Querying Workflow Logs

Yan Tang, Isaac Mackey and Jianwen Su *

Department of Computer Science, University of California at Santa Barbara, Santa Barbara, CA 93106-5110, USA; yantang@cs.ucsb.edu (Y.T.); isaac_mackey@cs.ucsb.edu (I.M.)
* Correspondence: su@cs.ucsb.edu; Tel.: +1-805-893-3698

Received: 29 November 2017; Accepted: 12 January 2018; Published: 25 January 2018

Abstract: A business process or workflow is an assembly of tasks that accomplishes a business goal. Business process management is the study of the design, configuration/implementation, enactment and monitoring, analysis, and re-design of workflows. The traditional methodology for the re-design and improvement of workflows relies on the well-known sequence of extract, transform, and load (ETL), data/process warehousing, and online analytical processing (OLAP) tools. In this paper, we study the ad hoc querying of process enactments for (data-centric) business processes, bypassing the traditional methodology for more flexibility in querying. We develop an algebraic query language based on “incident patterns” with four operators inspired from Business Process Model and Notation (BPMN) representation, allowing the user to formulate ad hoc queries directly over workflow logs. A formal semantics of this query language, a preliminary query evaluation algorithm, and a group of elementary properties of the operators are provided.

Keywords: business analytics; workflow logs; query languages

1. Introduction

According to Gartner, business process (BP) improvement is the top business strategy in enterprise systems [1]. The design and adjustment of workflows relies on the analysis of past workflow executions, and thus the ability to query characteristics of past executions is key for BP improvement. This paper initiates the development of a query language for ad hoc exploration of BP execution logs.

Although analyzing workflow execution has been studied variously and used in practice, directly querying workflow logs is a new approach. The state-of-the-art design/development methodology for BP/workflow management systems places the data needed for analysis in process logs, activity logs, data stores, process models, and even execution engines [2,3]. In the past two decades, the database community invested significant effort into data warehousing and business intelligence (BI) to help enterprises with their analysis of workflow executions. A centerpiece of data/process warehouse/BI techniques is extract, transform, load (ETL): extract data from various databases storing workflow execution data, transform them into suitable forms (e.g., relations), and load the data into a data warehouse. Online analytic processing (OLAP) tools are then used for process analysis [4,5].

Figure 1 illustrates the traditional framework as described in [6]. The workflow engine schedules and manages executions of workflow instances (enactments). The effects of these executions are stored in multiple databases. ETL tools extract data of interest, then transform and store them in a data warehouse. Online analytics processing (OLAP) is then applied to the data in the data warehouse.

ETL/OLAP is seriously challenged as enterprises demand more flexible process analytics. ETL aims at specific types of analysis, often with queries centered around summaries over data cubes [6]. This is effective only when relevant data are extracted. For example, if timestamps are not extracted, analysis of activity duration is not possible, or if drug prescriptions are not available in the data warehouse, it is impossible to detect healthcare fraud (e.g., patients being over-prescribed drugs and selling them in the underground market) through these ETL analytics.
The log faithfully records the execution traces and incident instances. Section 3 presents a query evaluation algorithm. Section 4 provides countably infinite sets: the execution of one activity in a workflow instance. Incident patterns serve as query expressions in log records are fundamental units of logs, with each log record corresponding to data generated by discussions, including a "log record", "log", "incident pattern", "incident instance", and "incident set". The log faithfully records the execution traces for all active instances in their execution order. Queries can then be formulated against the log, and the user is empowered to pose ad hoc queries over the log to learn about and explore past workflow executions. Since there is no prior data selection nor filtering, log queries allow the user to formulate a much richer class of queries.

This paper develops an algebraic query language based on “incident patterns” for process analytics. Intuitively, an incident pattern describes a temporally related set of activity executions within a single workflow instance, allowing the user to reason about temporal relationships between the activity executions. Inspired by Business Process Model and Notation (BPMN) gateways, four operators are used to formulate temporal relationships: consecutive, sequential, choice, and parallel operators, whose formal semantics are defined in this paper. A query evaluation algorithm and algebraic properties of the operators are also presented.

This paper is organized as follows. Section 2 gives the formal definitions of workflow log, incident patterns, and incident instances. Section 3 presents a query evaluation algorithm. Section 4 provides properties concerning incident patterns. Section 5 discusses related work. Finally, Section 6 concludes the paper.

2. Logs and Incidents

In this section, we introduce key concepts needed for the log query language and the technical discussions, including a “log record”, “log”, “incident pattern”, “incident instance”, and “incident set”. Log records are fundamental units of logs, with each log record corresponding to data generated by the execution of one activity in a workflow instance. Incident patterns serve as query expressions in the log query language presented in this paper.

We start with a formal exposition that will serve as the basis for both the syntax of the query language and its semantics. We assume the existence of the following pairwise disjoint, countably infinite sets:
• \(A\) of attribute names,
• \(T\) of activity names,
• \(D\) of values, and
• \(\mathbb{N} (\mathbb{N}^+)\) of (positive) natural numbers.

We assume that logs are generated by workflows that include data attributes or variables. Such workflows include data-centric workflow systems (such as Barcelona/GSM [7]) or activity-centric workflows that have data variables (such as YAWL [8], jBPM [9], etc.). Specifically, every workflow has a set of attributes and a set of activities. An attribute is either undefined, denoted as \(\bot\), or has a value in \(D\). A map is a mapping \(A \rightarrow D\) whose domain is finite (i.e., a mapping defines values only for a finite set of attributes).

At runtime, a workflow model can have multiple workflow instances (or enactments); each instance has a distinct identifier called a (workflow) instance id.

A workflow “log” faithfully records the effects of workflow executions at runtime, logging data about workflow instances, decisions made, external systems interactions, etc. In particular, a workflow log keeps the information about changes to data values. There is no standard structure for workflow logs for collecting and maintaining results from workflow execution. For example, in the health management application system we examined with the team at Shan Dong University in China, workflow logging is accomplished through three separate logs for activities, workflow instance launches and completions, and business operations. Workflow management systems such as jBPM often provide mechanisms for workflow instance logging, but the primary goal of these systems is to support reasoning about business operations rather than to support querying data concerning workflow instances and executions.

To formulate the notion of a log for our study, we first define a “log record” (i.e., an entry in a log), using a relation signature over the domain.

Definition 1. A log record is a tuple \((lsn, wid, is-lsn, t, a_{in}, a_{out})\) where

- \(lsn \in \mathbb{N}^+\) is a log sequence number,
- \(wid \in \mathbb{N}^+\) is a workflow instance id identifying the workflow instance to which this log record belongs,
- \(is-lsn \in \mathbb{N}^+\) is an instance-specific log sequence number (unique within each instance),
- \(t \in T\) is an activity name,
- \(a_{in}\) is an input map over the attributes read by activity \(t\), and
- \(a_{out}\) is an output map over the attributes written by activity \(t\).

To simplify technical discussions, we use the following functions to extract components of a log record: for each log record \(l\), \(lsn(l)\) is its log sequence number, \(wid(l)\) the workflow instance id, \(is-lsn(l)\) the instance-specific log sequence number, \(act(l)\) the activity name, \(a_{in}(l)\) the input map, and \(a_{out}(l)\) the output map.

Example 1. Consider a system that manages referrals made at a medical clinic. Workflow activity instances in this system can be captured by log records, creating a collection of log records as shown in Figure 3. The log record with “\(lsn = 4\)” in the figure is the following log record from this system:

\[
 l = (4, 1, 3, \text{CheckIn}, \{(\text{referId}, 034d1), (\text{referState}, \text{start}), (\text{balance}, 1000)\}, \{(\text{referState}, \text{active})\}).
\]

This log record \(l\) is the fourth log record in the log (\(lsn(l) = 4\)). It belongs to the workflow instance with id 1 (\(wid(l) = 1\)). It was produced by the third activity executed in the workflow instance (\(is-lsn(l) = 3\)), where this activity is named CheckIn (\(act(l) = \text{CheckIn}\)). Finally, \(a_{in}(l) = \{(\text{referId}, 034d1), (\text{referState}, \text{start}), (\text{balance}, 1000)\}\), which means that the activity CheckIn reads attribute referId having value 034d1, attribute referState having value start, and attribute balance having value 1000, and \(a_{out}(l) = \{(\text{referState}, \text{active})\}\) indicates that CheckIn activity updates the value of referState to active.
In addition, we introduce two special log records START and END. A START log record is the first log record for a workflow instance. For all START log records l, $is\text{-}lsn(l) = 1$ and the activity name $t(l) = \text{"START"}$. Similarly, an END log record is the last log record for a workflow instance with activity name \text{"END"}. In all START and END log records, the input and output maps are empty.

Definition 2. A log L is a nonempty finite set of log records that satisfies all of the following conditions:

1. There is a bijection between the first $|L|$ natural numbers and the set of all log sequences numbers present in the log records in L, and

 For each log record $l \in L$,

 2. $is\text{-}lsn(l) = 1$ iff $act(l) = \text{START}$ (each workflow instance begins with a START record),

 3. If $is\text{-}lsn(l) > 1$, then there is a log record $l' \in L$ such that $wid(l') = wid(l)$, $lsn(l') < lsn(l)$, and $is\text{-}lsn(l') = is\text{-}lsn(l) - 1$ (for each workflow instance, is-lsn is consecutive), and

 4. If $act(l) = \text{END}$, for all log records $l' \in L$, $lsn(l') > lsn(l)$ implies $wid(l') \neq wid(l)$ (END is the last record for each workflow instance).

In the above definition, Condition (1) ensures a total ordering on the log records in the log through their log sequence numbers. Conditions (2) and (3) together guarantee that the first and only the first log record of every workflow is a START record. Condition (3) further insists that the instance-specific log sequence numbers of each workflow instance is also an initial segment of the natural numbers starting from 1. Condition (4) states that an END log record denotes the largest log...
sequence number and the largest instance-specific log sequence number among all log records of the same workflow instance.

Note that each workflow instance must have a START record in the log, but may not have an END record (the instance is not yet completed). Although a log is a set of log records by definition, when the context is clear, we view a log as a sequence of log records in the ascending order of their log sequence numbers.

Example 2. College clinics in China usually lack the necessary staff and equipment to treat certain medical conditions and to perform intensive medical procedures such as cancer treatment, dental care, etc. For such cases, medical staff refer students to local hospitals for proper care. Each referral has a fixed budget that is the maximum reimbursable amount of the medical cost, where the maximum allowed reimbursement may be different for different medical conditions. The referral process always starts when a student gets a referral from a doctor in a college clinic. Then, the student checks in at the referred hospital, where doctors provide further diagnoses and treatment. The student pays fees and gets receipts for treatment. After receiving the receipts, the student may go to the refund center in her college clinic for reimbursement if the referral status remain active. Additionally, the referral—including the balance—can be updated if a diagnosis made at the referred hospital differs from the original diagnoses made in the college clinic. When this happens, the new balance may be used for all receipts after such an update. The student can request to terminate the active referral at any time.

Figure 3 shows an initial portion of a log of a clinic referral system. We can identify three workflow instances running, as the column wid—which stores ids of workflow instances—has three distinct values. Every workflow instance always starts with a START log record. Each subsequent log record of that instance contains the name of a workflow activity in the column t, and input, output maps for attributes being read and written as shown in the column α in, α out, respectively.

Querying the log shown in Figure 3 would allow doctors and administrators in the college clinic to make improvements to the current referral process. A doctor might wonder if there are any students who update their referrals before they receive a reimbursement. Specifically, consider the question “Are there any students who update their referral before they receive a reimbursement for associated medical care?” This can be reformulated as a question about the log, “Is there a workflow instance in which a log record of the UpdateRefer activity has a lower instance-specific log sequence number than a log record of the GetReimburse activity?” In the example log in Figure 3, the answer is “yes”: for workflow instance with wid 2, there is a log record for an UpdateRefer activity with is-lsn = 14 and another log record for a GetReimburse activity with is-lsn = 20.

Note that the above query examines only temporal relationships of records in the log rather than values of attributes (e.g., balance, hospital). In order to identify anomalous temporal relationships, the user can formulate potential patterns of activity ordering in a workflow instance as they occur in workflow log. This ad hoc nature of querying the log empowers the user to perform flexible analysis of the past and current workflow executions. We aim at developing a query language capable of examining activities and formulating temporal constraints among activities.

Consider again the query “Are there any students who update their referral before they receive a reimbursement for associated medical care?” discussed in the above. The query concerns two activities GetReimburse and UpdateRefer, as well as the temporal relationship that UpdateRefer occurs before GetReimburse. To capture this relationship, we introduce the key notion of an “incident pattern”.

Definition 3. An (incident) pattern is an expression in one of the following forms (assuming p1 and p2 are incident patterns)

- activity patterns (atomic): t, ¬t, where t ∈ T is an activity name,
- consecutive pattern: p1 ⊖ p2 (p1 and p2 are consecutively executed),
- sequential pattern: p1 ⊙ p2 (p1 is executed before p2),
- choice pattern: p1 ⊗ p2 (one of p1 and p2 is executed), and
- parallel pattern: p1 ⊕ p2 (p1 and p2 are executed in parallel and share no log records).
For the remainder of this paper, we refer to an incident pattern simply as a pattern. Intuitively, each atomic pattern “matches” an activity that has been executed. If the pattern is positive (t), the matching activity has the activity name t; if the pattern is negative (~t), the matching activity has an activity name other than t. A pattern composed using at least one of the four operators is called a composite pattern. Matching a composite pattern requires a workflow instance matching each pattern used in the composition, and these matches satisfy an additional constraint. For a consecutive operator, one match must follow the other immediately in the workflow instance. A sequential operator is similar, but with a relaxed condition there could be a gap between the two matches. A choice pattern simply matches one of the matches. And finally, For a parallel pattern, a match is a “shuffle” of the two matches (i.e., keeping their original order).

Using patterns, we can now express the above query, “Are there any students who update their referral before they are reimbursed for associated medical care?”. The pattern for this query is simply a sequential composition:

\[\text{UpdateRefer} \odot \text{GetReimburse} \]

where UpdateRefer and GetReimburse are the activity names corresponding to the actions specified in the above query.

Clearly, the notion of a “match” in the above discussion is intuitive and rather informal. In the following we define the notion of an “incident instance” that precisely captures the informal concept of a match. In general, an “incident instance” is a set of log records that satisfies all conditions in a pattern.

Definition 4. Given a log \(L \) and a pattern \(p \), an incident (instance) \(o \) of \(p \) in \(L \) is a set of log records in \(L \) with three functions first\((o)\), last\((o)\), and wid\((o)\), recursively defined as follows.

1. **Atomic:** if \(p = t \) where \(t \in T \) is an activity name, then \(o \) is an incident of \(p \) whenever \(o = \{ \ell \} \) is a singleton set of a log record \(\ell \) in \(L \) such that \(\text{act}(\ell) = t \);

 if \(p = \neg t \) where \(t \in T \) is an activity name, then \(o \) is an incident of \(p \) whenever \(o = \{ \ell \} \) is a singleton set of a log record \(\ell \) in \(L \) such that \(\text{act}(\ell) \neq t \).

 In both cases, we define first\((o)\) = is-\(lsn\)(\(l\)), last\((o)\) = is-\(lsn\)(\(l\)), and finally wid\((o)\) = wid\((l)\).

2. **Consecutive:** if \(p = p_1 \odot p_2 \), then \(o \) is an incident of \(p \) whenever \(o_i \) is an incident of \(p_i \) (\(i = 1, 2 \)), wid\((o_1)\) = wid\((o_2)\), last\((o_1)\) + 1 = first\((o_2)\), and \(o = o_1 \cup o_2 \).

 Also, we define first\((o)\) = first\((o_1)\), last\((o)\) = last\((o_2)\), and wid\((o)\) = wid\((o_1)\).

3. **Sequential:** if \(p = p_1 \odot p_2 \), \(o \) is an incident of \(p \) whenever \(o_i \) is an incident of \(p_i \) (\(i = 1, 2 \)), wid\((o_1)\) = wid\((o_2)\), last\((o_1)\) < first\((o_2)\), and \(o = o_1 \cup o_2 \).

 We define first\((o)\) = first\((o_1)\), last\((o)\) = last\((o_2)\), and wid\((o)\) = wid\((o_1)\).

4. **Choice:** if \(p = p_1 \oplus p_2 \), \(o \) is an incident of \(p \) whenever \(o_i \) is an incident of \(p_i \) (\(i = 1, 2 \)), wid\((o_1)\) = wid\((o_2)\), \(o_1 \cap o_2 = \emptyset \), and \(o = o_1 \cup o_2 \).

 We define first\((o)\) = min\(\{\text{first}(o_i) \mid i = 1, 2\}\), last\((o)\) = max\(\{\text{last}(o_i) \mid i = 1, 2\}\), and wid\((o)\) = wid\((o_1)\).

Let \(\text{inc}_L(p) \) denote the set of all incidents of \(p \) in \(L \).

Definition 4 provides a semantics for patterns. Specifically, each incident of a pattern in a log \(L \) is a subset of \(L \). Incidents of atomic patterns are singleton sets with the record satisfying the activity condition. Incidents of a consecutive, sequential, and parallel pattern are simply a union of incidents of the sub-patterns used in the operators with additional constraints the instance-specific log sequence numbers must be consecutive (consecutive) or preceding (sequential), or the incidents must be disjoint (parallel). For a choice pattern, incidents are simply the incidents of a sub-pattern.

Example 3. Consider again the query, “Are there any students who update their referral before they receive their reimbursement?”. The query is expressed as the pattern

\[\text{UpdateRefer} \odot \text{GetReimburse} \]
Since the pattern contains two activity names, each incident of this pattern must contain two log records with activities UpdateRefer and GetReimburse, respectively. In addition, by the definition of incidents for sequential operator \circ, the workflow ids of these two log records must the same (the referral and reimbursement to correspond to the same workflow instance). Furthermore (and more importantly), the instance-specific log sequence number of the UpdateRefer log record must be less than that of the GetReimburse log record. Combining the above conditions, the partial log example in Figure 3 only contains one incident of this pattern: $\{l_{14}, l_{20}\}$.

Consider another incident pattern “SeeDoctor $\circ (\text{UpdateRefer} \circ \text{GetReimburse})$”. This pattern captures situations where a student sees a doctor, updates their referral, then gets reimbursed. There is one incident of this pattern: $\{l_{13}, l_{14}, l_{19}\}$ shown in Figure 3.

We provide the following definition of equivalence that is used in the discussions on properties of patterns in Section 4.

Definition 5. Two patterns p_1 and p_2 are equivalent, denoted as $p_1 \equiv p_2$, if $\text{inc}_L(p_1) = \text{inc}_L(p_2)$, for all logs L.

3. Query Evaluation

To use incident patterns as log queries in the exploration of logged workflow executions, patterns must be evaluated. In this section, we focus on the evaluation of a specific query on a given log. This is formulated in the following way: given a pattern p and a log L, find incident set $\text{inc}_L(p)$.

By Definition 5, all equivalent patterns will produce the same incident set on the same log. One strategy for evaluating a query p would transform p into an equivalent query p' and evaluate p'. Theorems in Section 4 present statements of equivalence in the form of algebraic laws. Along with the observations later in this section, these could be used to transform queries as a first step in query optimization. This section presents an algorithm for the evaluation of a given query without optimizations.

3.1. Evaluation of Pattern Composition Operators

In this section, we discuss the evaluation of individual pattern composition operators. According to Definition 4, composing incidents for the operators is rather straightforward. Algorithm 1 shows detailed steps of composition for the four operators.

For evaluating pattern $p_1 \theta p_2$ for some operator $\theta \in \{\oplus, \circ, \otimes, \oplus\}$, incidents sets $\text{inc}_L(p_1)$ and $\text{inc}_L(p_2)$ are used. These sets are further assumed to be sorted by the value of the first function (as defined in Definition 4), which corresponds to the earliest instance-specific log sequence number of the log record for each incident. This ordering is readily available in atomic incidents and is easily preserved in the evaluation process for composite patterns. For simplicity, we assume the log contains just one workflow id, as incidents never contain log records corresponding to multiple workflow instances. Relaxing this assumption can be done easily.
Algorithm 1 Composite pattern operator evaluation algorithms

Input: Incident sets inc₁, inc₂

Output: Incident set inc_L

1: function CONSECUTIVE-EVAL(inc₁, inc₂)
2: inc_L ← ∅
3: for o₁ ∈ inc₁, o₂ ∈ inc₂ do
4: if last(o₁) + 1 = first(o₂) then
5: inc_L.append(o₁ ∪ o₂);
6: return inc_L
7: function SEQUENTIAL-EVAL(inc₁, inc₂)
8: inc_L ← ∅
9: for o₁ ∈ inc₁, o₂ ∈ inc₂ do
10: if last(o₁) < first(o₂) then
11: inc_L.append(o₁ ∪ o₂);
12: return inc_L
13: function CHOICE-EVAL(inc₁, inc₂)
14: inc_L ← ∅
15: for o₁ ∈ inc₁, o₂ ∈ inc₂ do
16: if len(o₁) = len(o₂) then
17: for i = 0; i < len(o₁) do
18: if o₁[i] ≠ o₂[i] then
19: break;
20: if i < len(o₁) then
21: inc_L.append(o₁);
22: inc_L.append(o₂);
23: return inc_L
24: function PARALLEL-EVAL(inc₁, inc₂)
25: inc_L ← ∅
26: for o₁ ∈ inc₁, o₂ ∈ inc₂ do
27: overlap ← False
28: for lrᵢ ∈ o₁, lrⱼ ∈ o₂ do
29: if lrᵢ = lrⱼ then
30: overlap = True
31: break;
32: if overlap = False then
33: inc_L.append(o₁ ∪ o₂);
34: return inc_L

The evaluation algorithms for four composition operators are shown as four functions in Algorithm 1.

- In the evaluation of a consecutive pattern \(p₁ \odot p₂ \), two pointers iterate over inc_L(p₁) and inc_L(p₂), respectively. For each pair \(o₁ ∈ inc_L(p₁) \) and \(o₂ ∈ inc_L(p₂) \), if last(o₁) + 1 = first(o₂), add \(o₁ ∪ o₂ \) to inc_L(p₁ \odot p₂). If \(n₁ = |inc_L(p₁)| \), the evaluation has time complexity \(O(n₁n₂) \) and produces at most \(n₁n₂ \) results.
- In the evaluation of a sequential pattern \(p₁ ⊕ p₂ \), two pointers iterate over inc_L(p₁) and inc_L(p₂), respectively. For each pair \(o₁ ∈ inc_L(p₁) \) and \(o₂ ∈ inc_L(p₂) \), if \(last(o₁) < first(o₂) \), add \(o₁ ∪ o₂ \) to inc_L(p₁ \odot p₂). If \(n₁ = |inc_L(p₁)| \), the evaluation has time complexity \(O(n₁n₂) \), and produces at most \(n₁n₂ \) results.
- The evaluation of a choice pattern \(p₁ ⊕ p₂ \) produces the set union of the input sets inc_L(p₁) and inc_L(p₂). This requires the identification of duplicated incidents (i.e., sets of log records that are incidents of both \(p₁ \) and \(p₂ \), and exclude the duplicates in the output set). If \(k₁ \) and \(k₂ \) are the number of activity names in \(p₁ \) and \(p₂ \), respectively, checking that an incident of \(p₁ \) and an incident of \(p₂ \) are not identical is linear in \(\min(k₁, k₂) \). The time complexity of evaluating choice
performs a post-order evaluation of the tree.

• Lemma 1. Let \(L \) be a log, \(p \) and \(q \) incident sets for each subtree to its parent. More specifically, we process nodes according to post-order traversal to Reverse Polish notation [11].

expression in infix notation to postfix notation. Similar procedures are used to convert infix expressions to stack-based shunting-yard algorithm [10] (introduced by Edsger Dijkstra in 1961), which converts an

equation to Reverse Polish notation. This conversion is useful for evaluating expressions without parentheses. For example, the infix expression \((a + b) * c\) is converted to postfix notation as \(a\ b\ +\ c\ *\).

• Figure 4 shows an incident tree for the pattern SeeDoctor \(\circ \) UpdateRefer \(\circ \) GetReimburse.

We perform a single pass scan over a pattern to build the corresponding incident tree, using the stack-based shunting-yard algorithm [10] (introduced by Edsger Dijkstra in 1961), which converts an

expression to Reverse Polish notation. This conversion is useful for evaluating expressions without parentheses. For example, the infix expression \((a + b) * c\) is converted to postfix notation as \(a\ b\ +\ c\ *\).

The incident tree evaluation is performed starting with the leaf nodes and passing the incident sets for each subtree to its parent. More specifically, we process nodes according to post-order traversal.

We summarize the above analysis in the following lemma.

Lemma 1. Let \(L \) be a log, \(p_1 \) and \(p_2 \) two incident patterns, and \(inc_L(p_1) \), \(inc_L(p_2) \) incident sets of \(p_1 \) and \(p_2 \) on \(L \), respectively. Let \(n_1 = |inc_L(p_1)| \) and \(n_2 = |inc_L(p_2)| \). The following hold:

• \(inc_L(p_1 \circ p_2) \) can be computed in time \(O(n_1 n_2) \) and has size at most \(n_1 n_2 \).
• \(inc_L(p_1 \circ p_2) \) can be computed in time \(O(n_1 n_2) \) and has size at most \(n_1 n_2 \).
• \(inc_L(p_1 \circ p_2) \) can be computed in time \(O(n_1 n_2 \min(k_1, k_2)) \), where \(k_1 \) is the number of activity names in \(p_1 \), and has size at most \(n_1 n_2 \).
• \(inc_L(p_1 \circ p_2) \) can be computed in time \(O(n_1 n_2(k_1 + k_2)) \), and has size at most \(n_1 n_2 \).

In the evaluation of a choice pattern \(p_1 \circ p_2 \), checking for duplication in the output set is only necessary when \(p_1 \) and \(p_2 \) contain the same multiset of activity names. Letting \(S_1, S_2 \) be the multiset of activity names in pattern \(p_1, p_2 \), resp., determining the equality of two incidents of \(p_1 \) and \(p_2 \) is linear in \(|S_1| \) if \(S_1 = S_2 \). This equality can be determined in \(|S_1| \) before the inspection of any incidents of the input sets. Otherwise, if the patterns do not contain the same multiset of activity names, the incident set of a choice pattern \(p_1 \circ p_2 \) is the union of the disjoint sets \(inc_L(p_1) \) and \(inc_L(p_2) \), and can be calculated in \(O(n_1 n_2) \).

3.2. Evaluation of Incident Pattern Queries

Based on the algorithms for the evaluation of the operators, we present an algorithm for the evaluation of composite patterns. Our pattern evaluation strategy constructs an “incident tree”, and performs a post-order evaluation of the tree.

Definition 6. An incident tree is a binary tree with two types of nodes—namely operator and activity nodes—such that:

• An operator node has both left and right child nodes, and is labeled with a pattern operator, and
• An activity node is a leaf node, labeled with an activity name for positive atomic patterns, adding “\(\neg \)” before the activity name in the case of negative activity patterns.

Example 4. To illustrate incident trees, we use rectangles to represent activity nodes and circles for operator nodes. Figure 4 shows an incident tree for the pattern SeeDoctor \(\circ \) UpdateRefer \(\circ \) GetReimburse.

We perform a single pass scan over a pattern to build the corresponding incident tree, using the stack-based shunting-yard algorithm [10] (introduced by Edsger Dijkstra in 1961), which converts an

of the incident tree, yielding an incident set for the given incident pattern at the root of the incident tree. An implementation is given in Algorithm 2.

Figure 4. An incident tree for SeeDoctor ⊙ (UpdateRefer ⊙ GetReimburse).

In Algorithm 2, if the root node is a leaf, all log records with a matching (or un-matching) activity name are added to the output set \(\text{inc}_L \). An index structure for each workflow id and activity is used to generate log records for an activity node in constant time. Otherwise, the root corresponds to a composite pattern, so a post-order evaluation is performed in lines 7 and 8. After the evaluation of incidents sets of the left and right subtrees, line 9 combines the results with the operator-specific function depending on the type of the root node. The function OPERATOR-EVAL invokes operator-specific algorithms discussed earlier in this section and formalized in Algorithm 1 to generate incident sets.

Algorithm 2 Incident tree evaluation algorithm

Input: Incident TreeNode root, dictionary LogRecordsDict
Output: Incident Set \(\text{inc}_L \)

1: function EVAL-INCIDENT-TREE
2: \(\text{inc}_L \leftarrow \emptyset \);
3: if root.type == ATOMIC then
4: for \(i \in \text{widSet} \) do
5: if root.negated = False then
6: \(\text{inc}_L \).append(LogRecordsDict[i](lr.activity_name = root.activity_name));
7: else
8: \(\text{inc}_L \).append(LogRecordsDict[i](lr.activity_name != root.activity_name));
9: else
10: \(\text{inc}_{\text{left}} \leftarrow \text{EVALINCIDENTTREE}(\text{root.left}, \text{LogRecordsDict});
11: \(\text{inc}_{\text{right}} \leftarrow \text{EVALINCIDENTTREE}(\text{root.right}, \text{LogRecordsDict});
12: \(\text{inc}_L \leftarrow \{} \)
13: for \(i \in \text{widSet} \) do
14: \(\text{inc}_L[i] = \text{OPERATEIREVAL}(\text{root.type}, \text{inc}_{\text{left}}[i], \text{inc}_{\text{right}}[i]); \)
15: return \(\text{inc}_L \)

Example 5. For the incident tree in Figure 4, the evaluation Algorithm 3 starts at the leaf nodes SeeDoctor, UpdateRefer, and GetReimburse. A set of log records for each activity node is generated from the workflow log. In each set, the activity names in the log records are identical to the label of the corresponding activity node. For instance, the incidents of activity node SeeDoctor are \(\text{inc}_L(\text{SeeDoctor}) = \{l_9, l_{11}, l_{13}, l_{17}\} \).

The incident set for each leaf node is passed to its parent, the operator node at depth 2 in Figure 4. The evaluation proceeds by invoking the algorithm for the sequential operator, constructing the incident set; here, it is \(\{l_{14}, l_{20}\} \). Similarly, the result is passed to the root, which is also labelled with the sequential operator. The root performs the same operation and generates the final output \(\{l_{13}, l_{14}, l_{20}\} \).
Algorithm 3 Incident tree generation algorithm

Input: Incident pattern \(p \) (in postfix notation)
Output: Incident Tree \(T \), dictionary \(\text{LogRecordsDict} \)

1: function BUILDINCIDENTTREE
2:
3: TreeNode root \leftarrow \text{new TreeNode}();
4: root.type \leftarrow p.type; \quad \triangleright \text{operator_type} \in \{\text{ATOMIC, CONS, SEQU, CHOICE, PARA}\}
5: if root.type==\text{ATOMIC} then
6: \quad \text{root.activity_name} \leftarrow p \quad \triangleright \text{p.negative is true iff p is a negative activity pattern}
7: \quad \text{root.left} \leftarrow \text{EvalPattern}(p.left_pattern);
8: \quad \text{root.right} \leftarrow \text{EvalPattern}(p.right_pattern);
9: dictionary \(\text{LogRecordsDict} \leftarrow \{\} \); \quad \triangleright \text{a dictionary mapping wid to log records of that wid}
10: widSet \leftarrow \{\}
11: for \(lr \in L \) do
12: \quad \text{LogRecordsDict[lr.wid].append(lr)};
13: \quad widSet + = \text{lr.wid}
14: return root, \text{LogRecordsDict};

Theorem 1. Let \(L \) be a log with \(m \) log records and \(k \) the number of operators in a pattern \(p \). The time complexity of evaluating \(p \) is \(O(m^k) \).

Proof. Let \(t \) be an activity name. The worst case time complexity for evaluation arises with pattern \(p = ((\cdots(((t\otimes t)\otimes t)\cdots)\otimes t)) \), which forms a left-deep incident tree with each leaf producing an incident set \(\text{inc}_L(t) \) of size \(O(m) \). An incident set produced by a node at depth \(d \) will have \(k+1-d \) log records, indicating that the \(k \otimes \) operators with time complexity \(O(n_1n_2k) \) will have times \(O(m^2) \), \(O(2m^3) \), \(\ldots \), \(O((k-1)m^k) \), where \(\Sigma_{i=1}^{k} m^k = \frac{m^{k+1} - 1}{m-1} \). Thus, the overall time complexity is at most \(O(m^k) \). \(\square \)

4. Properties of Incident Operators

Incident patterns are algebraic expressions with four binary operators. In this section, we examine algebraic properties of the four pattern operators. The main results in the section establish commutative, associative, and distributive properties, which could serve as a basis for query optimization. For example, an associative law concerning an operator would allow the optimizer to choose between left-to-right and right-to-left evaluation paths. Although the study of query optimization techniques is beyond the scope of this paper, we believe that the log query evaluation algorithm presented in Section 3 can be significantly optimized.

Theorem 2 in the following states that all operators are associative.

Theorem 2. \((p_1 \theta p_2) \theta p_3 \equiv p_1 \theta (p_2 \theta p_3) \) for all patterns \(p_1, p_2, p_3 \) and all operators \(\theta \in \{\ominus, \oslash, \otimes, \oplus\} \).

Proof. Let \(L \) be an arbitrary log. It must be shown that for patterns \(p_1, p_2, p_3, \theta \in \{\ominus, \oslash, \otimes, \oplus\}, inc_L((p_1 \theta p_2) \theta p_3) = inc_L(p_1 \theta (p_2 \theta p_3)) \). We prove the associativity of each operator individually.

- (Consecutive operator.) Suppose \(\theta \in inc_L((p_1 \oslash p_2) \oslash p_3) \). According to Definition 4, \(\theta = \theta' \cup \omega_3 \), where \(\theta', \omega_3 \) are incidents of \(p_1 \oslash p_2, p_3 \), resp., \(\text{wid}(\theta') = \text{wid}(\omega_3) \), and \(\text{last}(\theta') + 1 = \text{first}(\omega_3) \). The same definition further implies that there are two incidents \(o_1, o_2 \) such that \(\theta' = o_1 \cup o_2 \) is an incident of \(p_1 \oslash p_2 \). Thus, the three incidents \(o_1, o_2, o_3 \) have the following properties: \(\text{last}(o_1) + 1 = \text{first}(o_2), \text{last}(o_2) + 1 = \text{first}(o_3) \), \(\text{wid}(o_1) = \text{wid}(o_2) = \text{wid}(o_3) \), and \(o_i \) is an incident of \(p_i \) for \(i \in \{1,2,3\} \).
From these incidents, we construct an incident of \((p_1 \otimes (p_2 \otimes p_3))\) as follows. Let \(o'' = o_2 \cup o_3\). From the properties listed above, \(o''\) is an incident of \(p_2 \otimes p_3\). This, together with \(\text{last}(o_1) + 1 = \text{first}(o'')\) and \(\text{wid}(o'') = \text{wid}(o_1)\), establishes that
\[\delta = (o_1 \cup o'') \in \text{inc}(p_1 \otimes (p_2 \otimes p_3)). \]
Observing that \(o = o' \cup o_3 = o_1 \cup o_2 \cup o_3 = o_1 \cup o'' = \delta\), it follows \(o \in \text{inc}(p_1 \otimes (p_2 \otimes p_3)).\)

It must also hold that incidents of the right hand side, elements of \(\text{inc}(p_1 \otimes (p_2 \otimes p_3))\), are incidents of the left hand side, elements of \(\text{inc}(\{(p_1 \otimes p_2) \otimes p_3\}).\) This case is symmetric.

- (Sequential operator.) The proof is nearly identical to the proof for the consecutive operator, and can be formed by making the following replacements:
 \[
 \text{last}(o') + 1 = \text{first}(o_3) \text{ becomes } \text{last}(o') < \text{first}(o_3),
 \]
 \[
 \text{last}(o_1) + 1 = \text{first}(o_2) \text{ becomes } \text{last}(o_1) < \text{first}(o_2),
 \]
 \[
 \text{last}(o_2) + 1 = \text{first}(o_3) \text{ becomes } \text{last}(o_2) < \text{first}(o_3), \text{ and}
 \]
 \[
 \text{last}(o_1) + 1 = \text{first}(o'') \text{ becomes } \text{last}(o_1) < \text{first}(o'').
 \]

- (Choice operator.) Let \(o\) be an incident of \((p_1 \otimes p_2) \otimes p_3\). Using the definition of the choice operator, this occurs if and only if \(o\) is an incident of \((p_1 \otimes p_2)\) or \(o\) is an incident of \(p_3\). Applying the same deconstruction to \((p_1 \otimes p_2), o\) is an incident of \((p_1 \otimes p_2)\) if \(o\) is an incident \(p_1\) or an incident of \(p_2\). This results in three cases for \(o\): (1) \(o \in \text{inc}(p_1),\) (2) \(o \in \text{inc}(p_2),\) or (3) \(o \in \text{inc}(p_3).\)

The statement \(o \in \text{inc}(p_1 \otimes (p_2 \otimes p_3))\) can be deconstructed into the same three cases using nearly identical reasoning. Therefore, \((p_1 \otimes p_2) \otimes p_3 \equiv (p_1 \otimes (p_2 \otimes p_3).\)

- (Parallel operator.) If \(o\) is an incident of \((p_1 \oplus p_2) \oplus p_3\), there exists incidents \(o' \in \text{inc}(p_1 \oplus p_2)\) and \(o_3 \in \text{inc}(p_3)\), such that \((o' \cup o_3) = o\) and \(o' \cap o_3 = \emptyset.\) The incident \(o'\) is an instance of pattern \((p_1 \oplus p_2),\) which indicates there exists \(o_1 \in \text{inc}(p_1), o_2 \in \text{inc}(p_2)\) such that \(o_1 \cup o_2 = o'\) and \(o_1 \cap o_2 = \emptyset.\) Since \(o_2 \subseteq o'\) and \(o' \cap o_3 = \emptyset,\) \(o_2 \cap o_3 = \emptyset.\) By the disjointedness of \(o_2\) and \(o_3,\) we have \(o_2 \cup o_3 \in \text{inc}(p_2 \oplus p_3).\) Because \(o_1 \cap o_2 = \emptyset\) and \(o_1 \cap o_3 = \emptyset,\) it follows that \(o_1 \cup o_2 \cup o_3 \in \text{inc}(p_1 \oplus (p_2 \oplus p_3)).\) Thus, membership in \(\text{inc}(p_1 \oplus (p_2 \oplus p_3))\) implies membership in \(\text{inc}(p_1 \oplus (p_2 \oplus p_3)).\) The proof for \(\text{inc}(p_1 \oplus (p_2 \oplus p_3)) \equiv \text{inc}(p_1 \otimes (p_2 \otimes p_3))\) is symmetric.

\[\square \]

An operator is commutative if the ordering of its arguments is independent of the results of its evaluation. Theorem 3 below states that the choice operator \(\otimes\) and parallel operator \(\oplus\) are commutative.

Theorem 3. For all patterns \(p_1, p_2, p_1 \otimes p_2 \equiv p_2 \otimes p_1\) and \(p_1 \oplus p_2 \equiv p_2 \oplus p_1.\)

Proof. Let \(L\) be an arbitrary log. We prove that for two patterns \(p_1, p_2,\) the following holds:
\[\text{inc}(p_1 \otimes p_2) = \text{inc}(p_2 \otimes p_1).\]
Assuming that incident \(o \in \text{inc}(p_1 \otimes p_2),\) \(o\) is an incident of \(p_1\) or an incident of \(p_2.\) If \(o\) is an incident of \(p_1,\) \(o\) is an incident of \(p_2 \otimes p_1.\) Similarly, if \(o\) is an incident of \(p_2,\) \(o \in \text{inc}(p_2 \otimes p_1).\) By assumption, \(o\) is an incident of \(p_1\) or an incident of \(p_2,\) so \(o \in \text{inc}(p_2 \otimes p_1).\)

It follows that \(o \in \text{inc}(p_1 \otimes p_2) \Rightarrow o \in \text{inc}(p_2 \otimes p_1).\) The other direction follows from a nearly identical proof. Thus, the choice operator is commutative.

For the parallel operator, consider incident \(o\) such that \(\exists o_1 \in \text{inc}(p_1)\) and \(\exists o_2 \in \text{inc}(p_2)\) such that \(o_1 \cup o_2 = o\) and \(o_1 \cap o_2 = \emptyset.\) By Definition 4, \(o\) is an incident of \(p_1 \otimes p_2\) and also of \(p_2 \otimes p_1.\) If no such incidents \(o_1, o_2\) exist, then \(o\) is not an incident of \(p_1 \otimes p_2\) nor \(p_2 \otimes p_1.\) Thus, \(o \in \text{inc}(p_1 \otimes p_2) \iff o \in \text{inc}(p_2 \otimes p_1).\) It follows that the parallel operator is commutative. \[\square \]

The consecutive and sequential operators are not commutative for a trivial reason. Indeed, sets of log records whose instance-specific log sequence numbers satisfy the ordering provided by the consecutive or sequential operators will surely fail the inverted ordering.

Theorem 4 in the following states that in queries containing only the consecutive \(\otimes\) and sequential \(\oplus\) operators, these operators have equal precedence, extending the associativity proven in Theorem 2.
Theorem 4. For all patterns \(p_1, p_2, p_3 \), the following all hold.

1. \(p_1 \ominus (p_2 \odot p_3) \equiv (p_1 \ominus p_2) \odot p_3 \), and
2. \(p_1 \ominus (p_2 \odot p_3) \equiv (p_1 \ominus p_2) \odot p_3 \).

Proof. For Part 1, let \(L \) be an arbitrary log and \(o_1, o_2, o_3 \) incidents from sets \(inc_L(p_1), inc_L(p_2) \), and \(inc_L(p_3) \), respectively. Then, \(o_1 \cup o_2 \cup o_3 \) is an incident of \(p_1 \ominus (p_2 \odot p_3) \) if and only if \(wid(o_1) = wid(o_2) = wid(o_3) \), \(last(o_1) < first(o_2) \), and \(last(o_2) + 1 = first(o_3) \). These conditions are necessary and sufficient for \(o_1 \cup o_2 \cup o_3 \) to be an incident of \(p_1 \ominus (p_2 \odot p_3) \).

A proof for Part 2 can be obtained from the proof of Part 1 by replacing the statements \(last(o_1) < first(o_2) \) and \(last(o_2) + 1 = first(o_3) \) with \(last(o_1) + 1 = first(o_2) \) and \(last(o_2) < first(o_3) \). □

Finally, Theorem 5 provides left- and right-distributive properties of all operators over the choice operator \(\otimes \).

Theorem 5. For \(\theta \in \{ \ominus, \odot, \otimes, \oplus \} \), the following all hold.

1. \(p_1 \theta (p_2 \odot p_3) \equiv ((p_1 \theta p_2) \odot (p_1 \theta p_3)) \) (left-distributive), and
2. \((p_1 \ominus p_2) \theta p_3 \equiv ((p_1 \ominus p_3) \ominus (p_2 \ominus p_3)) \) (right-distributive).

Proof. We prove Part 1 for three operators, as the proof for the choice operator is trivial. Let \(L \) be an arbitrary log.

- (Consecutive operator.) Let \(o \in inc_L(p_1 \ominus (p_2 \odot p_3)) \). This is equivalent to \(\exists o_1, o' \) such that \(last(o_1) + 1 = first(o') \), \(o_1 \in inc_L(p_1) \), \(o' \in inc_L(p_2 \odot p_3) \), and \(o = o_1 \cup o' \). The choice operator yields two possible cases: (1) \(o' \in inc_L(p_2) \), or (2) \(o' \in inc_L(p_3) \). Because \(o \in inc_L(p_1) \), in Case (1), \(o \) has necessary and sufficient properties such that \(o \in inc_L(p_1 \ominus p_2) \). Similarly in Case (2), \(o \in inc_L(p_2 \odot p_3) \). Combining both cases of membership with the choice operator yields \(o \in ((p_1 \ominus p_2) \ominus (p_1 \ominus p_3)) \), because \(o \in inc_L(p_1 \ominus p_2) \) or \(o \in inc_L(p_2 \odot p_3) \).

- (Sequential operator.) A proof for the sequential operator is obtained by replacing the statement \("last(o_1) + 1 = first(o')" \) in the proof for the consecutive operator with \("last(o_1) < first(o')" \).

- (Parallel operator.) Let \(o \in inc_L(p_1 \oplus (p_2 \odot p_3)) \). This is equivalent to \(\exists o_1, o' \) such that \(o_1 \in inc_L(p_1) \), \(o' \in inc_L(p_2 \odot p_3) \), \(o = o_1 \cup o' \), and \(o_1 \cap o' = \emptyset \). Rewriting \(o' \in inc_L(p_2 \odot p_3) \) by deconstructing the choice operator \(\odot \) yields \(o' \in inc_L(p_2) \) or \(o' \in inc_L(p_3) \). Now observe that \(o \) has necessary and sufficient properties such that \(o \in inc_L(p_1 \oplus p_2) \) or \(o \in inc_L(p_2 \odot p_3) \), thus \(o \in ((p_1 \ominus p_2) \ominus (p_1 \ominus p_3)) \).

The proof of the right-distributive property in Part 2 is very similar to that of Part 1, and is thus omitted here. □

5. Related Work

In the field of business intelligence (BI), there is a growing collection of technologies for gathering, storing, accessing, and analyzing data, tools that help users make better decisions. Traditionally, the aim of research in BI has been to improve techniques in data management based on data warehousing and online analytic processing (OLAP) [6,12,13]. Since the early 1990s, focus has been on studying the integration of data from multiple sources using extract-transform-load (ETL) tools, effective/efficient data store, and support of multidimensional data analysis using OLAP. Due to recently increasing demands for faster decision making and the advent of the era of Big Data, an increased focus on real-time BI and business performance management, and pervasive BI has emerged in the research community [14]. Traditionally, ETL processes have been executed in an offline mode. Recently, the demand for real-time business needs has driven the optimization on ETL tools and near-real-time ETL design [15–17]. To provide front-end applications, OLAP [18] has been studied to support operations such as filtering, aggregation, pivoting, rollup, and drill-down on the multidimensional
view of relational data. Traditional data warehousing has mainly been focused on structured data management and analysis. However, it barely considers business process during the analytic process.

The concepts of process-centric BI [19] and business process intelligence [20,21] were introduced to analyze data with business process information. In their work, after collecting data from business process instances, the traditional data analytic tools (e.g., OLAP and data mining techniques) are used to do further analysis. These developments have helped enterprises tremendously in process analytics. However, since data is tightly coupled with the process model and its execution engine, it is difficult to provide generic solutions for warehousing process data for different business processes. Additionally, it is not efficient to do runtime execution monitoring and analysis over a data warehousing approach.

Querying helps business process designers to understand, communicate upon, and enhance a business process. BPMN-Q (Business Process Model and Notation Querying) [22–25], BQL (Behavior Query Language) [26], and APQL (A Process-Model Query Language) [27] are query languages on business process models expressed in different modeling languages like BPMN, Business Process Execution Language (BPEL) [28] and Petri Net. These query languages focus on the static analysis of business process models which are mainly used at the process design stage other than execution history analysis.

Querying process models/traces has also been studied by Beeri, Milo, et al. [29,30]. In particular, three query languages were developed: BP-QL that focuses on finding process models using patterns [29–32], BP-EL and BP-Mon that allow querying over traces and/or process models. Key distinctions between their work and our approach are that (1) their traces are acyclic graphs reflecting the control flow structures, while ours is based on logs; and (2) their queries are graph patterns, while ours is based on four algebraic operations. We believe that querying logs directly is more natural in practice.

BP-SPARQL [33,34], which also focuses on trace analysis, is a declarative query language extended from SPARQL [35], a query language for Resource Description Framework (RDF) graphs. BP-SPARQL takes the process execution log of a system (with multiple process instances) and uses a data model—a graph with typed nodes representing entities, data objects with attributes and edges representing transitive relationship between two entities. While BP-SPARQL relies on an intermediate graph, our work analyzes the log directly.

There is also research focusing on event pattern analysis in field CEP (Complex Event Processing) and data streaming. ZStream [36] is a cost-based query processor for matching sequential patterns enriched with the operators sequence, conjunction, disjunction, negation, and Kleene closure. It uses tree-based query plans and a cost model to find the most efficient query evaluation plan. Similar systems include Aurora [37,38], Borealis [39], and TelegraphCQ [40]. Different from our work, these systems focus on streaming data and time window. There are also works extending SQL to process complex patterns in database systems, like DejaVu system [41], using finite state automata to extend SQL, and SQL_TS [42], using the Knuth–Morris–Pratt string matching algorithm for query optimization in database.

6. Conclusions

This paper presents a new query language that uses incident patterns to query enactments of business process stored as workflow logs. Four operators are used to formulate a temporal relationship between activities. Queries using incident patterns are not only more flexible than ETL/data warehousing, but also better support business experts to formulate their demands from different perspectives. The paper also provides a query evaluation algorithm, and explores the algebraic properties between these operators useful for developing further optimization techniques. There are many interesting questions that arise from this initial study. An immediate task is to develop query optimization techniques. Theorems 2–5 provide a first step in this study. Looking ahead, one may wonder how incident pattern query evaluation could compare to data warehousing queries. Clearly the naive approach sketched in this paper can be augmented with more advanced optimization techniques.
We also speculate that query languages for workflow log, such as those which make use of incident patterns, should be helpful in application problems such as detecting anomalous or malicious behavior, with applications in fraud detection, either through ad hoc queries or by constructing queries from business principles.

Acknowledgments: Work by the second author (I.M.) was supported by NSF Grant DGE-1258507.

Author Contributions: Yan Tang and Jianwen Su formulated the formal model for logs and incident operations. Yan Tang also developed the query evaluation algorithms. Isaac Mackey extended incident to allow negation and also was the lead contributor to complete all proof details.

Conflicts of Interest: The authors declare no conflict of interest.

References

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).