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Abstract: Based on the advantages of a non-subsampled shearlet transform (NSST) in image
processing and the characteristics of remote sensing imagery, NSST was applied to enhance blurred
images. In the NSST transform domain, directional information measurement can highlight textural
features of an image edge and reduce image noise. Therefore, NSST was applied to the detailed
enhancement of high-frequency sub-band coefficients. Based on the characteristics of a low-frequency
image, the retinex method was used to enhance low-frequency images. Then, an NSST inverse
transformation was performed on the enhanced low- and high-frequency coefficients to obtain an
enhanced image. Computer simulation experiments showed that when compared with a traditional
image enhancement strategy, the method proposed in this paper can enrich the details of the image
and enhance the visual effect of the image. Compared with other algorithms listed in this paper, the
brightness, contrast, edge strength, and information entropy of the enhanced image by this method
are improved. In addition, in the experiment of noisy images, various objective evaluation indices
show that the method in this paper enhances the image with the least noise information, which
further indicates that the method can suppress noise while improving the image quality, and has a
certain level of effectiveness and practicability.

Keywords: non-subsampled shearlet transform; directional information measurement;
image enhancement

1. Introduction

Various factors, such as the imaging environment, system equipment, and transmission medium,
often affect the image acquisition process and cause the quality of an image to degrade by varying
degrees. Image blurring, low contrast, and insufficient definition often make it inconvenient to
subsequently analyze an image, extract the target, and classify or identify the targets. Therefore, the
overall or local characteristics of an image should be carefully emphasized. Original unclear images
should be made clear or certain features of interest should be emphasized. The differences in the
characteristics of different objects in an image should be enlarged, and the features that are not of
interest should be suppressed. As a result, the image quality can be improved, its information can be
enriched, image interpretation and recognition can be enhanced, and the practical application value
of images can be increased [1]. Currently, the commonly used image enhancement methods can be
divided into two main categories: Spatial and frequency domain enhancements. The former directly
deals with the gray value of an image. Common methods include grayscale transformation, histogram
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equalization, and unsharp masking methods. Although these methods improve image quality to a
certain extent, the processing of detailed information, such as the image edge texture, is often not
satisfactory. If the image information is enhanced by processing the image in the frequency domain,
while the detailed information of the image is highlighted, it is prone to carrying noise forward into
the enhanced image. To solve the above problems, we proposed an image enhancement method based
on non-subsampled shearlet transform (NSST) and directional information measurement.

An NSST consists of a non-subsampled Laplacian pyramid transform and a shear filter with
translation invariance. An NSST’s multiscale decomposition is similar to a non-subsampled contourlet
transform (NSCT) [2]. However, an NSST uses a shear filter in the direction decomposition to solve
the limitation of the number of directions of the non-subsampled directional filter (NSDFB) in NSCT;
the shear filter can be represented by a window function in matrix form [3]. In addition, an NSST
also makes up for the wavelet transform only for objects with isotropic characteristics. Its transform
base has anisotropic characteristics. The aspect ratio in the interval can vary with scale. The number
of directions can be determined based on the time complex and enhancement quality of the image.
Therefore, an NSST not only retains the local time-frequency characteristics and translation invariance
of an NSCT, but also has more flexibility and effectiveness than an NSCT.

After multiscale and multidirectional decomposition of an NSST, the original image is decomposed
into a low-frequency image and several high-frequency images. The low-frequency image is an
approximate copy of the original image and contains the contour information of the original image.
Due to the poor contrast and sharpness of low-frequency images, traditional enhancement strategies,
such as the histogram equalization method, are not obvious for improving the contrast, and losing
part of the energy information. Therefore, this paper adopts a single-scale Retinex (SSR) image
enhancement method, which enhances the contrast and sharpness of low-frequency images. The
high-frequency images contain important details, such as the edge and texture of the image, and
also contain some noise. The edge and texture information is not only the maximum value of the
local gray mutation, but also has a strong direction, and noise is random. Although existing methods
can achieve the enhancement effect to a certain extent, they fail to effectively separate edge and
noise information while enhancing edge information specifically. To prevent noise from increasing
when a high-frequency image was enhanced, we used high-frequency image enhancement based on
directional information measurement. Using the advantage of highlighting important information,
such as the edges and texture of the image, through directional information measurement [4], the
position of the edge point and the texture point in a high-frequency image can be identified, and the
pixel points of high-frequency images are classified into smooth points, edge points, and noise points.
According to the characteristics of edge points in an NSST high-frequency channel, they are divided
into step and ridge edges. Then, different enhancement methods are adopted for the two edges in
the high-frequency channel, so as to increase the information and sharpness of the original image.
In addition, because directional information measurement in the image is not sensitive to noise [5], we
introduced this method as an enhancement strategy for high-frequency images, which is conducive to
reducing interference of noise on the performance of the image enhancement process.

2. Image NSST Transformation

The proposal of wavelet transform is a milestone in multiscale transform [6]. Wavelet transform
can effectively deal with the point singularity problem of one- or high-dimensional signals [7].
However, wavelet transform cannot capture the line singularity problem of images. To solve this
problem, curvelet and contourlet transform [8] have been successively proposed. These two types
of transforms can decompose an image in multiple directions based on a multiscale transform.
In addition, the basic functions of the two have a wedge or rectangular support area, which provides
an improved sparse expression for the high-dimension singularity in an image [9,10]. The subsampling
operation in the multiscale and multidirectional decomposition processes can cause the image to
not have translation invariance, resulting in a Gibbs phenomenon [11] in the enhanced image. The
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directional filtering system adopted by the recently proposed shearlet transform (ST) has translation
invariance. Theoretically speaking, the directional filtering of a shearlet wave is a natural extension
in multidimensional and multidirectional conditions. The shearlet wave can express the set of these
regeneration functions as:{

ψi,j,k(x) = |detA|j/2ψ(Sl Ajx− k) : j, l ∈, k ∈ Z2
}

, (1)

where matrix A determines the multiscale decomposition of the image and matrix A is anisotropic; the
shear matrix S determines the multidirectional analysis of the image; j represents the decomposition
scale; l represents the direction parameter; and k represents the translation parameter. In the L2(R2)

domain, the set of basic functions ψi,j,k(x) is formed by rotating, shearing, and translating a single
window function with good local characteristics. These sets together form the Parseval framework,
and this process constitutes an affine system. When any f ∈ L2(R2):

∑
j,l,k

∣∣∣〈 f , ψj,l,k

〉∣∣∣2 = ‖ f ‖2. (2)

In Reference [8], the basis function ψi,j,k(x) of ST is expressed as:

ψ̂(ξ) = ψ̂(ξ1, ξ2) = ψ̂1(ξ1) ψ̂2(
ξ2

ξ1
). (3)

For any ξ = (ξ1, ξ2) ∈ R2, ξ1 6= 0, suppψ̂1 ⊂ [−1/2,−1/16] ∪ [1/16, 1/2], suppψ̂2 ⊂ [−1, 1],
ψ̂1, ψ̂2 ∈ C∞(R̂), and satisfy:

∑
j≥0

∣∣∣ψ̂1(2−2jω)
∣∣∣2 = 1, |ω| ≥ 1

8
(4)

2j−1

∑
l=−2j

∣∣∣ψ̂2(2jω− l)
∣∣∣2 = 1, |ω| ≤ 1. (5)

The partitions are D0 =
{
(ξ1, ξ2) ∈ R̂2 : |ξ1| ≥ 1

8 , |ξ2/ξ1| ≤ 1
}

and D1 ={
(ξ1, ξ2) ∈ R̂2 : |ξ2| ≥ 1

8 , |ξ1/ξ2| ≤ 1
}

. D0 and D1 are composed of the supports of ψ0
i,j,k(x)

and ψ1
i,j,k(x), respectively.

From the above algorithm, one can see that a shearlet has good local features and direction
sensitivity; the number of directions on each layer scale is multiplied. In the process of image
decomposition, both the curvelet and contourlet transform use the directional filter bank (DFB)
proposed by Bamberger and Smith [12] to conduct directional decomposition of the image. Because a
two-dimensional diamond filter matrix is introduced to DFB, in order to adapt to the filter filtering,
the input image needs to be remodeled. The DFB-filtered image needs to be inversely synthesized to
complete the remodeling. This process causes distortion in the enhanced image, creating confusion in
its frequency domain coefficients. The NSST just makes up for the shortcoming of the curvelet and
contourlet transforms.

The multidirectional decomposition of the NSST is accomplished using an improved shear filter.
The idea is to perform a two-dimensional Fourier transform [13] on the image on a pseudopolar grid
and then use a one-dimensional sub-band filter for filtering on the grid. It is not necessary to perform a
critical sampling operation on the original image during the frequency domain transform of an NSST,
so that the phenomenon of image distortion does not appear in the directional filtering process, and
the translation invariance of the image is also guaranteed. In addition, the shear filter can adaptively
acquire the geometrical characteristics of multidimensional data, which can better express the details
of the image, such as the edges [14]. Because the support area of the shear filter is small, the probability
of the occurrence of the Gibbs phenomenon is reduced, improving the calculation efficiency.
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The multiscale decomposition of the NSST was performed using the non-subsampled Laplacian
pyramid (NSLP) filter proposed by Cunha and Do [15] instead of the original LP filter. The NSLP
decomposition can be completed by iterating the following process:

NSLPj+1 = Aj f = (Ah1
j

j−1

∏
k=1

Ah0
k) f , (6)

where f represents an image, NSLPj+1 is the detail coefficient at the scale j + 1, Ah0
k represents the

low-frequency filter at the scale k, and Ah1
j is the high-frequency filter at the scale j. Assuming f 0

a
is an image of size N × N, and the number of direction Dj is given, then the NSST-based image
transformation can be completed using the following steps:

Step 1: Image f j+1
a is decomposed into a low-pass image f j

a of size N × N and a high-pass image
f j
d using an NSLP transform.

Step 2: f̂ j
d is calculated in the pseudopolar grid and P f j

d is obtained.

Step 3: P f j
d is bandpass filtered to obtain the frequency domain coefficients

{
f̂ j
d,k

}Dj

k=1
in

pseudopolar coordinates.

Step 4: The NSST coefficient
{

f j
d,k

}Dj

k=1
of the Cartesian coordinate system is obtained using the

inverse transformation of the fast Fourier transform (FFT) in the pseudopolar grid.

Figure 1 provides the source image, the low-frequency image decomposed by NSST transform,
and the high-frequency image after multiscale and multidirectional decomposition.
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Figure 1. Two-layer non-subsampled shearlet transform (NSST) decomposition. (a) Original image;
(b) low-frequency approximation image after NSST decomposition; (c) high-frequency detail image
after decomposition by the first NSST layer; (d) high-frequency detail image after decomposition by
the second NSST layer.
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3. Directional Information Measurement of the Image

Edge and texture information is the most important detailed information used in image
enhancement. Extracting the details of edges and textures in the source image and injecting them
into the original image is the goal of image enhancement. By calculating the directional information
measurement of the pixel gray value, we can determine whether a pixel belongs to the edge or texture
information of the image. Many studies in the literature [16] have also mentioned that directional
information measurement of an image can separate the edge and texture information of the image
from the noise. This type of measurement can better extract the useful information in the original
image and effectively reduce the influence of noise on the enhancement effect.

Let the pixel gray value of image X at (i,j) be p(i,j), where r is the neighborhood radius of center
(i,j); then, the neighborhood centered at (i,j) is:

N(i, j) = {(x, y)| i− r ≤ x ≤ i + r, j− r ≤ y ≤ j + r} . (7)

If lθ represents a line that passes the center point of the neighborhood and its angle is θ, then lθ
can divide the neighborhood window N into two parts, namely NL and NH. Then, the directional
information measurement is:

M(i, j) = dθmax − dθmin , (8)

where
dθmax = max

0◦≤θ≤180◦
dθ dθmin = max

0◦≤θ≤180◦
dθ (9)

dθ = |pNH − pNL| (10)

pNL = ∑
(i,j)∈NL

p(i, j) pNH = ∑
(i,j)∈NH

p(i, j). (11)

Figure 2 presents the directional information measurement of image. Figure 2a shows the basic
frame of the directional information measurement, Figure 2b is the Came picture, and Figure 2c is the
directional information measurement of Figure 2b.
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Figure 2. Directional information measurement of the image. (a) Basic frame of directional information
measurement; (b) Camerist; (c) directional information measurement of (a).

According to Equations (7)–(11), it can be seen that:

(1) Let us assume that the edge passing the center point exists in the neighborhood of the current
point. Due to the directionality of the edge point, when the direction of lθ is along or perpendicular
to the edge track direction, dθ has the maximum and minimum values, respectively. Since the
gray values of the pixels on both sides of the edge are significantly different, the value of M(i,j) is
large. Obviously, the M(i,j) of the edge point is not sensitive to the change of the neighborhood
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size. That is, within a certain range, regardless of the size of the observation scale, the values of
M(i,j) of the edge points are relatively large.

(2) If the neighborhood of the current point belongs to the smooth region, for any direction of lθ , dθ

is relatively small. Since the gray values of the pixels in the smooth region are basically the same,
the values of dθ are relatively close to each other, and thus M(i,j) is small. Similarly, M(i,j) of the
smooth point is also not sensitive to changes in the size of the neighborhood. Within a certain
range, M(i,j) of the smooth point is relatively small regardless of the size of the observation scale.

(3) If the neighborhood of the current point belongs to the texture area, for a small observation scale,
the current neighborhood cannot reflect the regularity of the texture change over the gray scale,
and the texture is more edge-oriented. Therefore, M(i,j) is large. For a large observation scale, that
is, when the current neighborhood can contain enough texture structures, the texture structures
on both sides are similar, regardless of the direction of lθ . Therefore, the values of dθ are relatively
close to each other, M(i,j) is relatively small, and the performance is relatively smooth. Obviously,
M(i,j) of the texture point is sensitive to the change of the neighborhood size. The M(i,j) of the
texture point decreases with an increase of the observation scale.

(4) For noise, no matter where the current point is in the edge, smooth, or texture regions, the
distribution of noise on both sides is consistent regardless of the direction of lθ because the noise
is random and has no directionality. Therefore, the effects of noise on M(i,j) are very small [17].

This leads to the following conclusions. The directional information measurement of a point in
the image is a measure of the degree of whether a point is an edge point. The larger the information
measure, the more likely it is that a particular point is an edge point.

4. A New Image Enhancement Algorithm

After the original image is decomposed by NSST, it is decomposed into a low-frequency image and
several high-frequency images of the same size as the original image. After multistage decomposition
by NSST, the high-frequency image contains important information, such as the structure, edge,
and texture of the original image. This information is often reflected in the change of the direction
information of the pixel point. Due to the imaging characteristics of high-frequency images, these
images of the original image often contain a large amount of noise. Therefore, directional information
measurement is adopted to enhance the high sub-band image. Pixel point directional information
measurement is used to determine whether a particular point belongs to the edge or is a noise point in
the image. The expression of the feature information of a high-energy region with detailed information
and the smooth region with a small amount of information in the high-frequency images can be
improved. The useless noise information is effectively filtered out. All of these are beneficial for
improving the quality of the enhanced image.

The low-frequency component decomposed by NSST is an approximate component of the original
image and contains most of the irradiation information. Image enhancement based on single-scale
retinex (SSR) [18] can effectively highlight the high-frequency components in the low-frequency
coefficients, making it more in line with human vision. Therefore, the SSR method is used to enhance
the low-frequency coefficients after separation in this paper, thereby further improving the overall
quality of the enhanced image of the original image.

The image enhancement algorithm based on NSST domain directional information measurement
is as follows:

Input: The original image S.
Output: Enhanced image of the original image of using the method of this paper H.
Step 1: Perform multiscale and multidirectional decomposition on the original image S using

NSST transform, and define the decomposed low-frequency coefficient as S0
k and high-frequency

coefficient as Slk
k , where k is the decomposition scale of the image, and l is the multidirectional

decomposition level of the image at the level scale k.
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Step 2: Perform image enhancement on S0
k using the processing scheme of low-frequency

sub-band coefficients to obtain the enhanced low-frequency image Hlow.
Step 3: Perform image enhancement on the high-frequency image Slk

k using a high-frequency
sub-band coefficient processing scheme to obtain the multidirectional high-frequency enhanced
image Hlk

high.
Step 4: Perform the inverse NSST transformation on the low-pass coefficient Hlow and the

high-frequency coefficient Hlk
high to obtain the final enhanced image H.

4.1. Enhancement of Low-Frequency Sub-Band Coefficients

As mentioned above, the low-frequency image after NSST decomposition provides an
approximate image of the original image, containing the illuminance energy in the original image.
Enhancement strategies, such as the traditional histogram equalization method, can reduce the contrast
of low-frequency images and cause the loss of some energy information. Therefore, for a low-frequency
image S0

k , the image enhancement method based on SSR is used in the present study [19].
The SSR theory method can be described as follows. The original image is regarded as an image

composed of both incident and reflected images. The incident light is irradiated from the reflective
object, and through this reflection, the light is reflected and enters the human eye. The resulting image
can be expressed as follows:

r(x, y) = log R(x, y) = log
S(x, y)
L(x, y)

, (12)

where R(x,y) indicates the reflection property of the object, that is, the intrinsic property of the image
which should be retained to the utmost extent; and L(x,y) represents the image of the incident light
which determines the dynamic range that the image pixel can reach where L(x,y) should be removed
as much as possible. Generally, the irradiated image is estimated as a spatially smooth image, the
original image is S(x,y), the reflected image is R(x,y), and the luminance image is L(x,y). Equations (12)
and (13) can be obtained:

r(x, y) = log S(x, y)− log[F(x, y)⊗ S(x, y)], (13)

where r(x,y) is the output image, and the operation in the brackets following Equation (13) is a
convolution operation. F(x,y) is the center surround function, expressed as:

F(x, y) = λe
−(x2+y2)

c2 , (14)

where C is the Gaussian surround scale. λ is a scale whose value must satisfy the following equation:∫ ∫
F(x, y)dxdy = 1. (15)

As can be seen from Equation (15), the convolution in the SSR algorithm is the calculation of
the incident image. The physical meaning is to estimate the change of illuminance in the image by
calculating the weighted average of the pixel and the surrounding area, and by removing change
L(x,y), and to only retain the S(x,y) attributes.

According to the SSR method, the low-frequency image S0
k is regarded as the original image and

the Gaussian surrounding scale C is input, and this scale is generally a constant. When the value of C
is small, although the dynamic compression can be well completed, a large degree of image distortion
will occur. By contrast, when the value of C is large, the degree of image distortion can be reduced.
After many attempts, for the method in this paper, when the value of C is 80, the image enhancement
effect is the best. Then, λ is determined by Equations (14) and (15). The enhanced low-frequency image
Hlow is calculated according to Equation (13).
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4.2. Enhancement of High-Frequency Sub-Band Coefficients

Images with rich background information contain intricate texture. Edge blurring and excessive
smoothing may occur easily during speckle reduction. After NSST decomposition, the detail
information and noise of the original image are mostly in the high-frequency sub-band. To avoid
amplification of the noise during enhancement, the image directional information measurement is
used to better express the edge and texture information of the image with effective noise filtering. The
detail and noise information in the high-frequency sub-band coefficients are classified by choosing an
appropriate method. The useful details are enhanced, and noise suppression processing is performed
to filter out noise that may be generated during the decomposition process and in the noise of the
image itself, giving the enhanced image a better visual effect.

Using the statistical characteristics of the directional information measurement of the region
where each pixel is located, the image pixel points in the high-frequency channel after the NSST
decomposition are classified into step and ridge edges [20]. The idea of edge enhancement processing
on the high-frequency image is as follows. The step edge of the original image in the airspace is
represented as the ridge edge in the high-frequency channel of the NSST domain, which can be
approximated as a truncated Gaussian function. By modifying the shape of the Gaussian function (i.e.,
reducing the variance of the Gaussian function and increasing its amplitude), an edge whose slope has
changed can be obtained by inverse transformation. Thus, the edge is enhanced. The ridge edge in the
airspace in the high-frequency channel of the NSST domain is represented by an odd–symmetric ridge
edge pair, which can be approximated as a single-cycle sine function. Therefore, edge enhancement
can be achieved by reducing the period of the single-cycle sine function and increasing its amplitude.

The period of the ridge edge and the odd–symmetric ridge edge pair is T. The function of the ridge
edge used to fit the high-frequency sub-band coefficient of the NSST domain is shown in Equation (16):

y = exp[− (x− u)2

2σ2 ], (16)

where u is the mean value obtained by fitting the Gaussian function. Let the variance of the fitted
Gaussian function be σ1, then σ is 0.5 × σ1. The function of fitting the odd-symmetric ridge edge pair
is a single-cycle sine function with a period of T/3.

Based on the previous analysis, the algorithm for edge enhancement of high-frequency sub-band
images is as follows: the step and ridge edges are found by the directional information measure. Then,
Gaussian and sinusoidal fitting are performed on the two edges in the high-frequency channel. The
variance σ of the fitted Gaussian function and the period T of the sine function are reduced, and the
maximum amplitude increases. Thus, the edge enhancement of the high-frequency sub-band image is
completed to obtain the final high-frequency enhanced image Hlk

high.

5. Simulation Experiment

5.1. SAR, Infrared, and Medical Image Enhancement Experiments

(1) Description of the Experiment

The experimental tools used in this paper were: Lenovo desktop computer with CPU of Intel Core
i5 and memory of 4G. In addition, the simulation software was Matlab 2010. According to the theory
and method described above and using MATLAB2010 as a tool, three groups of 256 × 256 images were
selected for simulation experiments and analysis. The first, second, and third groups of images were
Synthetic Aperture Radar (SAR), infrared, and medical images, respectively. In addition, to further
prove the effectiveness of the method proposed in the present paper, three methods were selected
for comparison with the method of this paper: (1) The multiscale retinex (MSR) method (Method
1); the NSCT domain-based histogram equalization image enhancement method (Method 2) [21];
and the multiscale retinex (MSR)- and NSCT-based image enhancement method (Method 3) [22].
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Among them, the NSCT multiscale decomposition levels in Method 3 had four levels, and the direction
decomposition levels were 1, 3, 3, and 4. For the method of this paper, NSST multiscale decomposition
had four levels, the multiscale decomposition filter was maxflat, and the Shear filter was used for
multidirectional decomposition of the image. The direction decomposition numbers were 6, 6, 8, and 8,
while each neighborhood size was 3 × 3.

Image enhancement quality can be compared both subjectively and objectively. Subjective
evaluation is usually performed visually or by visual inspection, generally referring to the evaluation
of image brightness, texture, contrast, and sharpness. The objective evaluation criterion refers to
the quantitative analysis of images. The objective evaluation criteria used in this paper are standard
deviation (SD) [23], information entropy (IE), average gradient (AG) [24], edge intensity (QI), and root
mean square error (RMSE) [25]. Among them, the SD is also called the mean square error, which can
reflect the dispersion of the gray level of each pixel of the image relative to the gray average. The
larger the SD, the greater the contrast the image has, the more information can be seen, and the better
the image quality is. Information entropy is a measure of the richness of image information from the
perspective of information theory. The size of information entropy reflects the amount of information
carried by the image. Therefore, the larger the information entropy of the image, the richer the amount
of information is, and the better the quality is. The average gradient reflects the ability of the image to
express the contrast of small details. In general, the larger the average gradient, the clearer the image
is. The larger the QI value, the greater the presence of important detail information, such as the edge
of the original image in the enhanced image, and the higher the quality of the enhanced image. RMSE
reflects the mirror of image detail preservation. It measures the deviation degree of the enhanced
image from the original image’s gray level. For the image enhancement experiment, the larger the
value is, the greater the degree of enhancement for the original image and the better the enhancement
effect. Conversely, the worse the enhancement effect.

(2) Experimental results and analysis

Figures 3–5 show the results of experiments on enhanced SAR, infrared, and medical imagery,
respectively. Subjectively, the enhanced image brightness and sharpness of Method 1 in Figure 3 are
not satisfactory. The enhanced image brightness of methods 2 and 3 as well as the method used in
this paper is better. Little difference can be seen in the enhanced image sharpness of Methods 2 and
3, but the enhanced image sharpness of the method employed in this paper is better than that of the
other three methods. The enhanced image of the infrared image of Method 1 in Figure 4 is not very
sharp. The texture and edge information in the image are not as rich as that in the enhanced image of
Methods 2 and 3. The method of this paper is superior to the other three methods in terms of contrast,
sharpness, and edge information of the image. Figure 5 is an enhanced medical image. Visually, the
enhanced image brightness of Method 2 is better than the others, but the image has poor contrast.
The enhanced image of Method 1 has better contrast, but poor sharpness. The enhanced image of the
method employed in this paper can clearly allow the observation of bone structure and its details,
while the contrast and sharpness of this image are better than those of the other three methods.

Because subjective analysis has certain limitations, we objectively evaluated the image
enhancement results of the three groups of experiments, as shown in Tables 1–3. The data in Tables 1–3
show that, except for the contrast index in the infrared image enhancement experiment, the four indices
(SD, IE, AG, and QI) of the method of this paper are superior to those of the other three methods in the
three groups of experiments.

In the SAR image enhancement experiment, the data of the four items of Methods 2 and 3 were
higher than those of Method 1, indicating that the image enhancement method in the frequency
domain has more advantages in SAR image enhancement. Each index of Method 4 of this paper was
higher than those of Methods 2 and 3; this proves that the image enhancement scheme adopted in
this paper can improve the contrast, sharpness, and the amount of important information found in an
image. In the infrared image enhancement experiment, the contrast index of the method of this paper
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was slightly lower than that of Method 2, while the other indices still showed a large advantage. This
further demonstrates that the method of this paper can help researchers to better identify the edge and
texture information in the original image and increase the amount of information available for analysis.
In the medical image enhancement experiment, the indices of the method employed in this paper
are obviously superior to those of the other three methods, especially for the SD and edge intensity.
In addition, the information entropy and average gradient of the enhanced image of the proposed
method in this paper were also higher than those of the other three methods. All of these demonstrate
that the image enhancement method proposed in this paper can improve the performance of medical
image enhancement.
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Table 1. Objective evaluation of SAR image. SD: Standard deviation, IE: Information entropy, AG:
Average gradient, QI: Edge intensity, RMSE: Root mean square error.

Method 1 Method 2 Method 3 Method of This Paper

SD 25.5981 29.9218 31.2173 33.6745
IE 6.2154 5.8777 7.6509 7.7795

AG 66.3755 74.5268 71.9774 77.0601
QI 129.3333 132.000 130.667 133.333

RMSE 35.6328 70.8548 62.7218 76.0373

Table 2. Objective evaluation of infrared image.

Method 1 Method 2 Method 3 Method of This Paper

SD 8.3528 12.2699 10.5825 14.1323
IE 5.9298 5.7747 7.3261 7.4219

AG 55.8713 74.817 42.405 66.3998
QI 116.000 118.667 117.333 120.000

RMSE 33.5286 46.2509 57.6837 60.3351

Table 3. Objective evaluation of medical image.

Method 1 Method 2 Method 3 Method of This Paper

SD 12.7115 8.7209 10.5082 14.6631
IE 3.0834 2.9463 3.0319 4.3297

AG 61.6765 44.1985 47.7816 73.1899
QI 137.3333 140.000 138.6667 141.333

RMSE 49.2881 34.3490 41.0353 61.1784
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5.2. Enhancement Experiment for Images with Band Noise

(1) Description of the Experiment

To further prove that the method of this paper can effectively separate noise from the useful
information of an original image, we selected two groups of 256 × 256 grayscale blurred images with
Gaussian white noise to compare image enhancement, specifically Lena and Barbara image groups.
The three image enhancement methods described in Section 5.1 and the method of this paper were
used to complete the comparison experiments of the images.

To review the enhancement results of images with band noise, the enhanced images were
evaluated from both subjective and objective perspectives. The difference between these two
perspectives is that in the enhancement experiment for images with band noise, the objective evaluation
criteria used were normalized mutual information (NMI) and peak signal-to-noise ratio (PSNR). The
NMI is an expression of the measured similarity between two pictures. The larger the NMI value, the
higher the similarity is between two pictures. By comparing the NMI between the enhanced and the
noise-free standard images of each method, the improvement of quality in the images with band noise
removed by each method can be seen. The PSNR represents the amount of noise in the image. A larger
PSNR indicates less noise was present. By calculating and comparing the PSNR between the enhanced
and standard images of each method, the denoising performance of various enhancement methods
could be analyzed.

(2) Experiment Results and Analysis

Figures 6 and 7 show the enhancement experiment results of the Lena and Barbara images with
band noise, respectively. From a subjective point of view, each method could extract and enhance
important information in the original image for different images. However, in the two groups of
experiments, the enhanced image of the method proposed in this paper had better sharpness and
contrast than the enhanced images from the other three methods. The method of this paper had
a low degree of distortion and better visual effects (Figures 6 and 7). The image of Method 1 had
poor brightness, and that of Method 2 had obvious noise information. To further compare the image
enhancement performance of these methods, the enhancement results were objectively compared
(shown in Tables 4 and 5).
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Table 4. Objective comparison of image enhancement of Lena image.

Method 1 Method 2 Method 3 Method of This Paper

NMI 0.5574 1.1094 1.0492 1.1106
PSNR 10.5755 16.4564 17.2313 17.2609

Table 5. Objective comparison of image enhancement of Barbara image.

Method 1 Method 2 Method 3 Method of This Paper

NMI 0.6087 1.1992 1.1603 1.2057
PSNR 11.5892 15.7178 16.2943 16.4880

Based on the objective comparison of the results in Tables 4 and 5, we can see that Method 3 and
the method of this paper performed significantly better than Method 1 for the two evaluation indices
in the two groups of experiments. This shows that the image enhancement method in the frequency
domain is more conducive to filtering noise and can better preserve the details of the original image. In
addition, the index of the method employed in this paper was better than the NMI and PSNR values
of Method 3. This again demonstrates that the image enhancement method of the NSST domain used
in this paper can identify and filter the noise information while retaining the structural information,
such as the edge and texture of the original image, as much as possible. This experiment shows that
the method of this paper performed well in enhancement experiments for images with band noise.

6. Conclusions

Based on the advantages of NSST in the field of image processing and the working principle
of image enhancement, NSST was applied to the field of image enhancement. According to the
characteristics of the high- and low-frequency coefficients in NSST, the MSR-based enhancement
strategy was adopted for the low-frequency coefficient, and an enhancement strategy based on the
directional information measurement was used for the high-frequency coefficient. After performing
the inverse transformation on the enhanced low- and high-frequency sub-band images, the final
enhanced image was obtained. In SAR, infrared and medical image enhancement experiments, the
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visual effect and objective evaluation indices presented by the enhanced image based on the method
of this paper are better than those listed in this paper. In the experiment of noisy image, the NMI and
PSNR values of the enhanced image based on the method of this paper are higher than those of other
methods. From subjective and objective perspectives, the experiment verifies the superiority of the
method based on this paper in enhancing the contrast and sharpness of image, while suppressing
noise information. Finally, it is shown that the enhanced image based on the method of this paper can
not only better express the edge, texture, and structural features in the original image, but can also
filter out the noise in the image. As a result of that, the visibility of the enhanced image was improved
while the influence of noise was reduced. Future research should center on learning how to further
improve the algorithm used here to increase the computing speed.
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