
  information

Article

An Ensemble of Condition Based Classifiers for
Device Independent Detailed Human Activity
Recognition Using Smartphones †

Jayita Saha 1 ID , Chandreyee Chowdhury 1,* ID , Ishan Roy Chowdhury 1 ID , Suparna Biswas 2 ID

and Nauman Aslam 3

1 Department of Computer Science and Engineering, Jadavpur University, Kolkata 700032, India;
gjai.2000@gmail.com (J.S.); ishan.r.chowdhury@gmail.com (I.R.C.)

2 Department of Computer Science and Engineering, Maulana Abul Kalam Azad University of Technology,
Kolkata 700064, India; mailtosuparna@gmail.com

3 Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST,
UK; nauman.aslam@northumbria.ac.uk

* Correspondence: chandreyee.chowdhury@gmail.com
† This paper is an extended version of our paper published in Proceedings of e-Health Pervasive Wireless

Applications and Services (e-HPWAS’17), Rome, Italy, 9 OCtober 2017.

Received: 25 January 2018; Accepted: 12 April 2018; Published: 16 April 2018
����������
�������

Abstract: Human activity recognition is increasingly used for medical, surveillance and entertainment
applications. For better monitoring, these applications require identification of detailed activity like
sitting on chair/floor, brisk/slow walking, running, etc. This paper proposes a ubiquitous solution
to detailed activity recognition through the use of smartphone sensors. Use of smartphones for
activity recognition poses challenges such as device independence and various usage behavior in
terms of where the smartphone is kept. Only a few works address one or more of these challenges.
Consequently, in this paper, we present a detailed activity recognition framework for identifying both
static and dynamic activities addressing the above-mentioned challenges. The framework supports
cases where (i) dataset contains data from accelerometer; and the (ii) dataset contains data from
both accelerometer and gyroscope sensor of smartphones. The framework forms an ensemble of the
condition based classifiers to address the variance due to different hardware configuration and usage
behavior in terms of where the smartphone is kept (right pants pocket, shirt pockets or right hand).
The framework is implemented and tested on real data set collected from 10 users with five different
device configurations. It is observed that, with our proposed approach, 94% recognition accuracy can
be achieved.

Keywords: human activity recognition; detailed activity; ensemble; device independence; smartphones

1. Introduction

Human physical activity refers to any body movement produced by skeletal muscles or different
position of the limbs with respect to time upstanding against gravity that results in an energy
expenditure [1,2]. Activity recognition and monitoring system concurrently identifies, evaluates
the actions carried out by a person on a daily basis in real conditions of the surrounding environment
and provides context aware feedback for healthcare and elder care. Daily activity is a complex concept;
it depends on many factors, including physiological, anatomical, psychological, and environmental
effects. Human daily activity tracking was traditionally solved by an image processing approach and
vision-based techniques [3,4]. However, these techniques may violate user privacy, mostly require
infrastructure support like installing video cameras in the monitoring areas, and depend heavily on
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lighting conditions. Several works consider wearable sensors individually and combined with ambient
sensor for activity recognition [5–7]. Many of the early efforts focused on detecting fall and daily-life
activities, mainly using one/or more wearable accelerometers. However, it may not be convenient
for patients to carry out daily activities with sensors worn in hands and/or limbs. However, inertial
sensors of smartphones can be a convenient option for activity recognition as most users almost
always carry smartphones. Most smartphones are equipped with accelerometer, gyroscope, compass
and proximity sensors. In addition, these devices also have communication facilities like Wi-Fi and
Bluetooth by which sensor readings can be transferred to a server. Continuous raw data are collected
from several sensors of the smartphone during monitoring. The data are processed for extracting
useful features, fed to some classification algorithm for training an appropriate activity model, in order
to recognize a variety of activities.

Daily activities can be categorized in two ways: coarse-grained or simple activity and fine-grained
or detailed activity. Coarse-grained (Sit, Stand, Walk, etc.) is simplified larger sub-component of basic
activity, whereas fine-grained, that is, detailed activity, refers to smaller distinguishable subcomponents
that can be composed together to get a coarse-grained activity. Fine-grained or detailed activity
contains activities like Sit on floor/chair. Identifying detailed activity can be beneficial for many medical
applications such as elderly assistance at home, post trauma rehabilitation after a surgery, detection of
gestures, motions and fitness of diabetic patients, etc. The elderly population has increased significantly
who are living alone and mostly suffering from chronic diseases. Stroke patients need assistance and
require regular monitoring during rehabilitation. Increased walking ability is the focus of rehabilitation.
Accurate information on daily activity has the potential to improve the regular monitoring and treatment
in several diseases and sometimes it reduces high burden of hospitalization costs.

Existing works [8–10] mostly focus on coarse grained activity recognition. Few works could
be found on detailed activity [11,12] using several inertial sensors that may not be present in many
smartphone configurations, thus the system is not ubiquitous. In literature, most of the works [9,13,14]
consider a single classifier approach to study activity recognition system with smartphones. In [15,16],
the authors use an ensemble learning technique for activity recognition. In real life, the training and
testing environment for activity recognition are not same all the time. Generally, raw data from several
devices are collected to monitor activities. Due to several hardware configuration and calibration
problem, sensor readings vary from one device to another. Even orientation of the smartphone, which
depends on the usage behavior with respect to human subjects, is also a factor affecting classification
accuracy of the system. Several sensors are used for activity recognition in order to make the recognition
system device independent in [17]. A recent work in [18] addresses different usage behavior like
smartphones kept at a coat pocket or bag. However, no work could be found that enables detailed
activity recognition even when training data is collected using one device at one position (say, right
trouser pocket) and activity is recognized for test data collected from a different device kept at the same
or different position (say, shirt pocket). Consequently, our main contribution in this work are as follows:

(a) We propose an activity recognition framework using an ensemble of condition based classifiers to
identify detailed static activities (Sit on chair, Sit on floor, Lying right, Lying left) as well as detailed
dynamic activities (Slow walk, Brisk walk). The proposed technique works irrespective of device
configuration and usage behavior.

(b) The process utilizes accelerometer and gyroscope sensor of smartphones that are available in
almost all smartphones by most of the manufacturers, thus making the framework ubiquitous.

(c) The proposed technique can identify the effect of accelerometer and gyroscope for identifying
individual detailed activity.

The rest of this paper is organized as follows: Section 2 describes state-of-the-art techniques
for activity recognition through smartphones. Definition of the problem is discussed in Section 3.
Design of the proposed system is detailed in Section 4. Section 5 describes the experimental setup and
summarizes the results. Finally, we conclude in Section 6.
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2. Related Work

A typical activity identification framework mostly follows four phases including (1) Data
collection and preprocessing; (2) Feature extraction; (3) Feature selection and (4) Classification as
shown in Figure 1. Data are collected through several sensors with respect to human usage and
behavior. Preprocessed data are sent to a server for further processing. Several time and frequency
domain features are extracted and selected from preprocessed data. The classification techniques are
applied on the server side to recognize an activity.

Data are collected from wearable sensors and smart handhelds. One of the most important issues
in data collection is the selection of sensors and the attributes to be measured, which play an important
role in the activity recognition system’s performance. Incorrect selection of sensors may adversely
affect the recognition performance. Inertial sensors such as accelerometers and gyroscopes are used
for activity recognition. The accelerometer measures non-gravitational acceleration of a smart device
while the gyroscope senses the rate of change of orientation or angular velocity.

Figure 1. Overall data flow for detailed activity recognition system using Smartphone.

Human Activity Recognition can be broadly classified on the basis of medium of data
collection into two categories of “Using Wearable Sensor” and “Using Smartphone”. Some relevant
state-of-the art works are summarized in Table 1. Most of these works use wearable accelerometers,
or accelerometer sensors of smartphones. It is evident that works are done in different directions,
not only detecting detailed daily life activities and fall [7,19], but also on online activity recognition [20],
publishing benchmark datasets [21] as well as analyzing different usage behaviour as in [18,22].
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Table 1. Comparison between state-of-the-art works.

Existing Work, Activities Considered Device and Position Sensors RemarksYear

[7] in 2004 Walking, Walking carrying items, Sitting &
relaxing, Working on computer, Standing
still, Eating/drinking, Watching TV,
Reading, Running, Bicycling, Stretching,
Strength-training, Scrubbing, Vacuuming,
Folding laundry, Lying down & relaxing,
Brushing teeth, Climbing stairs, Riding
elevator, Riding escalator

Wearable sensors worn at
right hip, dominant wrist,
non-dominant upper arm,
dominant ankle, and
non-dominant thigh

Five Biaxial
Accelerometers

Using Decision tree classifier they achieved overall accuracy of
80%. They concluded that accelerometer at user’s thigh and
dominant wrist are relatively best position for distinguishing
between activities.

[19] in 2009 Climb Stairs, walk, sit, jump, lay down, run,
run on stairs, fall-like motions (quickly
sit-down upright, quickly sit-down
reclined), flat surface falls (fall forward, fall
backward, fall right, fall left), inclined falls
(fall on stairs)

Tempo Sensor Nodes 3.0
(Wearable Thigh, Chest)

Accelerometer,
Gyroscope

In addition to Activities of Daily Living, fall is detected. It
differentiates intentional and unintentional transitions.

[23] in 2010 Lying, Cycling, Climbing, Walking,
Running, Sitting, Standing

Wearable Sensor Accelerometer Uses wearable accelerometer, introduces classification by Hidden
Markov Model

[24] in 2010 Walking, Jogging, Climbing Stairs, Sitting,
Standing

Smartphone placed in pocket Accelerometer Achieved 90% accuracy, uses J48, logistic regression, multi layer
perceptron.

[20] in 2012 Idle, Walking, Cycling, Driving, Running Smartphone placed in pocket Accelerometer The entire system is implemented offline and online. However, in
the online mode, the recognition on the device was performed
using only a limited number of randomly chosen instances from
training data due to limited computational power of the
smartphones. Although the online results are almost comparable
with the offline results, the system is not entirely user
independent.

[21] in 2013 Walking, Climbing Upstairs, Climbing
Downstairs, Sitting, Standing, Laying Down

Smartphone, Waist Position Accelerometer The finest public dataset for HAR using smartphone till now. An
accuracy of 96% is achieved on the dataset using multiclass SVM.
Features such as energy of different frequency bands, frequency
skewness, and angle between vectors are employed

[22] in 2014 Running, Slow Walk, Fast Walk, Aerobic
Dancing, Stairs Up, Stairs Down

Smartphone, Pocket and
Held in hand

Accelerometer Introduces “fine grained” activities for walk class, rest are coarse
grained activities. Position independence is introduced with two
positions. Accuracy of 91.5% achieved

[18] in 2016 Climb Upstairs, Climb Downstairs, Walking,
Running, Standing

Smartphone, Coat Pocket,
Trouser Pocket, Hand, Bag

Accelerometer,
Gyroscope

Introduces four positions and proposes a position independent
system through parameter tuning
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A lot of research has been done in Human Activity Recognition (HAR) using Wearable Devices [25]
mostly using acceleration data independent of orientation [26]. Combination of accelerometer
sensor and gyroscope sensor placed on the neck of users are used in [27] to identify activities.
They have evaluated the effect of appending gyroscope with accelerometer data and maintained
individual threshold value for identifying several activities. The authors in [19] used gyroscopes and
accelerometers placed on the thigh position and chest position of the user to identify several activities
as well as fall using inclination angle and accelerometer value. An unintentional transition to a lying
posture is regarded as a fall, where large changes in accelerometer and gyroscope readings can be
observed. Authors in [19] differentiate intentional and unintentional transitions by applying thresholds
to peak values of acceleration and rate of angular velocity from gyroscope. A certain change of angular
velocity determines the fall of the subject.

A few works can also be found on wearable sensors using classifiers to recognize activities.
In [28], authors considered accelerometers kept in three positions (wrist, ankle, chest) of the human
body to monitor daily activities and applied Decision Table on the preprocessed data for activity
classification. In [29], several activities are monitored using a customized device that is configured with
an accelerometer attached to wrist position. However, the gyroscope sensor alone has not achieved a
significant place in human activity recognition, and it can work in combination with other sensors.
Using many wearable sensors for activity detection may hamper the movement of a person itself.
In [30], “Vital Signs” are detected in addition to acceleration data, where vital signs vary in each
activity, for example, when an individual begins running, it is expected that their heart rate and breath
amplitude increase. This then becomes the vital sign for that activity and provides better accuracy.
However, the advent of smartphones and the exponential increase in their usage in the past decade has
resulted in a growing interest in HAR using smartphones for data collection as smartphones provide
somewhat more convenient wearable computing environment.

Several works extensively study the use of smartphone based inertial sensors like accelerometers
and gyroscopes in activity recognition. The Activity Recognition API by Google [31] provides insights
into what users are currently doing and is used by several Android applications to enhance their
user experience. The API automatically detects activities by periodically reading short bursts of
sensor data and processing them using machine learning models. However, the set of activities that it
can recognize is limited to coarse grained activities such as “sit”, “stand”, “walk”, “run”, “biking”,
“device in vehicle”, etc. Few works could be found that focus on using minimal sensors like only
accelerometers [10,22,24] for making the framework energy efficient and ubiquitous. Both of the
works use state-of-the-art classifiers including MultiLayer Perceptron (MLP); however, the work
in [22] aims at detecting detailed activities like slow walk and fast walk, while, in [24], mainly coarse
grained activities are covered. In [22], the average accuracies of combination of classifiers is used for
recognizing activity resulting in around 91% accuracy. Few works consider gyroscope along with
accelerometer for gait analysis [32,33] and fall detection [34]. In [33], K-Nearest Neighbor (KNN) is
used and achieved around 80% accuracy while different supervised learning algorithms are explored
in [34], and Support Vector Machine (SVM) giving the highest accuracy.

In [14], authors consider all sensors available in smartphones like accelerometer, gyroscope and
magnetometer for identifying human activity and explain the role of each sensor. The combination of
accelerometer and gyroscope [14,35] is found to yield better results in some aspects. In [14], several
machine learning algorithms are applied for activity recognition while the SVM is used to classify
activities in [35]. The authors in [36] show the potential of using only magnetometer and how it affects
activity recognition. In [37], the authors use a combination of an accelerometer and a gyroscope, and the
recognition accuracy for some of the activities increases from 3.1–13.4%. The authors in [15] consider
Decision tree, Logistic regression and Multilayer neural networks algorithms as base classifiers and
designed a majority voting based ensemble [38] to identify human activity. It is found to increase
accuracy up to 3.6% from a single classifier based approach. In [16], the authors combine multiple
classifiers to improve the accuracy of activity recognition up to 7% and overall accuracy of 93.5% using
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a 5-fold cross validation technique. In this way, the output of different classifiers can be combined
using several fusion techniques to improve classification accuracy and efficiency.

In [39], authors identify activity applying KNN on the combination of various data like
accelerometers, magnetometers, gyroscopes, linear acceleration and gravity, and it performs better than
the accelerometer alone. However, most of these works above focus on coarse grained activities [8,9].
Few works could be found on [7,11,12] detailed activity recognition. In [7], the authors classified
a number of detailed daily life activities with the help of several wearable sensors. They even
predicted possible classification of a slow walk and brisk walk on the basis of speed. The authors
in [12] uses wearable sensors to monitor detailed activity along with fall detection using Hidden
Markov Model (HMM). In [40], HMM is applied to get activities subject to smartphone and ambient
sensors. User ambience is also used in [11], where authors use accelerometers and gyroscopes for body
locomotion, temperature and humidity sensors for sensing ambient environment, and location (via
communication with Bluetooth beacon location tags). Two-level supervised classification is performed
to detect the final activity state. A modified conditional random field based supervised activity
classifier is designed by the authors for this purpose. However, the use of several sensors makes the
systems more expensive and inconvenient for users.

In reality, for smartphone based ubiquitous activity recognition, we cannot impose constraints
like the same device being used for training and testing or smartphones needing to be kept at a fixed
position (the same as the one used for training the system). Thus, detailed activity recognition works
should also consider the usage of different devices for training and testing (device independence)
and usage behavior in terms of where the smartphone is kept for training and testing (position
independence). The work in [17] considers device independence issues with multiple sensors and,
in [41], position independent activity recognition framework is presented. In [17], the authors focus
on several challenges like different users, different smartphone models and orientation. They have
used several smartphone based sensors like accelerometers, gyroscopes and magnetic field sensors to
remove gravity from accelerometer signals and converted accelerometer signal data from the body
coordinate system to the earth coordinate system. Frequency domain features are extracted and the
KNN (K Nearest Neighbor) classification algorithm is used in the work. In [1], device independent
activity monitoring is achieved using Logistic Regression (LR) based two phase classifier where the
best training device gets selected in the first phase while the second phase tunes the classifier for better
recognition of activities. However, only coarse grained activities are recognized by this technique.
Consequently, in this work, a detailed activity recognition framework is proposed that attempts to
recognize detailed activities irrespective of the hardware configuration of smartphones and how the
smartphones are kept during training and testing phases. We have not made use of Google’s API
as the class of activities that we are trying to classify are comprised of finer distinctions of a coarse
grained class of activities, such as, for “walk”, we have finer distinctions as: “brisk walk” and “slow
walk”. Similarly, for every coarse grained activity, finer distinctions exist and we propose a system
here that learns such finer class of activities.

3. Problem Definition

Activity recognition problem can be defined as follows. Let the set of activities that
can be recognized by the Human Activity Recognition System be represented by A =

{a1, a2, a3, . . . , an}, where A comprises of both static and dynamic activities. The Dataset DS =

{dsd1 p1 , dsd1 p2 , dsd2 p1 , . . . , dsdm pk
} is a set of datasets (dsdi′ pj′

represents set of data points), each
being a function of device position (pj′ ) used for data collection and the device used (di′ ), that is,
DS = f (Device Used, Device Position) where m denotes the number of devices used and k denotes
the number of positions used for collecting the data. The dataset DS, when preprocessed results in
DS′. F = { f1, f2, f3, . . . , f j} denotes the feature space consisting of all the features extracted from
the preprocessed dataset DS′, and each feature vector Xi of dataset DS′ has an activity label yi of
the form (x1, x2, x3, . . . , xj, yi) : x1, x2, . . . xj ε dsk, yi ε A. Given a learning algorithm C, the Human
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Activity Recognition problem is to learn to recognize the activity set A from the dataset DS′ using the
feature space F, by using a function g : DS′ → A, where g is a member of the hypothesis space and
it best fits the Dataset DS′ to A using a loss function L : A× A → R such that if, for an instance i of
training the model, the activity label is yi and predicted label is y and then the loss is computed as
L(yi, y ). The trained model is then tested on an unseen test dataset DS”, the trained model C using
the function g : DS”→ A, predicts the activity being performed as y, and the accuracy of the model is
then computed.

4. Detailed Activity Recognition Framework

The objective of this work is to identify six individual detailed human activities from raw
data produced by accelerometer and gyroscope of a smartphone. Four static activities (Sit on
floor/chair, Lying left/right) and two dynamic activities (Slow/Brisk walk) are considered for
this work. New activities can also be recognized by the system by appropriately updating the
training dataset.

Accelerometer and gyroscope sensor readings are collected from individual smartphones (chosen
as training and test devices) being kept in either the Shirt PockeT (SPT), the Right (front) pants PockeT
(RPT) or the Right Hand (Hand) position. The data collected by holding in one’s hand was done in
a way that replicates day to day usage; therefore, the subjects were asked to hold the device in their
hands as if they are using them during static fine grained activities, and, during dynamic fine grained
activities, subjects were asked to perform the activity while holding the device in their hands as per
their preference. Thus, the device held in one’s hand does not replicate other positions, that is, SPT
or RPT. The raw data plots of three acceleration axes (Ax, Ay, Az) for the above-mentioned set of
activities are shown in Figure 2a for a device. It reveals that static and dynamic activities grossly show
different patterns, which can be easily distinguished using threshold based techniques that measure
changes of sensor readings. However, it is difficult to distinguish between two static activities like
sitting on the floor and sitting on a chair. The problem becomes complicated when different devices
are involved as can be observed from Figure 2a,b. Interestingly, sensor readings of one smartphone
also vary depending on how it is kept. Figure 3 shows such patterns for different activities using the
same device when it is kept at three different positions—SPT/RPT/Hand respectively. Thus, threshold
based techniques are not sufficient to distinguish between static and dynamic detailed activities,
especially when device and position heterogeneity are considered. Hence, data transformation, feature
extraction, selection and the classification techniques should be designed in a way that can mitigate
these challenges.

4.1. Data Preprocessing and Feature Extraction

The raw sensory data may contain noise or abnormal spikes, due to a certain change of position
or fall of device, unintentional change of sensor orientation, etc. Filtering techniques remove
accelerometer signal noise, outliers like low frequency acceleration (gravity), which capture orientation
of the smartphone sensors with respect to ground level data, and noise generated by the dynamic
motion of humans, and preserves medium frequency signal components. Data transformation is a
significant process of validating and normalizing filtered data. Data transformation is applied to
make a linear fit of one dataset against another. The nonlinear transformation generally increases the
linear relationship after applying Tr (function for transformation) to each data point. The square root
of the value, the inverse of the value, converting into logarithmic scale, etc. are different nonlinear
transformation procedures that are used for statistical analysis. The logarithm function is applied
when the data cover different orders of magnitude. Logarithm transformation [42] with base 10 is
applied on (Ax, Ay, Az) and (Gx, Gy, Gz) in test and training datasets to improve linear relationship
for this work. An orientation insensitive dimension Signal Vector Magnitude (SVMag) is added in
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order to achieve usage behavior independent recognition [14] along with existing three dimensions
(Ax, Ay, Az) of accelerometer readings and gyroscope readings (Gx, Gy, Gz):

SVMagA =
√
(A2

x + A2
y + A2

z), (1)

SVMagG =
√
(G2

x + G2
y + G2

z ). (2)

Figure 4 shows the accelerometer readings collected from smartphones when it is in the right
pants pocket and is faced upright or turned upside down. The plots show variations in particularly
Ax and Ay, though data values for Az do not show much variation in direction, but a slight variation
of magnitude can be observed. However, as is evident in Figure 5, SVMag is found to mitigate the
change of orientation of smartphones due to minor changes in usage behaviour, such as turning of
the device. As is evident from the figure, limb movements can occur even for static activities while
maintaining the posture resulting in momentary spikes in the trace.

(a)

(b)

Figure 2. Raw accelerometer readings collected keeping devices in the Right Pants pockeT (RPT) for
detailed activities (a) Ax, Ay and Az traces of Device 1 for different activities performed for 1000 s;
(b) Ax, Ay and Az traces of Device 2 for different activities performed for 1000 s.

The transformed data are partitioned into small segments and it is known as segmentation [35].
Proper selection of segment size is necessary to reduce classification complexity of the system and
compute features from a small set of values. The short length of the window does not provide sufficient
information of individual activities, and more than one activity may be present in the same window if
the window size is too big. The sliding window approach is considered to effectively capture cycles
in activities. Here, we have considered a 2 s window with 50% (1 s) overlap following [14] to reduce
loss of information at the edge of the window. In [43], a 3 s window is found to achieve a minimal
gain in classification accuracy in comparison to a 2 s window for short daily activities. The features are
extracted from preprocessed data in the next phase of sensor data processing. Discovering meaningful
representation of data and formulating the relation of raw sensor data with the expected knowledge for
decision-making are the objectives of feature extraction. Feature vectors F′i s are extracted on the set of
segments S of the preprocessed dataset, Dt, by applying f t(). Extracted features constitute feature space:

Fi = f t(si)∀si ∈ Dt. (3)
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Several statistical techniques are applied for feature extraction. Time and Frequency domain
features are extracted as summarized in Table 2 for three dimensions of acceleration (Ax, Ay, Az) and
gyroscopes (Gx, Gy, Gz) along with orientation of independent dimensions SVMagA and SVMagG.

(a)

(b)

(c)

Figure 3. Raw accelerometer readings collected from a smartphone kept in three different positions
for detailed activities. (a) device kept in Right Pants pockeT (RPT); (b) device kept in the Shirt PockeT
(SPT); (c) device kept in the right hand (Hand).

Figure 4. Accelerometer readings for activities lying left collected by keeping the smartphone in RPT,
holding the device upright and turning it upside down.
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Figure 5. SVMag of Accelerometer readings for activity lyingleft corresponding to the raw data plotted
in Figure 4.

Table 2. List of time and frequency domain features.

All Features Considered for Analysis. Each
of the Feature is Calculated for

Ax, Ay, Az, Gx, Gy, Gz, SV MagA and SV MagB

Important Features Obtained through
Feature Selection

Time Domain
Features

Frequency Domain
Features

Time Domain
Features

Frequency Domain
Features

Mean Mean Min(Ay) Mean(Ax)
Standard Deviation Median Max(Ay) Mean(Az)

Variance Max(Gx) Mean(Gy)
Mean Absolute

Deviation
Max(Gy) Median(Ay)

Entropy Max(Gz) Median(Gy)
Min
Max

Initially, a total of 28 (seven features for four dimensions as mentioned in Table 2) time domain
features and eight (two features for four dimensions as mentioned in Table 2) frequency domain features
are applied to the preprocessed data. However, all features may not be relevant and informative. Thus,
we have used information gain [44] to identify important features for the problem. Information gain
value is measured for each attribute (feature) and the Ranker Search method is used to rank attributes
by their individual evaluations. Features with low information gain value are removed as they do not
add much information. Consequently, for the collected dataset, the following features are found to be
informative for the problem considered.

Min and Max of Ay and max of Gx,Gy,Gz from time domain features, respectively,
for accelerometers and gyroscopes; median of Ay and Gy, mean of Az, Ax and Gy from frequency
domain features, respectively, as listed in Table 2. However, only a mean is not sufficient to get accurate
reflection of several activities on the skewed data. Min and Max are applied to define minimum and
maximum values on each segments, respectively, as the acceleration is expected to be restricted to a
certain range for each class of activity. The median arranges the observations in order from smallest to
largest value and represents an average of the two middle values.

With these selected feature sets, in this paper, we design a condition based ensemble as part of the
proposed detailed activity recognition framework. This is detailed in the next subsection.
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4.2. Classification of Detailed Activity

Training position selection is a crucial factor for recognition of detailed activity. Here, the training
position selection process is done using several base classifiers. Data are collected for each position
using a training device. Data collected for one position is supplied as the training set while data
pertaining to all other positions are treated as a test set. Representative positions can be found in this
way based on accuracy of activity recognition. This is detailed in the experimental setup discussed in
the next section.

It is difficult to identify individual activity with reasonable accuracy using a single classifier (Ci)
with default parameters. As different devices are configured with different sensors having varying
sensitivities, even for the same activity, the sensor readings differ from one device configuration to
another as shown in Figure 2. Even the position where the smartphone is kept also influences the
sensor readings (due to change in device orientation with respect to body) as reflected in Figure 3.
Hence, keeping a device (di) at a specific position (pi) for data collection is designated as a condition
denoted by di − pi. Data is collected for different conditions. Specifically, for each training device, data
are collected, keeping the phone at each of the representative positions. A base classifier is applied
to each feature set obtained corresponding to each of the conditions. However, parameter tuning
is needed for individual conditions even with a selected base classifier. Moreover, including every
possible condition into one classifier and retaining it’s power of generalization are not feasible tasks.
However, classifiers could be individually tuned to effectively classify data for each training condition
so that, when one specific classifier fails to achieve the desired result, an ensemble of such classifiers
may prove to be a reasonable choice. Ensemble model is a combination of several condition based
classifiers (C1, C2, . . . Ck) to increase the performance of prediction. Here, we used Logistic Regression
(LR) [10] as the base classifier and take individual training datasets, dsdi pi

(collected from a device kept
at a representative position) to train each of the classifiers with different parameter values. Hence,
each individual classifier (Ci) is tuned to effectively classify data collected in a specific condition. The k
trained classifiers are represented by C’= {C1, C2, C3, . . . Ck}. Given a test set (that may be collected
using a different device keeping at RPT/SPT or held in hand), each Ci classifies the instances of the test
set. Then, C′ performs a weighted majority voting of the decisions made by the individual classifiers
to come up with a decision for each of the test instances. The relative performance accuracy for C′

is computed using a cost function R’: C’×DS’→ W, where W = {w1, w2, . . . wk}. R′ computes the
relative weights for the classifiers based on their performance accuracy for each activity and these
weights are represented by wi. This is defined as follows:

wi = R′(C′, DS′) =
accuracy(Ci)

∑i accuracy(Ci)
, where ∑

i
wi = 1 (4)

Here, accuracy(Ci) denotes the classification accuracy of the ith classifier that is obtained
experimentally. This is calculated on a training dataset. Thus, the problem of detailed human activity
recognition is to form a k-condition based ensemble classifier EC : DS

′′ ×C′ → A′, where EC performs
weighted majority voting from C′ using W on the test dataset DS

′′
and returns the activity being

performed. Thus, the weighted majority voting scheme considers the classification of test instances
that is predicted by the weighted majority of the classifiers as shown in Figure 6. The accuracy of
ensemble EC is then computed by comparing the predictions with the true labels.

The basic block diagram of this detailed activity recognition framework is illustrated in Figure 6
where data are collected for k different conditions and, correspondingly, the selected base classifier
is tuned for each of the k feature sets to form k condition based classifiers. We have considered
two types of arrangements for collecting datasets—(i) using smartphone accelerometer and (ii) using
both accelerometers and gyroscopes. Experimentations are conducted in these two modes to identify
the role of each sensor for detailed activity recognition. The experimental results for validating the
proposed framework are detailed in the next section.
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Figure 6. Block diagram of proposed ensemble based detailed activity recognition framework.

5. Performance Evaluation

In this section, the performance of the proposed framework is evaluated for real data collected
from five smart handheld devices (D1–D5) for 10 users. The devices are kept in three positions
on/around the body, namely, SPT, RPT and Hand. An android application Sensor Kinetics pro [45]
collects the embedded tri-axial accelerometer and gyroscope sensor data for six detailed daily activities
Sit on chair, Sit on Floor, Slow Walk, Brisk Walk, Lying left and Lying right. The static fine grained activities
are found to be dependent on the user posture. For instance, the activities “Sit on Floor” and “Sit on
chair” are not affected by the hardness of the surface of the chair or floor. The data collection was done
on both chairs with cushion and chairs with no cushion. What separates these two similar activities
is that the posture in which the user sits, and the relative position of the rest of the body parts in
a particular posture. On average, the subjects took at least 55–65 steps per minute when “walking
slow” and around 105–110 steps minimum when “walking briskly”. A user carried out each of these
activities for 3–4 min while keeping each device at each of the three positions considered. The phone
is held upright in each of these three positions while collecting the dataset. Each dataset contains
around 54,000 accelerometer and gyroscope records. The experimental setup is detailed in Table 3.
After removing the low-frequency acceleration (gravity) and noise, preprocessed data are grouped into
overlapping windows and features are calculated from the acceleration and gyroscope values using
MatlabR2013 (MathWorks, Natick, MA, United States) [46]. A Weka3.7 [47] tool is used for applying
classification algorithms where default parameters of classifiers are changed as necessary.

Initially, experiments are conducted to find representative training positions. If the classifiers
can accurately identify several activities, even when the training and test position of the smartphone
are different, then that position of the training device is considered to be a representative position.
Two training devices D1 and D2 are considered (Table 3) in order to keep it minimal to show the
effectiveness of the ensemble on three different test devices. However, the ensemble would work for
any number of devices. Details of the experiments for selecting the base classifier for a condition based
ensemble are provided, followed by experiments to show the effectiveness of the ensemble subject
to device and position independence. Initially, it is applied only on the accelerometer data set and
then a combination of accelerometers and gyroscopes is used. Finally, the overall performance of the
framework is also verified.
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Table 3. Summary of the experimental setup with default values of parameters.

Devices MotoG4(D1), Pixel(D2), MotoZ2(D3), RedmiNote4(D4), Redmi2Prime(D5)
Data sampling rate 50 samples/s
Filtering method Butterworth and median filter [48]
Window type and size 2 s sliding window with 1 s overlapping window
Data transformation technique logarithm with base 10
Dataset size 540,000 samples approximately
Number of users 10
Feature selection technique InfoGainAttributeEval, RankerSearch
Training dataset SPT-D1, RPT-D1, SPT-D2, RPT-D2
Test dataset SPT-D1-Tst, SPT-D3-Tst, SPT-D4-Tst, SPT-D5-Tst, Hand-D4-Tst

5.1. Training Position Selection

The main objective of this section is to verify whether the classifiers can identify different activities,
when the smartphone is kept at one position to collect training data while test data are collected by
keeping it at another position. State-of-the-art classifiers, such as Bayesian Network (BN), Decision Tree
(J48), lazy learner such as k-Nearest Neighbor (IBK), ensemble learner such as bagging and Logistic
Regression (LR) are applied. Logistic function or sigmoid function are used in LR. Bagging, which
stands for Bootstrap Aggregation, helps to reduce variance and avoid overfitting.

The results are shown in Figure 7. Here, we have considered three positions (SPT, RPT, Hand), and,
individually, each position is considered as a training position and other positions are test positions.
For instance, if SPT is the training position, then RPT and Hand are considered as test positions.
Several classification algorithms are considered for this experiment that are applied on the selected
feature set extracted from the training and test datasets. From Figure 7a, it can be observed that, when a
device is kept at SPT for training, and test data are collected by keeping it in RPT or Hand, all classifiers
show comparable results. If training data are collected by keeping the device in SPT, accuracy of activity
recognition is comparable with state-of-the-art classifiers. However, it becomes difficult to recognize
activity when the device is kept in Hand while collecting training data as shown in Figure 7c. Trying
to train the activities while holding the device in hand is the most challenging position as the way a
device is held varies from person to person, in addition to other factors, such as the amount of gestures
someone does, also affect the sensor values. Hence, it is the position for which we received the least
relative accuracy in terms of learning various fine grained activities. Thus, SPT and RPT are found
to be the two representative training positions to consider for collecting training datasets as shown in
Figure 7a,b. The default parameters of the classifiers are tuned for accuracy as detailed in Table 4.

Table 4. Classifiers and their tuning parameters.

Classifier Name Parameter Name Parameter Detail Default Value

Decision Tree (J48) minObj Minimum number of instances per leaf 2
K Nearest Neighbor (IBK) K The number of neighbors to use 1
Logistic Regression (LR) MaxIts Maximum number of iterations to perform −1

Multilayer Perceptron (MLP) Seed The value used to seed the random number generator 0
Leaning rate Learning Rate for the back-propagation algorithm 0.3
Momentum Momentum Rate for the back-propagation algorithm 0.2

5.2. Base Classifier Selection

The base classifier for the ensemble is selected from state-of-the-art classifiers Bayesian network,
K nearest neighbor, LR, Multilayer perceptron and Decision tree. The “no free lunch theorem” for
optimization states that no optimization technique (algorithm/heuristic/meta-heuristic) is the best for
the generic case and all special cases (specific problems/categories) [49]. Thus, we find the classifier that
consistently performs best for our collected dataset and select that as the base classifier for the ensemble.
Test set SPT-D5-Tst is used for classification with respect to two training data sets (SPT-D1 and RPT-D1)
as shown in Figure 8. This experiment is also repeated with other datasets. From these experiments,
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it can be observed that LR consistently performs better than the other classifiers. Even from Figure 7,
we find that LR performs well in most of the cases. Hence, LR is considered as the base classifier for
our proposed ensemble of condition based classifiers. The main benefit of LR is that it is simple and
the logistic cost function is convex, and thus finds the global minimum. The maxIts parameter of LR is
tuned for several conditional classifiers, maintaining the range 20 to 40 in order to get stable output.

(a)

(b)

(c)

Figure 7. Classification accuracy for a device kept in different position (SPT, RPT and Hand) (a) for
training position SPT; (b) for training position RPT; (c) for training position Hand.

Figure 8. Base classifier selection in detailed activity recognition for SPT-D1 and RPT-D1 as training
datasets and SPT-D5-Tst as test dataset.
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5.3. Activity Classification Using Only an Accelerometer

The classification accuracy of the condition based classifiers along with the classification accuracy
calculated by the majority voting ensemble are shown in Table 5, when the data set contains only
data collected from an accelerometer sensor. It can be observed that, for most of the cases, a condition
based ensemble classifier provides improved results from individual classifiers. Classification accuracy
is improved in ensemble classification from an individual classifier by 3–20% as shown in Table 5
and Figure 9. When SPT-D5-Tst is considered as the test dataset, accuracy increases from 75% to 90%
with ensemble. In this way, the framework becomes device independent. Reasonable accuracy can be
achieved even when test data are collected by holding the device in hand (D4-Hand-Tst as test dataset).
This makes the framework not only device independent but position (usage behavior) independent as
well. If the test dataset is considered from one of the training devices, then ensemble is also found to
provide better results, the overall classification accuracy is 91% as shown in Figure 9. This is the case
for a test data set D1-SPT-Tst and that collected from training device D1.

Table 5. Summary of classification accuracy (in %) obtained for different training and test devices with
four condition-based classifiers and Ensemble of these classifier. D1 and D2 are considered as training
devices and D3, D4 and D5 as test devices. Devices are kept at different positions (SPT, RPT, or Hand).
The column headings are: Training Dataset (TrDt), Test Dataset (TsDt), maxIts-Parameter tuning Value
for LR (PtVl), Accuracy (in %) (Ac) and Error (in %) (Ec).

TrDt TsDt Classifier PtVl Ac Er

D1-SPT

D1-SPT-Tst

Classifier1 33 85% 8%
D1-RPT Classifier2 40 62% 32%
D2-SPT Classifier3 −1 71% 21%
D2-RPT Classifier4 21 65% 32%

Ensemble — 91% 5%

D1-SPT

D5-SPT-Tst

Classifier1 20 67% 16%
D1-RPT Classifier2 22 60% 28%
D2-SPT Classifier3 23 75% 18%
D2-RPT Classifier4 21 68% 17%

Ensemble — 90% 5%

D1-SPT

D3-SPT-Tst

Classifier1 40 65% 27%
D1-RPT Classifier2 22 51% 34%
D2-SPT Classifier3 40 68% 25%
D2-RPT Classifier4 22 51% 31%

Ensemble — 85% 8%

D1-SPT

D4-SPT-Tst

Classifier1 -1 76% 11%
D1-RPT Classifier2 20 60% 30%
D2-SPT Classifier3 23 60% 26%
D2-RPT Classifier4 21 62% 36%

Ensemble — 79% 6%

D1-SPT

D4-Hand-Tst

Classifier1 21 64% 20%
D1-RPT Classifier2 35 55% 29%
D2-SPT Classifier3 32 56% 25%
D2-RPT Classifier4 28 54% 27%

Ensemble — 78% 12%

Figure 10 shows the performance of the ensemble in identifying individual activities. Most of
the activities are found to be effectively classified using ensemble with above 90% accuracy as
shown in Figure 10. The figure interestingly indicates the effectiveness of a majority voting scheme
employed here. However, Sit on floor is an activity that is not identified by the ensemble effectively
as all the condition based classifiers are showing almost average classification accuracy. Actually,
with accelerometer data alone, it is difficult to differentiate between two closely related static activities.
Hence, experiments are also conducted using both accelerometer and gyroscope sensors in the next
subsection. The classification errors are also reported.
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Figure 9. Classification accuracy for device and position independent activity recognition: Test devices
(D1, D3, D4 and D5) kept in SPT.

Figure 10. Classification accuracy (activity wise) for device independent activity recognition with D5
as test device using condition-based and ensemble classifiers for accelerometer sensors.

5.4. Activity Classification Using Both an Accelerometer and Gyroscope

Experiments are conducted for device independent activity recognition with an ensemble classifier
using data collected from both accelerometer and gyroscope, and the results are reported in this section.
The overall experimental procedure is the same as reported in the previous section. The classification
accuracy of the condition based classifiers along with the classification accuracy calculated by the
majority voting ensemble are shown in Table 6. When SPT-D5-Tst is considered as the test dataset,
accuracy increases from 90% to 93% for ensemble, making the framework device independent. If the
test data set is collected from one of the training devices, then overall classification accuracy is found
to increase from 88% to 94% when test data set is D1-SPT-Tst.

Classification accuracies of the framework for individual activities are shown in Figure 11. Most of
the activities are found to be classified with better accuracy compared to the one with an accelerometer
as shown in Figure 11. Sit on floor was not effectively detected when using only an accelerometer,
as is reflected in Figure 10, but can be better recognised when gyroscope readings are added to the
dataset (Figure 11).

The work in [22] is compared with our work on our collected training dataset D1-SPT and test
dataset D5-SPT-Tst. They have considered the average of probabilities fusion method, which returns
the mean of the probability distributions for each of the single classifiers. Multiple combinations
of classifiers are used to find the highest accuracy using an average of probabilities. Difference of
Min and Max, Correlation, Root mean square, Average count of peak (AP), Variance of AP, Mean,
and Standard deviation are considered as features in each window (128 samples) as detailed in the
paper [22]. A combination of three classifiers—MLP, Random Forest (RF), and Simple Logistic (SL)—as
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mentioned in their paper is considered, with the average probabilities fusion method. Both training
and test datasets contain only accelerometer readings. Our proposed ensemble is applied on the
selected feature set as detailed in Table 2, but the features are extracted from the same dataset, that is,
training dataset D1-SPT and test dataset D5-SPT-Tst. The results are reported in Table 7. Our proposed
framework is found to perform better showing 90% accuracy with minimal features. The necessity of
having a condition based classifier is also reflected in the table.

Table 6. Summary of classification accuracy (in %) obtained for different training and test devices
with four condition-based classifiers and an ensemble of these classifiers. D1 and D2 are considered
as training devices; D3, D4 and D5 are considered as test devices. Devices are kept at different
positions (SPT, RPT, or Hand). The column headings are: Training Dataset (TrDt), Test Dataset (TsDt),
maxIts-Parameter tuning Value for LR (PtVl), Accuracy (in %) (Ac) and Error (in %) (Ec).

TrDt TsDt Classifier PtVl Ac Er

D1-SPT

D1-SPT-Tst

Classifier1 21 88% 7%
D1-RPT Classifier2 −1 64% 32%
D2-SPT Classifier3 21 70% 24%
D2-RPT Classifier4 20 61% 31%

Ensemble — 94% 4%

D1-SPT

D5-SPT-Tst

Classifier1 23 55% 26%
D1-RPT Classifier2 35 60% 24%
D2-SPT Classifier3 28 79% 18%
D2-RPT Classifier4 30 75% 12%

Ensemble — 93% 3%

D1-SPT

D3-SPT-Tst

Classifier1 25 61% 26%
D1-RPT Classifier2 28 50% 33%
D2-SPT Classifier3 32 66% 28%
D2-RPT Classifier4 40 60% 29%

Ensemble — 86% 8%

D1-SPT

D4-SPT-Tst

Classifier1 26 64% 25%
D1-RPT Classifier2 31 60% 30%
D2-SPT Classifier3 29 70% 12%
D2-RPT Classifier4 22 68% 25%

Ensemble — 81% 7%

D1-SPT

D4-Hand-Tst

Classifier1 -1 56% 31%
D1-RPT Classifier2 21 50% 34%
D2-SPT Classifier3 28 65% 24%
D2-RPT Classifier4 26 67% 27%

Ensemble — 80% 11%

Figure 11. Classification accuracy (activity wise) for device independent activity recognition when D5
is used as a test device using condition-based and ensemble classifiers for both an accelerometer and
a gyroscope.
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Table 7. Comparison of the proposed technique with a multi-classifier combination approach for
detailed activity recognition as in [22] on the basis of classification accuracy, where the training dataset
is D1-SPT and the test dataset is D5-SPT.

Classifier Model Feature Extraction and Selection Classification Accuracy

Combination of Classifier (Multilayer Perceptron,
Random Forest, Simple Logistic) as in [22] Total 18 Features as in [22] 75%

Ensemble of Condition based Classifiers Selected Time and Frequency
domain features as in Table 2 90%

5.5. Evaluating the Performance of the Proposed System

Confusion matrices for the ensemble classifier considering only accelerometer values and both
accelerometer and gyroscope values of D5 are shown in Figure 12. For case (a), the model mostly
misclassifies Sit on floor as Sit on chair, and Lying on left side with Lying on right side. The misclassification
for these classes decreases in (b), as the addition of gyroscope sensor values, in addition to accelerometer
values enabling the model to better learn the finer differences in these similarly detailed activity classes.

(a)

(b)

Figure 12. Confusion matrices for device independent activity recognition with D5 as the test device
using an ensemble classifier, for (a) accelerometer sensor readings and (b) both accelerometer and
gyroscope readings.
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Performance of the proposed system is evaluated using the following error metric. Here, Ei
denotes the error of the ith instance and Etot denotes the total error for the individual dataset. These
are calculated as follows:

Ei = 0, if label(Ctest) = label(Cclassi f ication)

= 0.5, if label(Ctest) 6= label(Cclassi f ication) and CategoryLabel(Ctest) = CategoryLabel(Cclassi f ication)

= 1, otherwise,

(5)

Etot =
1
N
×

N

∑
i=1

Ei × 100 where N is the total number o f instances. (6)

If the actual label is brisk walk, and the label is accurately predicted by the classifier, then Ei is 0,
according to Equation (5). If the predicted label is slow walk instead of brisk walk, as both are dynamic
of activities. Ei is 0.5. Otherwise, it is 1.

The error of activity recognition (Etotal) for test datasets using individual classifiers and the
majority voting ensemble is shown in Figure 13. A majority voting ensemble is found to produce an
average error of 5% only, which is much lower than the errors using individual classifiers as shown in
Figure 13. The average error can still be decreased to 2% when we are taking gyroscope readings along
with accelerometer readings in the proposed framework as shown in Figure 14.

Figure 13. Error (%) for different classifiers when the test dataset is D5-SPT-Tst calculated using
Equation (6), considering accelerometer readings only.

Figure 14. Error (%) for different classifiers when the test dataset is D5-SPT-Tst calculated using
Equation (6), considering both accelerometer and gyroscope readings.

In this way, we can identify the activities when training device and test device positions (usage
behavior) are different. The system gives better accuracy when training devices are D1 and D2 and
the test device is D5. The condition based ensemble approach with selected minimum features
is found to improve the overall system accuracy by 20% on an average as depicted in Table 5.
Our proposed framework is found to perform well with ensemble, providing 90% accuracy using only
an accelerometer for any device. The overall performance is improved when data from two sensors
(both accelerometers and gyroscopes) are utilized. Activity wise, accuracy is also found to be increased.
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6. Conclusions

In this work, we have proposed a framework for detailed activity recognition that classifies both
static activities like Sit on chair/Floor, Lying left/right and dynamic activities like Slow Walk, Brisk Walk
irrespective of usage behavior and differing hardware configuration of smartphones. Through feature
extraction and selection, the framework can perform better for individual classifiers. The proposed
weighted majority voting based ensemble of condition based classifiers is found to perform detailed
activity recognition with considerable accuracy (90%) better than an individual classifier using only
an accelerometer. SPT and RPT are found to be representative positions to keep a training device
while collecting data for activity recognition. The framework is found to perform better when both
accelerometer and gyroscope sensors work together, and achieves 94% accuracy. Results are taken
from 10 users using five devices. The solution is ubiquitous, as it uses accelerometer and gyroscope
sensors only, which are widely available in any smart handheld devices and does not need any specific
device nor does it need the device to be held at some specific orientation.

We plan to look into more detail on how to train and test detailed activities when a device is held
in hand, as this position is influenced by user gestures, with dynamic activities, etc. We also plan to
combine datasets containing both coarse grained and fine grained activities, and make it public as part
of our future work.
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