for all neutrosophic sets V in Y.

Proof.

(i) Since Ncl(g(U)) is a neutrosophic closed set in Y and g is Nαψ-continuous, then g−1(Ncl(g(U)))

is Nαψ-closed in X. Now, since U ⊆ g−1(Ncl(g(U))), Nαψcl(U) ⊆ g−1(Ncl(g(U))). Therefore,
g(NαψNcl(U)) ⊆ Ncl(g(U)).

(ii) By replacing U with V in (i), we obtain g(Nαψcl(g−1(V))) ⊆ Ncl(g(g−1(V))) ⊆ Ncl(V).
Hence, Nαψcl(g−1(V)) ⊆ g−1(Ncl(V)).

Theorem 10. Let g be a function from an NTS (X, τ) to an NTS (Y, σ). Then the following statements
are equivalent.

(i) g is a neutrosophic αψ-continuous function;
(ii) For every NP p(r,s,t) ∈ X and each NN U of g(p(r,s,t)), there exists an Nαψ-open set V such that

p(r,s,t) ∈ V ⊆ g−1(U).

(iii) For every NP p(r,s,t) ∈ X and each NN U of g(p(r,s,t)), there exists an Nαψ-open set V such that
p(r,s,t) ∈ V and g(V) ⊆ U.

Proof. (i)⇒ (ii). If p(r,s,t) is an NP in X and if U is an NN of g(p(r,s,t)), then there exists an NOS W in
Y such that g(p(r,s,t)) ∈W ⊂ U. Thus, g is neutrosophic αψ-continuous, V = g−1(W) is an NαψOset,
and

p(r,s,t) ∈ g−1(g(p(r,s,t))) ⊆ g−1(W) = V ⊆ g−1(U).

Thus, (ii) is a valid statement.
(ii) ⇒ (iii). Let p(r,s,t) be an NP in X and let U be an NN of g(p(r,s,t)). Then there exists

an NαψOset U such that p(r,s,t) ∈ V ⊆ g−1(U) by (ii). Thus, we have p(r,s,t) ∈ V and g(V) ⊆
g(g−1(U)) ⊆ U. Hence, (iii) is valid.

(iii) ⇒ (i). Let V be an NO set in Y and let p(r,s,t) ∈ g−1(V). Then g(p(r,s,t)) ∈ g(g−1(V)) ⊂ V.
Since V is an NOS, it follows that V is an NN of g(p(r,s,t)). Therefore, from (iii), there exists an NαψOset
U such that p(r,s,t) ∈ U and g(U) ⊆ V. This implies that

p(r,s,t) ∈ U ⊆ g−1(g(U)) ⊆ g−1(V).

Therefore, we know that g−1(V) is an NαψOset in X. Thus, g is neutrosophic αψ-continuous.

Definition 11. A function is said to be a neutrosophic contra αψ-continuous function if the inverse image of
each NOS V in Y is an NαψC set in X.

Theorem 11. Let g : (X, τ)→ (Y, σ) be a function. Then the following assertions are equivalent:

(i) g is a neutrosophic contra αψ-continuous function;
(ii) g−1(V) is an Nαψ C set in X, for each NOS V in Y.

Proof. (i)⇒ (ii) Let g be any neutrosophic contra αψ-continuous function and let V be any NOS in Y.
Then V is an NCS in Y. Based on these assumptions, g−1(V) is an NαψOset in X. Hence, g−1(V) is an
NαψCset in X.

The converse of the theorem can be proved in the same way.

Theorem 12. Let g : (X, τ) → (Y, σ) be a bijective mapping f rom an NTS(X, T)into an NTS(Y, T).
The mapping g is neutrosophic contra αψ-continuous, i f Ncl(g(U)) ⊆ g(Nαψint(U)), f or each NS U in X.
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Proof. Let V be any NCS in X. Then Ncl(V) = V, and g is onto, by assumption, which shows
that g(Nαψint(g−1(V))) ⊇ Ncl(g(g−1(V))) = Ncl(V) = V. Hence, g−1(g(Nαψint(g−1(V)))) ⊇
g−1(V). Since g is an into mapping, we have Nαψint(g−1(V)) = g−1(g(Nαψint(g−1(V)))) ⊇ g−1(V).
Therefore, Nαψint(g−1(V)) = g−1(V), so g−1(V) is an NαψO set in X. Hence, g is a neutrosophic
contra αψ-continuous mapping.

Theorem 13. Let g : (X, τ)→ (Y, σ) be a mapping. Then the f ollowing statements are equivalent:

(i) g is a neutrosophic contra αψ-continuous mapping;
(ii) f or each NP p(r,s,t) in X and NCS V containing g(p(r,s,t)) there existsanNαψOset U in X containing

p(r,s,t) such that A ⊆ f−1(B);

(iii) f or each NP p(r,s,t) in X and NCS V containing p(r,s,t) there existsanNαψOset U in X containing
p(r,s,t) such that g(U) ⊆ V.

Proof. (i) ⇒ (ii) Let g be a neutrosophic contra αψ-continuous mapping, let V be any NCS in Y
and let p(r,s,t) be an NP in X and such that g(p(r,s,t)) ∈ V. Then p(r,s,t) ∈ g−1(V) = Nαψint(g−1(V)).
Let U = Nαψint(g−1(V)). Then U is an NαψOset and U = Nαψint(g−1(V)) ⊆ g−1(V).

(ii)⇒ (iii) The results follow from evident relations g(U) ⊆ g(g−1(V)) ⊆ V.
(iii) ⇒ (i) Let V be any NCS in Y and let p(r,s,t) be an NP in X such that p(r,s,t) ∈ g−1(V).

Then g(p(r,s,t)) ∈ V. According to the assumption, there exists an NαψOS U in X such that
p(r,s,t) ∈ U and g(U) ⊆ V. Hence, p(r,s,t) ∈ U ⊆ g−1(g(U)) ⊆ g−1(V). Therefore, p(r,s,t) ∈
U = αψint(U) ⊆ Nαψint(g−1(V)). Since p(r,s,t) is an arbitrary NP and g−1(V) is the union of
all NPs in g−1(V), we obtain that g−1(V) ⊆ Nαψint(g−1(V)). Thus, g is a neutrosophic contra
Nαψ-continuous mapping.

Corollary 2. Let X, X1 and X2 be NTS sets, p1 : X → X1 × X2 and p2 : X → X1 × X2 are the
projections of X1 × X2 onto Xi, (i = 1, 2). If g : X → X1 × X2 is a neutrosophic contra αψ-continuous,
then pig are also neutrosophic contra αψ-continuous mapping.

Proof. This proof follows from the fact that the projections are all neutrosophic
continuous functions.

Theorem 14. Let g : (X1, τ) → (Y1, σ) be a f unction. I f the graph h: X1 →
X1× Y1 o f g is neutrosophic contra αψ-continuous, then g is neutrosophic contra αψ-continuous.

Proof. For every NOS, V in Y1 holds g−1(V) = 1 ∧ g−1(V) = h−1(1×V). Since h is a neutrosophic
contra αψ-continuous mapping and 1×V is an NOS in X1 ×Y1, g−1(V) is an NαψCset in X1, so g is a
neutrosophic contra αψ-continuous mapping.
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