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Abstract: We define additive self-dual codes over GF(4) with minimal shadow, and we prove the
nonexistence of extremal Type I additive self-dual codes over GF(4) with minimal shadow for
some parameters.
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1. Introduction

There are many interesting classes of codes in coding theory such as cyclic codes, quadratic
residue codes, algebraic geometry codes, and self-dual codes. This study focuses on self-dual codes,
which are closely related to other mathematical structures such as block designs, lattices, modular
forms, and sphere packings (see [1] for example).

For the error correction, the minimum weight of self-dual codes is very important. One research
direction for self-dual codes is to find the highest minimum weight of the codes. In general, if the code
length is small, the highest minimum weight of self-dual codes is easily found. However, if the code
length is large, then determining the highest minimum weight of self-dual codes becomes difficult.
In this case, we can use the upper bound of the highest minimum weight. The code meeting the upper
bound is called an extremal.

Conway and Sloane gave an upper bound on the minimum weight of binary self-dual codes [2].
They used the concept of shadow codes. Using the same concept, Rains improved the bound on the
minimum weight of binary self-dual codes and applied the same technique to additive self-dual codes
over GF(4) [3].

Many papers have been published on shadow codes. Among them, Bouyuklieva and Willems
studied binary self-dual codes for which the minimum weight of the shadow codes had the smallest
possible value. They proved that extremal binary self-dual codes with minimal shadow for particular
parameters do not exist [4].

The purpose of this study is to apply the idea and technique of Bouyuklieva and Willems to
additive self-dual codes over GF(4). In particular, we define additive self-dual codes over GF(4) with
minimal shadow and prove the nonexistence of extremal additive self-dual codes over GF(4) with
minimal shadow for some parameters.

This paper is organized in the following manner: In Section 2, we state the basic definitions
and facts for additive self-dual codes over GF(4). In Section 3, we define additive self-dual codes
over GF(4) with minimal shadow and prove that extremal Type I additive self-dual codes over GF(4)
with minimal shadow of length n = 6m + r for r = 1, 5 do not exist. For r = 0, 2, 3, we prove the
nonexistence of such codes if m ≥ 40, m ≥ 6, m ≥ 22, respectively. In Section 4, we summarize this
paper and add some comments to our findings.

Information 2018, 9, 81; doi:10.3390/info9000081 www.mdpi.com/journal/information

http://www.mdpi.com/journal/information
http://www.mdpi.com
https://orcid.org/0000-0002-5484-903X
http://www.mdpi.com/journal/information
http://www.mdpi.com/2078-2489/9/4/81?type=check_update&version=2
http://dx.doi.org/10.3390/info9040081


Information 2018, 9, 81 2 of 11

2. Preliminaries

The additive code C over GF(4) of length n is an additive subgroup of GF(4)n. The weight of
a codeword u = (u1, u2, . . . , un) in GF(4)n is the number of non-zero uj and is denoted by wt(u).
The minimum distance of C is the smallest non-zero weight of any codeword in C. Here, C is a
k-dimensional GF(2)-subspace of GF(4)n, and, therefore, it has 2k codewords. It is denoted as an
(n, 2k) code, and, if its minimum distance is d, the code is an (n, 2k, d) code.

The trace map, Tr : GF(4) → GF(2), is defined by Tr(x) = x + x2. The Hermitian trace inner
product of two vectors over GF(4) of length n, u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn), is given
as follows:

u ∗ v =
n

∑
i=1

Tr(uivi
2) =

n

∑
i=1

(uivi
2 + ui

2vi) (mod 2). (1)

Note that u ∗ v is also the number (modulo 2) of places where u and v have different non-zero
values. We define the dual of the code C with respect to the Hermitian trace inner product as follows:

C⊥ = {u ∈ GF(4)n : u ∗ c = 0 for all c ∈ C}. (2)

If C ⊆ C⊥, we say C is self-orthogonal, and, if C = C⊥, we say C is self-dual. It has been shown
that additive self-orthogonal codes over GF(4) can be used to represent quantum error-correcting
codes [5]. If C is self-dual, then it must be an (n, 2n) code. Additive self-dual codes over GF(4)
correspond to zero-dimensional quantum codes, which represent single quantum states. If the code
has a high minimum distance, then the corresponding quantum state is highly entangled.

We distinguished between two types of additive self-dual codes over GF(4). If all codewords
have an even weight, it is a Type II code; otherwise, it is a Type I code. It can be shown that a Type II
code must have an even length value. Bounds on the minimum distance of self-dual codes were given
by Rains and Sloane.

Theorem 1. ([1,3]) Let C be an (n, 2n, d) additive self-dual code over GF(4). If C is Type I, then
d ≤ 2[n/6] + 1 if n ≡ 0 (mod 6), d ≤ 2[n/6] + 3 if n ≡ 5 (mod 6), and d ≤ 2[n/6] + 2. If C is
Type II, then d ≤ 2[n/6] + 2.

A code that meets the appropriate bound is called extremal. It can be shown that extremal Type II
codes must have a unique weight enumerator. The proof of Theorem 1 was given by using the shadow
code, which is defined in the following text.

Let C be an additive self-dual code over GF(4) and C0 be the subset of C, consisting of all even
weight codewords. Then, C0 is a subgroup of C. The shadow code of an additive code C over GF(4) is
defined as follows:

S = C⊥0 \C, (3)

or equivalently,

S = {u ∈ GF(4)n | u ∗ v = 0 for all v ∈ C0, u ∗ v = 1 for all v ∈ C\C0}. (4)

The weight enumerator of an additive code is given as follows:

WC(x, y) =
n

∑
i=0

Aixn−iyi. (5)
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Here, we have Ai codewords of weight i in C. We are only interested in Type I codes. From now
on, let us assume C as a Type I code. According to [3], the weight enumerator of C, WC(x, y), and its
shadow code weight enumerator, WS(x, y), are given as follows:

WC(x, y) =
[n/2]

∑
i=0

ci(x + y)n−2i{y(x− y)}i, (6)

WS(x, y) =
[n/2]

∑
i=0

(−1)i2n−3iciyn−2i(x2 − y2)i. (7)

We have these equations for suitable constants ci. We rewrite Equations (6) and (7) as follows:

WC(1, y) =
n

∑
j=0

ajyj =
[n/2]

∑
i=0

ci(1 + y)n−2i{y(1− y)}i, (8)

WS(1, y) =
[n/2]

∑
j=0

bjy2j+t =
[n/2]

∑
i=0

(−1)i2n−3iciyn−2i(1− y2)i. (9)

Here, t = 0 if n is even, and t = 1 if n is odd. Note that a0 = 1, and all aj and bj must be
non-negative integers. ci can be written as a linear combination of aj for 0 ≤ j ≤ i, and ci as a linear
combination of bj for 0 ≤ j ≤ [n/2]− i as depicted in the following form:

ci =
i

∑
j=0

αijaj =
[n/2]−i

∑
j=0

βijbj. (10)

We have these equations for suitable constants αij and βij.
In our computation, we calculate αi0 and βij. The following formulas can be found in [3]. For i > 0,

we have the following equations:

αi0 = −n
i

[
coeff. of yi−1 in (1 + y)−n−1+2i(1− y)−i

]
, (11)

βij = (−1)i23i−n
(

k− j
i

)
. (12)

Here, k = [n/2].

3. Extremal Type I Additive Self-Dual Codes over GF(4) with Minimal Shadow

In this section, we study Type I additive self-dual codes over GF(4) for which the minimum
weight of the shadow code has the smallest possible value. We especially define a code with minimal
shadow and prove that no extremal Type I additive self-dual codes over GF(4) with minimal shadow
for some parameters exist. We start with the following definition:

Definition 1. Let C be a Type I additive self-dual code over GF(4) of length n = 6m + r(0 ≤ r ≤ 5). Then, C
is a code with minimal shadow if

1. d(S) = 1 if r > 0;
2. d(S) = 2 if r = 0.

Here, d(S) is the minimum weight of S.

Lemma 1. Let C be a Type I additive self-dual code over GF(4) and S the shadow code of C. If u, v ∈ S,
then u + v ∈ C.
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Proof. Considering u, v ∈ S, and then using Equation (4), if z ∈ C0 then u ∗ z = 0 and v ∗ z = 0.
If z ∈ C\C0, then u ∗ z = 1 and v ∗ z = 1. Thus, (u + v) ∗ z = u ∗ z + v ∗ z = 0 + 0 = 0 for all z ∈ C0,
and (u + v) ∗ z = u ∗ z + v ∗ z = 1 + 1 = 0 for all z ∈ C\C0. Therefore, u + v ∈ C⊥ = C.

Lemma 2. Let C be an additive self-dual code over GF(4) of length n and minimum weight d.
Let S(y) = ∑n

r=0 Bryr be the weight enumerator of S. Then, we have the following values:

1. B0 = 0;
2. Br ≤ 1 for r < d/2.

Proof. Because S = C⊥0 \C, B0 = 0. Hence, this completes the first statement. Considering Br > 1 for
r < d/2, let u, v ∈ S with wt(u) = wt(v) = r and u 6= v. Then, u + v ∈ C and 0 < wt(u + v) ≤ 2r < d.
This is a contradiction. Hence, this completes the second statement.

In the following text, we prove the uniqueness of weight enumerators for some codes. For this,
we need to look at the observation mentioned below. Let C be an extremal Type I additive self-dual
code over GF(4) with a minimal shadow of length n = 6m + r. We have the following equations:

WC(1, y) =
n

∑
j=0

ajyj (13)

and

WS(1, y) =
[n/2]

∑
j=0

bjy2j+t. (14)

Here, t = 0 if n is even, and t = 1 if n is odd.
If r = 0, then C is a (6m, 26m, 2m + 1) code. The minimum weight of the shadow code is two, and

a0 = 1 and a1 = a2 = . . . = a2m = 0. b0 = 0. By Lemma 2, b1 = 1 if m ≥ 2. In addition, we have
b2 = b3 = . . . = bm−1 = 0. Otherwise, S contains a vector v bearing weight that is less than or equal to
2m− 2, and, if u ∈ S is a vector of weight two, then u + v ∈ C, with wt(u + v) ≤ 2m− 2 + 2 = 2m,
which is a contradiction to the minimum distance of C.

If r = 1, 3, then C is a (6m + r, 26m+r, 2m + 2) code. The minimum weight of the shadow code is
one, and a0 = 1 and a1 = a2 = . . . = a2m+1 = 0. By Lemma 2, b0 = 1 if m ≥ 1. In addition, we have
b1 = b2 = . . . = bm−1 = 0. Otherwise, S contains a vector v bearing weight that is less than or equal
to 2m− 1, and, if u ∈ S is a vector of weight one, then u + v ∈ C, with wt(u + v) ≤ 2m− 1 + 1 = 2m,
which is a contradiction to the minimum distance of C.

If r = 2, 4, then C is a (6m + r, 26m+r, 2m + 2) code. The minimum weight of the shadow code
is two, and a0 = 1 and a1 = a2 = . . . = a2m+1 = 0. b0 = 0. By Lemma 2, b1 = 1 if m ≥ 2.
In addition, we have b2 = b3 = . . . = bm−1 = 0. Otherwise, S contains a vector v bearing weight
that is less than or equal to 2m − 2, and, if u ∈ S is a vector of weight two, then u + v ∈ C, with
wt(u + v) ≤ 2m− 2 + 2 = 2m, which is a contradiction to the minimum distance of C.

If r = 5, then C is a (6m + 5, 26m+5, 2m + 3) code. The minimum weight of the shadow code
is one, and a0 = 1 and a1 = a2 = . . . = a2m+2 = 0. By Lemma 2, b0 = 1. In addition, we have
b1 = b2 = . . . = bm−1 = bm = 0. Otherwise, S contains a vector v bearing weight that is less than or
equal to 2m + 1, and, if u ∈ S is a vector of weight one, then u + v ∈ C, with wt(u + v) ≤ 2m + 1 + 1 =

2m + 2, which is a contradiction to the minimum distance of C.
Now, we are ready to prove the following theorem.

Theorem 2. Extremal Type I additive self-dual codes over GF(4) with minimal shadow of lengths
n = 6m, 6m + 1, 6m + 2, 6m + 3, and 6m + 5 have uniquely determined weight enumerators.



Information 2018, 9, 81 5 of 11

Proof. Let C be an extremal Type I additive self-dual code over GF(4) with a minimal shadow of
length n. We rewrite Equation (10) in the following manner:

ci =
i

∑
j=0

αijaj =
[n/2]−i

∑
j=0

βijbj. (15)

Let n = 6m, and, considering m ≥ 2, we have the following equations:

ci =
i

∑
j=0

αijaj = αi0 for i = 0, 1, 2, . . . , 2m, (16)

ci =
3m−i

∑
j=0

βijbj = βi1 for i = 2m + 1, 2m + 2, . . . , 3m. (17)

Hence, we prove that ci is uniquely determined and the weight enumerator of C is unique as
well. If m = 1, then we have a unique (6, 26, 3) extremal code [6]. Hence, we prove that the weight
enumerator is unique. See Example 1.

Let n = 6m + 1, and, considering m ≥ 1, we have the following equations:

ci =
i

∑
j=0

αijaj = αi0 for i = 0, 1, 2, . . . , 2m + 1, (18)

ci =
3m−i

∑
j=0

βijbj = βi0 for i = 2m + 1, 2m + 2, . . . , 3m. (19)

Hence, we prove that ci is uniquely determined and the weight enumerator of C is unique as well.
If m = 0, then we have no extremal code [6].

Let n = 6m + 2, and, considering m ≥ 2, we have the following equations:

ci =
i

∑
j=0

αijaj = αi0 for i = 0, 1, 2, . . . , 2m + 1, (20)

ci =
3m+1−i

∑
j=0

βijbj = βi1 for i = 2m + 2, 2m + 2, . . . , 3m + 1. (21)

Hence, we prove that ci is uniquely determined and the weight enumerator of C is unique as
well. If m = 0, then we have no extremal code [6]. If m = 1, then we have two extremal codes [6],
and they have the same weight enumerator. Hence, we prove that the weight enumerator is unique.
See Example 1.

Let n = 6m + 3, and, considering m ≥ 1, we have the following equations:

ci =
i

∑
j=0

αijaj = αi0 for i = 0, 1, 2, . . . , 2m + 1, (22)

ci =
3m+1−i

∑
j=0

βijbj = βi0 for i = 2m + 2, 2m + 2, . . . , 3m + 1. (23)

Hence, we prove that ci is uniquely determined and the weight enumerator of C is unique as well.
If m = 0, then we have a unique extremal code [6]. Hence, we prove that the weight enumerator is
unique. See Example 1.
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Let n = 6m + 5, then we have the following equations:

ci =
i

∑
j=0

αijaj = αi0 for i = 0, 1, 2, . . . , 2m + 2, (24)

ci =
3m+2−i

∑
j=0

βijbj = βi0 for i = 2m + 2, 2m + 3, . . . , 3m + 2. (25)

Hence, we prove that ci is uniquely determined and the weight enumerator of C is unique as well.
In conclusion, the weight enumerators are unique in all cases.

Remark 1. In Theorem 2, the missing case is n = 6m+ 4. If n = 6m+ 4, then we have the following equations:

ci =
i

∑
j=0

αijaj = αi0 for i = 0, 1, 2, . . . , 2m + 1, (26)

ci =
3m+2−i

∑
j=0

βijbj = βi1 for i = 2m + 3, . . . , 3m + 2. (27)

Therefore, c2m+2 cannot be determined by the above equations, and we cannot prove that the weight
enumerator is unique.

Using the above results, we prove the nonexistence of extremal Type I codes with minimal shadow
for some parameters.

Theorem 3. Extremal Type I additive self-dual codes over GF(4) with minimal shadow of lengths n = 6m + 1
and n = 6m + 5 do not exist.

Proof. Let n = 6m + 1, and, considering m ≥ 1, from Equations (18) and (19), we have the
following outcome:

c2m+1 = α2m+1,0 = β2m+1,0. (28)

Using Equations (11) and (12), we have the following outcome:

α2m+1,0 = −6m + 1
2m + 1

, β2m+1,0 = −4
(

3m
2m + 1

)
. (29)

Thus,

− 6m + 1
2m + 1

= −4
(

3m
2m + 1

)
. (30)

Therefore, we have the conclusion as follows:

2m + 1 = 0. (31)

This is a contradiction. If m = 0, then there is no extremal code [6].
Let n = 6m + 5. From Equations (24) and (25), we have the following outcome:

c2m+2 = α2m+2,0 = β2m+2,0. (32)

Using Equations (11) and (12), we have the outcome:

α2m+1,0 = 0, β2m+2,0 = 2
(

3m + 2
2m + 2

)
. (33)
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Thus,

0 = 2
(

3m + 2
2m + 2

)
. (34)

This is a contradiction.

Theorem 4. There are no extremal Type I additive self-dual codes over GF(4) with minimal shadow if

1. n = 6m and m ≥ 40;
2. n = 6m + 2 and m ≥ 6; and
3. n = 6m + 3 and m ≥ 22.

Proof. Let n = 6m. From Equations (10) and (16), we have the following outcome:

c2m = α2m,0 = β2m,1 + β2m,mbm. (35)

Hence,
bm = β−1

2m,m(α2m,0 − β2m,1). (36)

Using Equations (11) and (12), we have the following outcome:

β2m,m = 1, α2m,0 = 3
(

3m− 1
m− 1

)
, β2m,1 =

(
3m− 1

2m

)
. (37)

Hence,

bm = 3
(

3m− 1
m− 1

)
−
(

3m− 1
2m

)
= 2

(
3m− 1
m− 1

)
. (38)

From Equations (10) and (16), we have the following outcome:

c2m−1 = α2m−1,0 = β2m−1,1 + β2m−1,mbm + β2m−1,m+1bm+1. (39)

Hence,
bm+1 = β−1

2m−1,m+1(α2m−1,0 − β2m−1,1 − β2m−1,mbm). (40)

Using Equations (11) and (12), we have the following outcomes:

β2m−1,m+1 = −1
8

, α2m−1,0 = − 6m
2m− 1

[(
3m + 1
m− 1

)
+ 6
(

3m
m− 2

)
+

(
3m− 1
m− 3

)]
(41)

and

β2m−1,1 = −1
8

(
3m− 1
2m− 1

)
, β2m−1,m = −m

4
. (42)

Hence,

bm+1 = 8 · 6m
2m− 1

[(
3m + 1
m− 1

)
+ 6
(

3m
m− 2

)
+

(
3m− 1
m− 3

)]
−
(

3m− 1
2m− 1

)
− 4m

(
3m− 1
m− 1

)
. (43)

Then,

bm+1 =
4(3m− 1)!

(2m + 2)!(m− 1)!
h0(m), (44)

Here,
h0(m) = −4m3 + 160m2 − 29m− 1. (45)

Thus, h0(m) < 0 if m ≥ 40. Therefore, if m ≥ 40, then bm+1 < 0. This is a contradiction.
Let n = 6m + 2. From Equations (10) and (20), we have the following equation:

c2m+1 = α2m+1,0 = β2m+1,1 + β2m+1,mbm. (46)
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Therefore,
bm = β−1

2m+1,m(α2m+1,0 − β2m+1,1). (47)

Using Equations (11) and (12), we have the following equations:

β2m+1,m = −2, α2m+1,0 = −6m + 2
2m + 1

(
3m
m

)
, β2m+1,1 = −2

(
3m

2m + 1

)
. (48)

Therefore,

bm =
3m + 1
2m + 1

(
3m
m

)
−
(

3m
m− 1

)
. (49)

From Equations (10) and (20), we have the following equations:

c2m = α2m,0 = β2m,1 + β2m,mbm + β2m,m+1bm+1. (50)

Therefore,
bm+1 = β−1

2m,m+1(α2m,0 − β2m,1 − β2m,mbm). (51)

Using Equations (11) and (12), we have the following:

β2m,m+1 =
1
4

, α2m,0 =
3m + 1

m

[(
3m

m− 2

)
+ 3
(

3m + 1
m− 1

)]
(52)

and

β2m,1 =
1
4

(
3m
m

)
, β2m,m =

2m + 1
4

. (53)

Therefore,

bm+1 = 4 · 3m + 1
m

[(
3m

m− 2

)
+ 3
(

3m + 1
m− 1

)]
−
(

3m
m

)
− (2m + 1) ·

[
3m + 1
2m + 1

(
3m
m

)
−
(

3m
m− 1

)]
. (54)

Then,

bm+1 =
(3m)!

(2m + 1)!(m + 1)!
h2(m). (55)

Here,
h2(m) = −8m3 + 44m2 + 22m + 2. (56)

Thus, h2(m) < 0 if m ≥ 6. Therefore, if m ≥ 6, then bm+1 < 0. This is a contradiction.
Let n = 6m + 3. From Equations (10) and (22), we have the following equation:

c2m+1 = α2m+1,0 = β2m+1,0 + β2m+1,mbm. (57)

Therefore,
bm = β−1

2m+1,m(α2m+1,0 − β2m+1,0). (58)

Using Equations (11) and (12), we have the following outcome:

β2m+1,m = −1, α2m+1,0 = −3
(

3m + 1
m

)
, β2m+1,0 = −

(
3m + 1

m

)
. (59)

Therefore,

bm = 2
(

3m + 1
m

)
. (60)

From Equations (10) and (22), we have the following equation:

c2m = α2m,0 = β2m,0 + β2m,mbm + β2m,m+1bm+1. (61)
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Therefore,
bm+1 = β−1

2m,m+1(α2m,0 − β2m,0 − β2m,mbm). (62)

Using Equations (11) and (12), we have the following equations:

β2m,m+1 =
1
8

, α2m,0 =
12m + 6

m

[(
3m + 1
m− 2

)
+

(
3m + 2
m− 1

)]
(63)

and

β2m,0 =
1
8

(
3m + 1
m + 1

)
, β2m,m =

2m + 1
8

. (64)

Therefore,

bm+1 = 8 · 12m + 6
m

[(
3m + 1
m− 2

)
+

(
3m + 2
m− 1

)]
−
(

3m + 1
m + 1

)
− 2(2m + 1) ·

(
3m + 1

m

)
. (65)

Then,

bm+1 =
(3m + 1)!(2m + 1)
(2m + 3)!(m)!

h3(m). (66)

Here,
h3(m) = −8m2 + 168m + 30. (67)

Thus, h3(m) < 0 if m ≥ 22. Therefore, if m ≥ 22, then bm+1 < 0. This is a contradiction.

In the following example, we give some extremal Type I additive self-dual codes over GF(4) with
minimal shadow.

Example 1. Consider that there is a unique (3, 23, 2) extremal Type I additive self-dual code over GF(4), say C3,
with the following generator matrix:

G3 =

 w 1 1
1 w 1
1 1 w

 . (68)

The weight enumerator of the code C3 and the shadow code S3 are given as follows:

WC3(1, y) = 1 + 3y2 + 4y3, (69)

WS3(1, y) = 3y + 5y3. (70)

Therefore, the code C3 is an extremal Type I additive self-dual code over GF(4) with minimal shadow.
Consider that there is a unique (6, 26, 3) extremal Type I additive self-dual code over GF(4), say C6,

with the following generator matrix:

G6 =



w 0 0 0 1 1
0 w 0 1 0 1
0 0 w 1 1 0
0 1 1 w 0 0
1 0 1 0 w 0
1 1 0 0 0 w


. (71)

The weight enumerator of the code C6 and the shadow code S6 are given as follows:

WC6(1, y) = 1 + 8y3 + 21y4 + 24y5 + 10y6, (72)

WS6(1, y) = 3y2 + 42y4 + 19y6. (73)
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Therefore, the code C6 is an extremal Type I additive self-dual code over GF(4) with minimal shadow.
Consider that there are exactly two (8, 28, 4) extremal Type I additive self-dual codes over GF(4), say C8a

and C8b, with the following generator matrices [7]:

G8a =



1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1
1 0 0 0 w w w w
0 1 0 0 1 w w2 0
0 0 1 0 w w2 w2 w
w w 0 0 1 0 w w
w 0 w 0 1 w w2 1
w 0 0 w w2 w2 0 1


, G8b =



1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1
1 0 0 0 w w w w
0 1 0 0 w w w2 w2

0 0 1 0 w w2 w2 w
w w 0 0 w2 w2 0 1
w 0 w 0 1 w w2 1
w 0 0 w w 1 w2 1


. (74)

The weight enumerators of both codes are the same. The following are the weight enumerators of the codes
and the corresponding shadow codes:

WC8a(1, y) = WC8b(1, y) = 1 + 26y4 + 64y5 + 72y6 + 64y7 + 29y8 (75)

and
WS8a(1, y) = WS8b(1, y) = 4y2 + 36y4 + 172y6 + 44y8. (76)

Therefore, the codes C8a and C8b are extremal Type I additive self-dual codes over GF(4) with
minimal shadow.

4. Summary

In this study, we investigate Type I additive self-dual codes over GF(4). We especially define a
code C with minimal shadow. We prove that extremal Type I additive self-dual codes over GF(4) with
minimal shadow of lengths n = 6m, 6m + 1, 6m + 2, 6m + 3, and 6m + 5 have uniquely determined
weight enumerators. Using this fact, we prove that extremal Type I additive self-dual codes over GF(4),
with minimal shadow of lengths n = 6m + 1 and 6m + 5, do not exist. For n = 6m, 6m + 2, 6m + 3, we
prove that extremal Type I additive self-dual codes over GF(4), with minimal shadow, do not exist if
m ≥ 40, m ≥ 6, m ≥ 22, respectively.

For future work, it is worth studying the problem of existence of such codes for the missing case
n = 6m + 4, as well as for the incomplete cases n = 6m, 6m + 2, 6m + 3.
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