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Abstract: Big Data classification has recently received a great deal of attention due to the main
properties of Big Data, which are volume, variety, and velocity. The furthest-pair-based binary search
tree (FPBST) shows a great potential for Big Data classification. This work attempts to improve the
performance the FPBST in terms of computation time, space consumed and accuracy. The major
enhancement of the FPBST includes converting the resultant BST to a decision tree, in order to remove
the need for the slow K-nearest neighbors (KNN), and to obtain a smaller tree, which is useful for
memory usage, speeding both training and testing phases and increasing the classification accuracy.
The proposed decision trees are based on calculating the probabilities of each class at each node
using various methods; these probabilities are then used by the testing phase to classify an unseen
example. The experimental results on some (small, intermediate and big) machine learning datasets
show the efficiency of the proposed methods, in terms of space, speed and accuracy compared to the
FPBST, which shows a great potential for further enhancements of the proposed methods to be used
in practice.
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1. Introduction

Big Data analytics has received a great deal of attention recently, particularly in terms of
classification, this is due to the main properties of Big Data: volume, variety, and velocity [1,2].
Having a large number of examples and various types of data, Big Data classification attempts to seize
these properties to obtain better learning models with fast learning/classification [3–5].

The problem of Big Data classification is similar to the tradition classification problem, taking into
consideration the main properties of such data, and can be defined as follows, given a training dataset
of n examples, in d dimensions or features; the learning algorithm needs to learn a model that will be
able to efficiently classify an unseen example E. In the case of Big Data, where n and/or d are very
large values, tradition classifiers become inefficient, for example the K-nearest neighbors (KNN) [6,7]
took weeks to classify some Big Data sets [8].

Recently, we proposed three methods for Big Data classification [8–10]. All of these methods
employ an approach based on creating a binary search tree (BST), in order to speed up the Big Data
classification using a KNN classifier with a smaller number of examples, those which are found by
the search process. The real distinction between these methods is in the way of creating the BST.
The first uses the furthest-pair of points to classify the examples along the BST, the second uses two
extreme points based on the minimum and maximum points found in a dataset, and the third uses the
Euclidean norms of the examples. Each has its own weakness and strength. However, the common
weakness is the use of the slow KNN classifier.

The main goal and contribution of this paper is to improve the performance of the first method-
the furthest-pair-based BST (FPBST), by removing the need for the slow KNN classifier, and converting
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the BST to a decision tree (DT). However, any enhancement made for this method can be easily
generalized to the other two methods.

The new enhancement might make the FPBST (and its sisters) a practical alternative for the KNN
classifier, since the KNN might be the only available choice in certain cases, for example, such as when
used for content-based image retrieval (CBIR) [11,12].

The FPBST sorts the numeric training examples into a binary search tree, to be used later by
the KNN classifier, attempting to speed up the Big Data classification, knowing that searching a BST
for an example is much faster than searching the whole training data. This method depends mainly
on finding two local examples (points) to create the BST, these points are the furthest-pair of points
(diameter) of a set of points in d-dimensional Euclidean feature space [9], these two points are found
using a greedy algorithm proposed by [13]. These points are then used to sort the other examples based
on their similarity using the Euclidean distance. The training phase of the FPBST ends by creating the
BST, which is searched later for a test example E to a leaf-node, where similar examples are found, the
KNN classifier is then used to classify E.

Having known that the KNN is slow, we opt for disusing it in this paper, and we do this by
converting the resultant BST to a decision tree. To do so, we opt for calculating the probabilities of
each class at each node, we calculate the probabilities using four methods, (1) calculating them at the
leaf node only; (2) calculating the accumulated probabilities along the depth of the tree; (3) calculating
the weighted-accumulated probabilities using the tree’s level as a weight; and (4) calculating the
weighted-accumulated probabilities using the tree’s level as an exponential weight. Therefore, we
propose four methods based on these four calculations, these four methods stop clustering when having
examples of only one class. We propose the fifth method which uses the accumulated probabilities of
the classes but continues clustering until there is only one example (or similar examples) in a leaf-node.

We further enhanced these five methods by swapping the furthest-pair of points based on the
minimum class, so as to obtain a coherent decision tree, where examples of similar classes are stored
closer to each other, unlike the FPBST, which uses the minimum/maximum norms for this purpose,
thus, we propose ten methods in this paper. These methods/enhancements of the FPBST solve
(by default) another related problem associated with the FPBST use of the KNN, which is finding the
best k for the KNN [14,15]. In this work, there is no need to determine such a parameter since there is
no need to use the KNN.

The important of this research stems from the decreased size of the resultant tree, which is attained
by trimming the tree, where all the examples found in a node were of the same class, and this speeds
up the training process, reduces the space needed for the resultant tree and increases the speed of
testing, in addition to increasing the accuracy of classification if possible.

The rest of this paper is organized as follows. Section 2 presents some related methods used
for Big Data classification. Section 3 describes the proposed enhancements and the data set used
for experiments. Section 4 evaluates and compares the proposed enhancements to FPBST. Section 5
draws some conclusions, shows the limitations of the proposed enhancements, and gives directions
for future research.

2. Related Work

Recently, remarkable efforts have been made to find new methods for Big Data classification, in
addition to the FPBST, reference [10] used two extreme points, which are the minimum and maximum
points found in a dataset to create a BST, so as to sort the examples of a training set. This BST is then
searched for a test example to a leaf-node, where similar examples can be found, the KNN classifier is
then used to classify a test example. Similarly, reference [8] used the same methodology, except for
the manner of creating the BST, where it was created based on the Euclidean norms of the training
examples. Both methods were very fast, however, the accuracy results were slightly less than that of
the FPBST [9] in general.
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Two recent and interesting approaches proposed by Wang et al. [16] deal with the problem
differently, using random and principal component analysis (PCA) techniques to divide the data in
order to obtain multivariate decision tree classifiers. Both methods were evaluated on several Big
Datasets, the reported accuracy results considering all the datasets used, show that the data partitioning
using PCA performs better than that of a random technique used.

Maillo et al. [17] proposed a parallel implementation based on mapping the training set examples,
followed by reducing the number of examples that are related to a test sample. The reported results
were similar to that of an exact KNN but faster, i.e., about up to 149 times faster than the KNN when
tested on 1 million examples; the speed of this parametric method depends mainly on the K neighbors
as well as the number of maps used. This work is further improved by almost the same team [18],
where they proposed a new KNN based on Spark, which is similar to the mapping/reducing technique
but with using multiple reducers to speed up the process, the size of the dataset used was up to
11 million examples.

Based on clustering the training set using K-means clustering algorithm, Deng et al. [19] proposed
two methods to increase the speed of KNN, the first used random clustering and the second used
landmark spectral clustering, when finding the related cluster, both utilize the KNN to test the input
example with a smaller set of examples. Both algorithms were evaluated on nine Big Datasets showing
reasonable approximations to the sequential KNN, the reported accuracy results were dependent on
the number of clusters used.

Another clustering approach is utilized recently by Gallego et al. [20], who proposed two
clustering methods to accelerate the speed of the KNN, both are similar; however, the second is
an enhancement of the first, where a cluster augmentation process is employed. The reported average
accuracy of all the Big Datasets used was in the range of 83 to 90% depending on the K-neighbors and
number of clusters used. The performance of both methods has improved significantly when the Deep
Neural Networks has been employed for learning a suitable representation for the classification task.

Most of the proposed work in this domain is based on divide and conquer approach, this is
a logical approach to use with Big Datasets and, therefore, most of these approaches are based on
clustering, splitting, or partitioning the data to turn and reduce the very large size to a manageable size
that can be used for and efficient classification. One major problem associated with such approaches is
that the determination of the best number of clusters/parts, sine more clusters means fewer examples
and, therefore, faster testing. However, fewer examples also means less accuracy, as the examples
found in a specific cluster might not be related to the tested example. On the contrary, few clusters
indicate a large number of examples per each, which increases the accuracy but slows down the
classification process if the KNN is used.

Similar to [8–10] there exist extensive literature on tree structures such as k-d trees [21], metric
trees [22], cover trees [23], and other related work such as [24,25]. Regardless of the plethora of the
proposed methods in this domain, there is still room for improvement in terms of accuracy and time
consumed for both training and testing stages. Additionally, this work is nothing but an attempt to
improve the performance of one of these methods.

3. Furthest-Pair-Based Decision Trees (FPDT)

This section describes and illustrates the proposed methods, in addition to describing the data
used for evaluation and experiments.

3.1. Methods

The main improvement of the FPBST [9] includes the unemployment of the standard KNN
algorithm as described by [6,7], which is time-consuming particularly when classifying Big Data.
In this paper, we propose the use of the probabilities of the classes found in the leaf-nodes to decide
the class of a test example, without having to use the slow KNN, even if there are a small number of
examples found in a leaf-node. We keep the same functionality of the binary search tree (BST), which
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is employed to sort the examples (points) of machine learning datasets in a way that facilitates the
search process. This BST sorts all the examples taken from a training dataset based on their distances
from two local points (P1 and P2), which are two examples from the training dataset itself, and they
vary based on the host node and the level/location of that node in a BST.

The FPBST builds its BST by finding the furthest points P1 and P2 [13], assuming that the furthest
points are the most dissimilar points, and therefore, are more likely to be belonging to different classes.
Thus, sorting other examples based on their distances to these points might be a good choice, as similar
examples are sorted nearby, while dissimilar examples are sorted faraway in the created BST.

Similar to the FPBST, the training phase of the proposed method (FPDT) creates a binary decision
tree (DT), which speeds up searching for a test example comparing to the unacceptable time an
exhaustive search, particularly when classifying Big Datasets. We use the same Euclidean distance
metric (ED) for measuring distance, to compare the results of the proposed method to those of
the FPBST.

While creating the DT, we calculate the probability of each class to occur in each node, her we opt
for several options:

1. Accumulate the classes’ probabilities by adding the parent’s probabilities to its children’s; we call
this method decision tree 0 (DT0).

2. Accumulate the probabilities by adding the parent’s probabilities to its children’s; and weighting
these probabilities by the level of the node, assuming that the more we go deeper in the tree, the
more likely we reach to a similar example(s), this is done by multiplying the tree level by the
classes’ probabilities at a particular node; we call this method decision tree 1 (DT1), and is shown
in Algorithm 1 as (Dtype = 1).

3. Accumulate the classes’ probabilities by adding the parent’s probabilities to its children's; and
weighting these probabilities exponentially, for the same reason in 2, but with higher weight.
This is done by multiplying the classes’ probabilities by 2 to the power of the tree’s level at
a particular node; we call this method decision tree 2 (DT2), and is shown in Algorithm 1 as
(Dtype = 2).

4. No accumulation of the probabilities, we use just the probabilities found in a leaf node; we call
this method decision tree 3 (DT3), and is shown in Algorithm 1 as (Dtype 6= 3).

5. Similar to DT0 (normal accumulation), but the algorithm continues to cluster until there is only
one or a number of similar examples in a leaf-node, this is done even if all the examples of a
current node belong to the same class. While DT0–DT3 stop the recursive clustering when all the
examples of the current node are belonging to the same class, and consider the current class as a
leaf-node, we call this method decision tree 4 (DT4), and is shown in Algorithm 1 as (Dtype = 4).

The idea behind accumulating the probabilities is to remove the effect of unbalanced datasets, as
some datasets contains more examples of a specific class than the other classes, and this will increase
the probability of the dominant class, since it is calculated in the root node and accumulated along the
depth of the tree, so by moving deeper, less number of the dominant examples remain.

Algorithm 1 shows the pseudo code for the training phase of the FPDT method, which works
well for DT0, DT1, DT2, DT3, and DT4 depending on the input (Dtype), and Algorithm 2 shows the
pseudo code for the testing phase of the FPDT method, which is the same for DT0, DT1, DT2, DT3,
and DT4, as these methods differ in the way of creating the decision tree only, i.e., the training phase.
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Algorithm 1. Training Phase (DT building) of FPDT.

Input: Numerical training dataset DATA with n FVs and d features, and DT type (Dtype)
Output: A root pointer (RootN) to the resultant DT.
1- Create a DT Node→ RootN
2- RootN.Examples← FVs//all indexes of FVs from the training set
3- (P1, P2)← Procedure Furthest(DATA← RootN.Examples, n)//hill climbing algorithm [1]
4- if EN(P1) > EN(P2) swap(P1, P2)
5- RootN.P1← P1
6- RootN.P2← P2
7- RootN.Left = Null
8- RootN.Right = Null
9- Procedure BuildDT(Node← RootN)
10- for each FVi in Node, do
11- D1←ED(FVi, Node.P1)
12- D2←ED(FVi, Node.P2)
13- If (D1 < D2)
14- Add index of FVi to Node.Left.Examples
15- else
16- Add index of FVi to Node.Right.Examples
17- end for
18- if (Node.Left.Size == 0 or Node.Right.Size == 0)
19- return //this means a leaf node
20- (P1, P2)← Furthest(Node.Left.Examples, size(Node.Left.Examples))//work on the left child
21- if (EN(P1) > EN(P2)) then swap(P1, P2)
22- Node.Left.P1← P1
23- Node.Left.P2← P2
24- Node.Left.ClassP [numclasses] = {0}//initialize the classes’ probabilities to 0;
25- for each i in Node.Left.Examples do
26- Node.Left.ClassP [DATA.Class[i]]++//histogram of classes at Left-Node
27- bool LeftMulticlasses = false//check for single class to prune the tree
28- if there is more than one class at Node.Left.ClassP
29- LeftMulticlasses=true;
30- if (Dtype ==4) //no pruning if chosen
31- LeftMulticlasses=true//even if there is only one class in a node=> cluster it further
32- for each i in numclasses do //calculate probabilities of classes at the left node
33- Node.Left.ClassP [i]= Node.Left.ClassP [i]/ size(Node.Left.Examples)
34- if (Dtype ==1) //increase the probabilities by the increased level
35- for each i in numclasses do
36- Node.Left.ClassP [i]= Node.Left.ClassP [i]* Node.Left.level
37- if (Dtype ==2) //increase the probabilities exponentially by the increased level
38- for each i in numclasses do
39- Node.Left.ClassP [i]= Node.Left.ClassP [i]* 2Node.Left.level

40- if (Dtype != 3)//do accumulation for probabilities, if 3, use just the probabilities in a leaf node
41- for each i in numclasses do
42- Node.Left.ClassP [i] = Node.Left.ClassP [i] + Node.ClassP [i]
43- Node.Left.Left = NULL;
44- Node.Left.Right = NULL;
45- Repeat the previous steps (20–44) on Node.Right
46- if (LeftMulticlasses)
47- BuildDT (Node.Left)
48- if (RightMulticlasses)
49- BuildTree(Node.Right)
50- end Procedure
51- return RootN
52- end Algorithm 1
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Algorithm 2. Testing Phase of FPDT.

Input: test dataset TESTDATA with n FVs and d features
Output: Testing Accuracy (Acc).
1- Acc←0
2- for each FVi in TESTDATA do
3- Procedure GetTreeNode(Node← RootN, FVi)
4- D1← ED(FV[i], Node.P1)
5- D2← ED(FV[i], Node.P2)
6- if (D1 < D2 and Node.Left)
7- return GetTreeNode (Node.Left, FVi)
8- else if (D2 ≤ D1 and Node.Right)
9- return GetTreeNode (Node.Right,FVi)
10- else
11- return Node
12- end if
13- end Procedure GetTreeNode
14- class← argmax(Node.ClassP)// returns the class with the maximum probability
15- if class == Class(FVi)
16- Acc← Acc+1
17- end for each
18- Acc← Acc/n
19- return Acc
20- end Algorithm 2

The training phase of the FPBST and the new DT0–DT4 use the Euclidean norm to regularize the
resultant tree by swapping P1 and P2 if the norm of P2 is less than that of P1 (step 21 in Algorithm 1).
This is normally done to let the examples, which are similar to the point of the least norm to be sorted
to the left side of the tree, and the others to be sorted to the right side of the tree, so as to have similar
examples adjacent as possible as could in the resultant BST. Having known that the Euclidean norm is
sensitive to the negative numbers (negative and positive similar numbers result the same Euclidean
norm), the examples with many zeros or similar repeated numbers [2], we opt for an alternative of
the norm to decide which goes to left and which goes to right. Here we propose the use of the class
of the example, so we check the classes of P1 and P2 to see if P2 has the minimum class, if yes, we
swap P1 with P2, otherwise they remain as they are. Such a swap allows for regularizing the resultant
decision tree with the minimum cost, as creating the norm cost extra O(d) each time, while obtaining
the class of an example costs O(1), and at the same time we get more coherent trees in terms of the
classes distribution, since the examples of minimum class are forced to be sorted to the left and those
with the maximum class are sorted to the right, this might have a good effect on the probabilities of the
classes. This improvement is applied on all the proposed DT0–DT4 making new decision trees DT0+,
DT1+, DT2+, DT3+, and DT4+.

Similar to the FPBST, the time complexity of training phase to build the decision tree (DT) by the
proposed methods (DT0–DT4 and DT0+ to DT4+) is:

T(n, d) = O(cnd log n) (1)

where (cnd) is the time consumed to find the approximate furthest points, as the constant c is the
number of iterations needed to find the approximate furthest points, which is found experimentally to
be in the range of 2 to 5 [1]. The (log n) time is consumed along the depth of the DT.
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An extra (2nd) time is consumed by comparing each example or feature vector (FV) to the local
furthest points (P1 and P2). This time can be added to c to make it in the range of 4 to 7, however, c is
still a constant and the overall time complexity can be asymptotically approximated to:

T(n, d) = O(nd log n) (2)

and if n >> d, the time complexity can be further approximated to:

T(n, d) = O(n log n) (3)

The space complexity can be defined by:

S(n, d) = O(n log n) (4)

where the space consumed (S) is a function of n and d, which similar to the size of a normal BST.
The test phase of the proposed method (Algorithm 2) is the same for all the DTs, as it searches the

created DT for a test example starting from the root node to a leaf node, where similar example(s) are
supposed to be there. However, it is different from the test phase algorithm of the FPBST, where KNN
algorithm is employed to classify the test example using those found in a leaf-node. The proposed
DTs have no need to use the KNN, because the leaf-node has become able to decide the class of the
tested example based on the pre-calculated probabilities it has, since the name (decision tree) suggests.
Disusing the KNN with the proposed DTs allows for more speed. Therefore, the time complexity of
the test phase of the proposed DTs for each tested example is:

T(n, d) = O(2d log n) (5)

where the (2d) time is consumed by the calculation of the ED, which costs d time for each comparison
with either P1 or P2. And the (log n) time is consumed along the depth of the BST, which is about (log
n) on average.

And if n >> d, the d time can be ignored making the testing time:

T(n, d) = O(log n) (6)

3.2. Implementation Example

To further explain the proposed Dts, we implement some of them to create decision trees to be
compared with the BST of the FPBST. For this end, we used a small synthesized dataset for illustration
purposes. The synthesized dataset used consists of two hypothetical features (X1 and X2) and two
classes (0 and 1) having 20 examples as shown in Table 1 and illustrated in Figure 1.

Table 1. A hypothetical training data sample to exemplify the resultant BST of the FPBST, as well as
the decision trees of the proposed methods.

#Example X1 X2 Class Euclidean Norms

0 4 3 0 5.0
1 2 5 0 5.4
2 2 4 0 4.5
3 4 4 0 5.7
4 3 6 0 6.7
5 1 0 0 1.0
6 1 3 0 3.2
7 3 1 0 3.2
8 3 2 0 3.6
9 4 6 0 7.2
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Table 1. Cont.

#Example X1 X2 Class Euclidean Norms

10 4 5 1 6.4
11 3 7 1 7.6
12 8 6 1 10.0
13 9 7 1 11.4
14 3 4 1 5.0
15 5 7 1 8.6
16 8 3 1 8.5
17 3 5 1 5.8
18 4 8 1 8.9
19 8 8 1 11.3

If we apply the FPBST on the synthesized dataset we get the BST illustrated in Figure 2, and when
applying the DT0, DT0+, DT1, and DT1+ on the same dataset we get the decision trees illustrated in
Figures 3–6, respectively.Information 2018, 9, x FOR PEER REVIEW  8 of 22 
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Figure 1. A visual illustration of the synthesized dataset obtained from Table 1.

The purpose of these figures is not to prove anything, as we cannot draw significant conclusions
from such weak evidence (the very small data set in Table 1). However, they are meant to show how
the proposed DTs are constructed comparing to the BST of the FPBST. It is interesting to note that
calculating the furthest-pair of points is an approximate algorithm and might not obtain the same
pair of points always, as seen in the Figures 2 and 6, where the furthest pair was (5, 19), while the
furthest pair was (5, 13) in Figures 3–5. Both of the pairs have the maximum distance in the dataset
which is 10.63. In addition, we can note the smaller size of the DTs in (Figures 3–6) and the shallow
nodes comparing to the BST in Figure 2, this is because the DTs stop the recursive process to create
child-nodes when the node is pure, i.e., all the examples hosted belong to the same class. One exception
is the DT4 and DT4+, which carry on sorting the examples until there is only one example (or similar
examples) in a leaf-node, we mean by similar examples, those who share the same Euclidean distance
to a reference point. Additionally, we can note the difference between the DTs and the DT+s, for
example, the point 14 is classified as class 0 in Figure 3, while it belongs to class 1, this is because its
norm = 5, while the other point (1) sharing the same parent node has a norm = 5.4, according to DT0,
Point 14 goes to the left and Point 1 goes to the right, if the DT0 was not calculating accumulated
probabilities this should not make a big difference, but since such type of probabilities is used by the
DT0 and DT0+ without giving a higher weight to the deeper levels we get such a classification error.
However, this situation is not happening when using DT1 and DT1+, because the tree level is used to
weight the probabilities.
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Figure 2. The resultant BST after applying the training phase of the FPBST on the sample data from
Table 1. The number outside the brackets is the counter of the examples hosted by each node, and
those inside the brackets are the index of the examples in a leaf node, or the furthest points (P1 and
P2) otherwise.
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Figure 3. The resultant decision tree after applying the training phase of the DT0 on the sample data
from Table 1. The number outside the rounded brackets () is the counter of the examples hosted by
each node, and those inside the rounded brackets are the index of the examples in a leaf node, or the
furthest points (P1 and P2) otherwise. The numbers in the curly brackets {} shows the probabilities of
the classes at each node.
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points (P1 and P2) otherwise. The numbers in the curly brackets {} shows the probabilities of the classes
at each node.

3.3. Data

In order to evaluate the proposed methods and compare the results to the FPBST on Big
Data classification, we use some of the well-known machine learning datasets, which are used by
state-of-the-art work in this domain. These datasets are freely available for download from either the
support vector machines library (LIBSVM) Data [26] or the UCI Machine Learning Repository [27].
The datasets used are of different dimensions, sizes, and data types, such diversity is important to
evaluate the efficiency of the proposed method in terms of accuracy and time consumed.

All datasets used contain numeric data, i.e., real numbers and/or Integers. The sizes of these
datasets are in the range of 625 to 11,000,000 examples; the dimensions are in the range of 4 to
5000 features. Table 2 shows the descriptions of the datasets used.

Table 2. Description of datasets used for evaluation and comparison of the proposed methods.

Dataset Size Dimensions Type #Class

HIGGS 11,000,000 28 Real 2
SUSY 5,000,000 18 Real 2
Poker 1,025,010 11 Integers 10

Covtype 581,012 54 Integers 7
Mnist 70,000 784 Integers 10

Connect4 67,557 42 Integers 3
Nist 44,951 1024 Integers 26

LetRec 20,000 16 Real 26
Homus 15,199 1600 Integers 32
Gisette 13,500 5000 Integers 2
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Table 2. Cont.

Dataset Size Dimensions Type #Class

Pendigits 10,992 16 Integers 10
Usps 9298 256 Real 10

Satimage 6435 36 Real 6
Abalone 4177 8 Real 3
Climate 1178 18 Real 2
German 1000 24 Integers 2
Blood 748 4 Integers 2

Australian 690 14 Real 2
Cancer 683 9 Integers 2
Balance 625 4 Integers 3

4. Results and Discussion

To evaluate the proposed methods (DT0–DT4 and DT0+-DT4+), we programmed both Algorithms
1 and 2 using MS VC++.Net framework, version 2017, and conducted several classification experiments
on all the datasets described in the data section. We utilized a personal computer with the following
specifications:

• Processor: Intel®Core™ i7-6700 CPU @ 340GHz
• Installed memory (RAM): 16.0 GB
• System type: 64-bit operating system, x64-based processor, MS Windows 10.

Table 3 shows the characteristics of the BT built using the proposed DTs comparing to that of
the FPBST, her we used one dataset (poker), as being one of the largest datasets and to save space for
this paper.

Table 3. Some specifications of the resultant BST of the FPBST compared to the resultant DTs after
applying the proposed FPDTs on the poker dataset (training phase).

Method Number of
Nodes

Number of
Leaves

Maximum
Depth

Total
Examples in
All Leaves

Min Number of
Examples in a Leaf

Max Number of
Examples in a Leaf

FPBST 2,045,541 1,022,771 30 1,025,010 1 3
DT0 1,433,617 716,809 29 1,025,010 1 49
DT1 1,433,089 716,545 29 1,025,010 1 80
DT2 1,433,631 716,816 29 1,025,010 1 71
DT3 1,432,131 716,066 30 1,025,010 1 47
DT4 2,045,541 1,022,771 30 1,025,010 1 3

DT0+ 1,440,047 720,024 29 1,025,010 1 99
DT1+ 1,439,295 719,648 29 1,025,010 1 42
DT2+ 1,439,113 719,557 30 1,025,010 1 56
DT3+ 1,441,107 720,554 30 1,025,010 1 44
DT4+ 2,045,541 1,022,771 30 1,025,010 1 3

As can be noted in Table 3, the maximum depth of the resultant BST and DTs is not much larger
than log2(1025010) = 19.97, this of course increases the speed of the test phase for all the proposed
methods including the FPBST. Although the number of nodes in a full BST is typically (n log n), and
therefore should be around 20,421,879, we found it much less than that for all methods, this is due to
the resultant BST and DTs being not full binary trees. It is interested to note that the number of nodes
in the proposed DTs is significantly less than that of the BST; this is related to the number of hosted
examples in the leaf-nodes, as it is higher in the DTs than the BST, i.e., the lower the number of nodes,
the higher the number of examples per leaf-node. This is because the DTs stop the recursive process
earlier, mainly, when all the existing examples are belonging to only one specific class. One exception
is the DT4 and DT4+, obviously because both of them do not stop the recursive process and carry on
creating nodes until there is only one example per each leaf-node, or similar examples.
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The relatively small size of the DT created by the proposed DT0–DT3 and DT0+- DT3+ shall
serve two purposes, (1) decreasing the space needed for the tree; and (2) speeding up the classification
process, since searching a smaller tree is faster than a larger one. This is also complying with the
number of leaf-node, as being significantly smaller than that of the FPBST, DT4, and DT4+.

In this paper, we compare the performance of the proposed methods to that of the FPBST, as the
goal of this paper is to improve the performance of the FPBST, in terms of speed, space used, and
classification accuracy. For this end, we evaluated the proposed methods DT0–DT4 by employing
them to classify the machine learning datasets stated in Table 2, using 10-fold cross-validation, so as to
be able to compare their performances to that of the FPBS.

Ideally, the 10-fold cross-validation approach selects the training data set randomly; however,
Nalepa and Kawulok [28] discussed other interesting methods for selecting the training data such as
data geometry analysis (clustering and non-clustering), neighborhood analysis methods, Evolutionary,
active learning and the random sampling methods. Our choice belongs to the random sampling
methods as being the most used.

Since we used a different hardware with different computation powers, which might significantly
affect the comparison in terms of time consumed, we opt for reporting the speed-up factor of each
method similarly to [13,17]. We calculate the speed-up factor by considering the ratio of the time
consumed by the FPBST classifier to that of the proposed methods on the same dataset used and same
examples tested as follows:

Speedup(X, D) =
T(FPBST, D)

T(X, D)
(7)

where D is the dataset tested, X is the method that we wish to calculate its speedup factor, and T is the
time function, which returns the time consumed by the method X on the dataset D.

The accuracy comparison results are shown in Table 4. Tables 5 and 6 show the time consumed in
the training and testing phases, respectively, while Table 7 shows the speed-up comparison results.

As can be seen from Table 4, one or more of the proposed methods DT0–DT4 slightly outperform
the FPBST in terms of accuracy when testing on all datasets except for the Satimage, which works
better with the FPBST, however, the difference is not significant (less than 1%), and it might due to
randomness of the train/test examples, on average, we can see that the DT1, DT3, and DT4 perform
slightly better than the FPBST. The maximum average classification accuracy is attributed to the DT4;
this is due to the nature of the DT that created by the DT4, which continues the recursive process
until there is only one class or similar classes per leaf-node. We are not favoring the DT4 as its size is
similar to the BST of the FPBST, however, its accuracy is not significantly higher than the other DTs
and the FPBST, for example the DT3 outperforms all methods in terms of the number of datasets tested.
We can say with some confidence that the proposed approach (using the decision tree instead of the
KNN-regardless the creation method of the decision tree) performs well on all the evaluated datasets,
and this performance is almost similar to the FPBST in some cases or slightly better in other cases.

It is interesting to note from Table 5 and Figure 7 that the proposed DT0–DT3 consumed less
time in general than the FPBST and the DT4, this is due to the smaller decision trees created by these
methods, However, the time saved while building the decision tree by DT0–DT3 is not significant on
some datasets, this is due to the extra calculations of the probabilities of each class for each dataset.
It is also interesting to note the time consumed by the DT4 is almost similar to that of the FPBST and
sometimes longer; this is because it has a similar tree size to that of the FPBST, with extra time for
calculating the probabilities.
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Table 4. Accuracy results of the proposed methods DT0–DT4 compared to that of the FPBST, using
10-fold cross-validation.

Dataset FPBST DT0 DT1 DT2 DT3 DT4

Abalone 0.4990 0.5374 0.5338 0.4906 0.5122 0.5326
Australian 0.6435 0.6667 0.6725 0.6203 0.6392 0.6899

Balance 0.8258 0.8226 0.8323 0.7855 0.8210 0.8290
blood 0.6784 0.7662 0.7811 0.7189 0.7135 0.7716

Cancer 0.9618 0.9574 0.9574 0.9544 0.9559 0.9647
Climate 0.8722 0.9148 0.9148 0.8537 0.8796 0.9167
German 0.6550 0.7120 0.7050 0.6240 0.6460 0.7110
LetRec 0.7897 0.7143 0.7379 0.7841 0.7935 0.7476
Usps 0.8631 0.7758 0.8179 0.8665 0.8614 0.8222

Satimage 0.8672 0.8342 0.8566 0.8594 0.8617 0.8588
Pendigits 0.9630 0.8779 0.9196 0.9625 0.9678 0.9392

Gisette 0.8907 0.8372 0.8541 0.8867 0.8910 0.8730
Mnist 0.8527 0.7720 0.8055 0.8553 0.8527 0.8135

Homus 0.4508 0.4289 0.4481 0.4560 0.4572 0.4386
Nist 0.4795 0.4507 0.4684 0.4853 0.4858 0.4605

Connect4 0.6222 0.6613 0.6743 0.6216 0.6197 0.6659
Covtype 0.9314 0.7752 0.8318 0.9313 0.9315 0.8533

Poker 0.5372 0.5881 0.5889 0.5366 0.5351 0.5870
SUSY 0.7098 0.7547 0.7651 0.7103 0.7093 0.7599

HIGGS 0.5860 0.5998 0.6062 0.5857 0.5856 0.6010
Average 0.7339 0.7224 0.7386 0.7294 0.7360 0.7418

Table 5. Time (ms) consumed by the proposed methods DT0–DT4 to build their DTs compared to that
of the FPBST to build its BST, this is the average training time of the 10 folds.

Dataset FPBST DT0 DT1 DT2 DT3 DT4

Abalone 196 170 163 164 162 156
Australian 45 44 37 39 39 42

Balance 15 8 8 9 8 10
blood 19 13 13 13 13 15

Cancer 29 11 9 8 9 20
Climate 29 21 21 20 20 30
German 56 62 61 68 62 70
LetRec 1595 1249 1151 1142 1176 1338
Usps 8096 8030 8119 8084 8098 9922

Satimage 860 743 769 771 774 958
Pendigits 910 574 576 578 581 882

Gisette 76,157 60,297 58,053 59,413 58,600 72,881
Mnist 142,712 118,787 118,678 117,771 116,226 141,527

Homus 83,337 76,153 72,626 73,118 73,821 77,758
Nist 118,746 99,569 98,802 100,926 98,987 106,223

Connect4 6860 5832 5854 5408 5323 5857
Covtype 94,265 73,359 71,481 75,018 72,736 90,682

Poker 74,536 70,164 66,805 68,613 61,009 75,957
SUSY 923,749 955,593 948,978 959,964 906,365 1,017,843

HIGGS 2,974,260 3,117,121 2,855,369 2,958,233 2,951,326 2,939,329
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Figure 7. Illustration of data from Table 5 (time (ms) consumed by the proposed methods to build their
DTs compared to that of the FPBST), the time axis is logarithmic base-10.

Table 6. Time (ms) consumed by the FPBST to test the entire test examples compared to that of the
proposed methods DT0–DT4, this is the average test time of the 10 folds.

Dataset FPBST DT0 DT1 DT2 DT3 DT4

Abalone 13.5 10.5 10.3 9.8 10.1 8.6
Australian 3.1 2.7 2.0 2.2 2.0 2.0

Balance 1.5 0.9 0.5 1.0 0.5 0.8
blood 1.9 1.3 1.0 1.0 1.1 1.0

Cancer 3.1 1.1 0.7 0.7 0.8 1.3
Climate 2.1 1.4 1.2 1.0 1.1 1.9
German 3.5 3.4 3.5 3.8 3.4 4.0
LetRec 85.2 69.4 60.2 59.8 60.9 67.0
Usps 390.3 361.4 365.4 366.3 361.2 441.9

Satimage 47.9 38.7 38.7 38.0 38.8 48.8
Pendigits 53.9 33.6 33.6 32.3 34.8 46.8

Gisette 3752 2920 2804 2865 2884 3480
Mnist 6869 5631 5563 5474 5571 6591

Homus 3965 3520 3492 3695 3540 3443
Nist 5686 5088 5728 5236 4893 5058

Connect4 395 304 308 304 308 324
Covtype 4935 3561 3719 3662 3764 4326

Poker 4243 3834 3546 3641 3381 3924
SUSY 46,906 46,521 47,801 46,027 46,430 50,604

HIGGS 164,652 161,623 142,220 151,414 149,363 164,853
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Table 7. Speed-up results (training and testing phases) of the proposed methods DT0–DT4 compared
to the FPBST.

Dataset
DT0 Speed DT1 Speed DT2 Speed DT3 Speed DT4 Speed

Train Test Train Test Train Test Train Test Train Test

Abalone 1.15 1.29 1.20 1.31 1.19 1.38 1.21 1.34 1.25 1.57
Australian 1.03 1.15 1.21 1.55 1.17 1.41 1.16 1.55 1.06 1.55

Balance 1.82 1.67 1.80 3.00 1.78 1.50 1.89 3.00 1.50 1.88
blood 1.40 1.46 1.44 1.90 1.44 1.90 1.47 1.73 1.22 1.90

Cancer 2.72 2.82 3.23 4.43 3.59 4.43 3.30 3.88 1.46 2.38
Climate 1.40 1.50 1.41 1.75 1.42 2.10 1.45 1.91 0.97 1.11
German 0.90 1.03 0.92 1.00 0.82 0.92 0.90 1.03 0.80 0.88
LetRec 1.28 1.23 1.39 1.42 1.40 1.42 1.36 1.40 1.19 1.27
Usps 1.01 1.08 1.00 1.07 1.00 1.07 1.00 1.08 0.82 0.88

Satimage 1.16 1.24 1.12 1.24 1.11 1.26 1.11 1.23 0.90 0.98
Pendigits 1.59 1.60 1.58 1.60 1.57 1.67 1.57 1.55 1.03 1.15

Gisette 1.26 1.28 1.31 1.34 1.28 1.31 1.30 1.30 1.04 1.08
Mnist 1.20 1.22 1.20 1.23 1.21 1.25 1.23 1.23 1.01 1.04

Homus 1.09 1.13 1.15 1.14 1.14 1.07 1.13 1.12 1.07 1.15
Nist 1.19 1.12 1.20 0.99 1.18 1.09 1.20 1.16 1.12 1.12

Connect4 1.18 1.30 1.17 1.28 1.27 1.30 1.29 1.28 1.17 1.22
Covtype 1.28 1.39 1.32 1.33 1.26 1.35 1.30 1.31 1.04 1.14

Poker 1.06 1.11 1.12 1.20 1.09 1.17 1.22 1.25 0.98 1.08
SUSY 0.97 1.01 0.97 0.98 0.96 1.02 1.02 1.01 0.91 0.93

HIGGS 0.95 1.02 1.04 1.16 1.01 1.09 1.01 1.10 1.01 1.00

Average 1.28 1.33 1.34 1.55 1.34 1.48 1.36 1.52 1.08 1.27

As can be seen from Table 6 and Figure 8, the consumed time in the testing phase for DT0–DT3 is
less than that of the FPBST, this is due to the smaller size of these threes, and the disuse of the KNN
classifier, it is interesting to note that the DT4 speed in the testing phase is almost similar to that of the
FPBST, this is due the large and equal size of their trees. It is also interesting to note that there is no
significant difference in the time consumed by the proposed DT0–DT3 in the testing phases, since they
are almost the same except for the method of calculating the probability for each class.

Information 2018, 9, x FOR PEER REVIEW  16 of 22 

 

 

 

Figure 8. Illustration of data from Table 6 (time (ms) consumed by the FPBST to test the entire test 

examples compared to that of the proposed methods), the time axis is logarithmic base-10. 

As can be seen from Table 6 and Figure 8, the consumed time in the testing phase for DT0–DT3 

is less than that of the FPBST, this is due to the smaller size of these threes, and the disuse of the 

KNN classifier, it is interesting to note that the DT4 speed in the testing phase is almost similar to 

that of the FPBST, this is due the large and equal size of their trees. It is also interesting to note that 

there is no significant difference in the time consumed by the proposed DT0–DT3 in the testing 

phases, since they are almost the same except for the method of calculating the probability for each 

class.  

Table 7. Speed-up results (training and testing phases) of the proposed methods DT0–DT4 compared 

to the FPBST. 

Dataset 
DT0 Speed DT1 Speed DT2 Speed DT3 Speed DT4 Speed 

Train Test Train Test Train Test Train Test Train Test 

Abalone 1.15 1.29 1.20 1.31 1.19 1.38 1.21 1.34 1.25 1.57 

Australian 1.03 1.15 1.21 1.55 1.17 1.41 1.16 1.55 1.06 1.55 

Balance 1.82 1.67 1.80 3.00 1.78 1.50 1.89 3.00 1.50 1.88 

blood 1.40 1.46 1.44 1.90 1.44 1.90 1.47 1.73 1.22 1.90 

Cancer 2.72 2.82 3.23 4.43 3.59 4.43 3.30 3.88 1.46 2.38 

Climate 1.40 1.50 1.41 1.75 1.42 2.10 1.45 1.91 0.97 1.11 

German 0.90 1.03 0.92 1.00 0.82 0.92 0.90 1.03 0.80 0.88 

LetRec 1.28 1.23 1.39 1.42 1.40 1.42 1.36 1.40 1.19 1.27 

Usps 1.01 1.08 1.00 1.07 1.00 1.07 1.00 1.08 0.82 0.88 

Satimage 1.16 1.24 1.12 1.24 1.11 1.26 1.11 1.23 0.90 0.98 

Pendigits 1.59 1.60 1.58 1.60 1.57 1.67 1.57 1.55 1.03 1.15 

Gisette 1.26 1.28 1.31 1.34 1.28 1.31 1.30 1.30 1.04 1.08 

Mnist 1.20 1.22 1.20 1.23 1.21 1.25 1.23 1.23 1.01 1.04 

Homus 1.09 1.13 1.15 1.14 1.14 1.07 1.13 1.12 1.07 1.15 

Nist 1.19 1.12 1.20 0.99 1.18 1.09 1.20 1.16 1.12 1.12 

Connect4 1.18 1.30 1.17 1.28 1.27 1.30 1.29 1.28 1.17 1.22 

Covtype 1.28 1.39 1.32 1.33 1.26 1.35 1.30 1.31 1.04 1.14 

Poker 1.06 1.11 1.12 1.20 1.09 1.17 1.22 1.25 0.98 1.08 

SUSY 0.97 1.01 0.97 0.98 0.96 1.02 1.02 1.01 0.91 0.93 

HIGGS 0.95 1.02 1.04 1.16 1.01 1.09 1.01 1.10 1.01 1.00 

Average 1.28 1.33 1.34 1.55 1.34 1.48 1.36 1.52 1.08 1.27 

0.1

1

10

100

1000

10000

100000

1000000

A
b

alo
n

e

A
u

stralian

B
alan

ce

b
lo

o
d

C
an

cer

C
lim

ate

G
erm

an

LetR
ec

U
sp

s

Satim
age

P
e

n
d

igits

G
ise

tte

M
n

ist

H
o

m
u

s

N
ist

C
o

n
n

ect4

C
o

vtyp
e

P
o

ker

SU
SY

H
IG

G
S

Ti
m

e 
(m

s)

FPBST DT0

DT1 DT2

DT3 DT4

Figure 8. Illustration of data from Table 6 (time (ms) consumed by the FPBST to test the entire test
examples compared to that of the proposed methods), the time axis is logarithmic base-10.

The speed up results shown in Table 7 and Figure 9 are calculated from both Table 5 (the speed of
training phase), and Table 6 (the speed of testing phase) using Equation (7). Here, we can see that the
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speed of DT4 in training phases is almost similar to that of the FPBST, this is due to the similar trees
created by both methods, however the speed of the DT4 in the testing phases is significant 1.27 times
of the FPBST testing phases on average, this is due to the disuse of the KNN by DT4. It is interesting to
note the high speed of the proposed DT0–DT3 methods, which is about one and half times faster than
the FPBST, which might be due to the smaller size of the resultant trees and the disuse of the KNN.
It is also interesting to note that the training speeds of the proposed DT0–DT3 are not significant as
their testing speeds; this is due to the extra time which is needed for the extra computations of the
probabilities of the classes in each node.
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Figure 9. Illustration of data average from Table 7 (speed-up results—training and testing phases—of
the proposed methods DT0–DT4 compared to the FPBST).

As mentioned above, the proposed DT0–DT4 have been further improved attempting to provide
more regular trees in terms of class distribution, this improvement includes the enforcement of the
examples that are similar to the furthest point of the lower class to be sorted to the left-side of the
tree, and those which are similar to the other furthest point with the higher class to be sorted to the
right-side of the tree. We conducted several experiments to measure the effect of this improvement
on both accuracy and speed. Here we choose the DT of the best performance on each dataset and
compare its performance to the FPBST, the comparison results are shown in Table 8.

Table 8. Accuracy (Acc.) and speed-up results (training and testing phases) of FPBST compared to the
proposed DT0+ to DT4+.

Dataset
FPBST DT+ DT+ Speed

Acc. Train Test DT Acc. Train Test Train Test

Abalone 0.4990 196 14 0+ 0.5441 206 12 0.95 1.13
Australian 0.6435 45 3 4+ 0.6957 48 3 0.94 1.03

Balance 0.8258 15 2 1+ 0.8468 10 1.2 1.50 1.25
blood 0.6784 19 2 1+ 0.7635 19 1.5 0.98 1.27

Cancer 0.9618 29 3 4+ 0.9574 32 2.9 0.92 1.07
Climate 0.8722 29 2 4+ 0.9148 32 2.1 0.91 1.00
German 0.6550 56 4 0+ 0.7100 52 3.4 1.08 1.03
LetRec 0.7897 1595 85 3+ 0.7884 1268 68.6 1.26 1.24
Usps 0.8631 8096 390 2+ 0.8694 6456 306.3 1.25 1.27

Satimage 0.8672 860 48 3+ 0.8652 670 34.8 1.28 1.38
Pendigits 0.9630 910 54 3+ 0.9642 583 31.7 1.56 1.70

Gisette 0.8907 76,157 3752 3+ 0.8904 57,101 2762.8 1.33 1.36
Mnist 0.8527 142,712 6869 2+ 0.8523 118,015 5493.6 1.21 1.25

Homus 0.4508 83,337 4023 3+ 0.4468 80,330 3554 1.04 1.13
Nist 0.4795 118,746 5686 3+ 0.4828 108,402 4775 1.10 1.19

Connect4 0.6222 6860 395 1+ 0.6723 5735 298 1.20 1.33
Covtype 0.9314 94,265 4935 3+ 0.9312 74,155 3728 1.27 1.32

Poker 0.5372 74,536 4243 1+ 0.5889 66,029 3570 1.13 1.19
SUSY 0.7098 923,749 46,906 1+ 0.7639 864,713 44,285 1.07 1.06

HIGGS 0.5860 2,974,260 164,652 1+ 0.6061 2,854,760 141,130 1.04 1.17

Average 0.7339 225,324 12,103 0.7577 211,931 10,503 1.15 1.22
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As can be seen from Table 8, the accuracy of the proposed DT after the improvement has increased
by about 2.38%, this is due to the sorting of the examples based on their classes, which is the only
change that has been made to the decision trees. However, there is no improvement in the speed of
both training and testing phases, since swapping the furthest points based on their classes need the
same computation of swapping them based on their minimum/maximum norms, so there is no extra
calculations needed by the new improvement, and that why the time consumed by both phases is
not improved.

In order to statistically analyze the accuracy results of the DT+ methods compared to that of the
FPBST (Table 8), we used the statistical test for algorithm comparison (STAC) (http://tec.citius.usc.
es/stac/) [29]. Here we opt for the t-test paired as being commonly used to determine whether there
is a significant difference between the means of two groups; the first group is FPBST results and the
second group is the DT+ results. However, to do the t-test, our data should satisfy: independence,
normality, and homocedasticity [29].

Our data is independent, since it comes from different methods (FPBST and DT+). To test the
Normality of our data, we used the Shapiro-Wilk test because it performs the best, especially for
samples of less than 30 elements [30]. The null hypothesis for normality would be: The samples follow
a normal distribution. With significance level of 0.05, Table 9 shows the normality results.

Table 9. Normality test of FPBST and DT+ accuracies obtained from Table 8.

Dataset Statistic P-Value Result

FPBST 0.93589 0.2003 Null hypothesis is accepted
DT+ 0.92717 0.13622 Null hypothesis is accepted

As can be seen from Table 9, according to the p-value of the Shapiro-Wilk test we accept the
Null hypothesis, i.e., both FPBST and DT+ accuracies follow normal distributions. To test the
homocedasticity of both FPBST and DT+ accuracies we opt for the Levene test [31], The null hypothesis
of the homocedasticity of our data is: All the input populations come from populations with equal
variances. With significance level of 0.05, Table 10 shows the homocedasticity results.

Table 10. Homocedasticity test of FPBST and DT+ accuracies obtained from Table 8.

Statistic P-Value Result

0.45998 0.50174 Null hypothesis is accepted

As can be seen from Table 10, since the p-value is greater than the level of significance (0.05), the
null hypothesis is accepted, and therefore the tested data is homocedastic. Since we verified normality,
homocedasticity, and independence of our data we can apply the t-test. The null hypothesis (Ho):
Accuracies of FPBST and DT+ have identical mean values. The alternative hypothesis (Ha): Accuracies
of FPBST and DT+ do not have identical mean values. With significance level of 0.05, Table 11 shows
the t-test results.

Table 11. T-test results of group 1 (FPBST) and group 2 (DT+) accuracies obtained from Table 8.

T Statistic P-Value Result

–3.8335 0.00112 Ho is rejected

As can be seen from Table 11, since the p-value is less than the level of significance (0.05), the null
hypothesis is rejected to the favor of Ha. Thus, there is a statistically significant difference between
the FPBST and the DT+ accuracies. In addition, the T statistic is shown in negative value because the
mean of the FPBST accuracies is less than that of the DT+, therefore, we can say with some confidence
that the DT+ methods outperform FPBST in terms of classification accuracy.

http://tec.citius.usc.es/stac/
http://tec.citius.usc.es/stac/
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It is worth mentioning that the STAC platform accepted the Ho regardless the very small P-value,
however, we rejected it here due to the p-value being less than the level of significance, which is (0.05)
in our case. We further verified this decision using other platforms such as http://www.statskingdom.
com/160MeanT2pair.html, in addition to our own calculations using Microsoft Excel software.

According to the previous results, we can approximately compare the performance of the proposed
methods to that of the FPBST in terms of accuracy, training/testing time, and space consumed, as
shown in Table 12.

Table 12. Approximate comparison of the performance of the proposed methods to that of the FPBST.

Method Training Time Testing Time Model Size Accuracy

FPBST long long large moderate
DT0 short short small low
DT1 short short small moderate
DT2 short short small low
DT3 short short small moderate
DT4 long long large high

DT0+ short short small high
DT1+ short short small high
DT2+ short short small moderate
DT3+ short short small high
DT4+ long long large high

As can be seen from Table 12, DT0+, DT1+ and DT3+ are the best performer in general, since
they obtain the highest accuracies with the shortest training/testing times and the smallest model
size. And therefore, we compared them with some of the well-known decision trees, namely, J48 [32],
Reduced-error pruning tree (REPTree) [33] and Random Forest (RF) [34]. We applied these trees using
the Weka data mining tool [35]. The comparison results are shown in Table 13.

Table 13. Accuracy results of some of the proposed DTs compared to that of some of the well-known
decision trees.

Dataset J48 REPTree RF DT0+ DT1+ DT3+

Abalone 0.5281 0.5286 0.5430 0.5439 0.5403 0.5002
Australian 0.8522 0.8478 0.8754 0.6783 0.6899 0.6479

Balance 0.7664 0.7648 0.8176 0.8339 0.8323 0.8371
blood 0.7781 0.7741 0.7273 0.7716 0.7689 0.7297

Cancer 0.9605 0.9531 0.9707 0.9691 0.9691 0.9574
Climate 0.9259 0.9148 0.9370 0.9148 0.9093 0.8630
German 0.7390 0.7390 0.7630 0.7100 0.6990 0.6640
LetRec 0.8825 0.8424 0.9645 0.7137 0.7463 0.7943
Usps 0.8943 0.8780 0.9607 0.7823 0.8200 0.8626

Satimage 0.8623 0.8595 0.9197 0.8381 0.8569 0.8619
Pendigits 0.9637 0.9518 0.9916 0.8802 0.9181 0.9663
Gisette * - - - - - -
Mnist * - - - - - -

Homus * - - - - - -
Nist * - - - - - -

Connect4 * - - - - - -
Covtype * - - - - - -

Poker * - - - - - -
SUSY * - - - - - -

HIGGS * - - - - - -

* The well-known decision trees took a very long time when tested on the big datasets (Gisette, Mnist, Homus,
Nist, Connect4, Covtype, Poker, SUSY, and HIGGS), and more problematically, the Weka software crashed due to
insufficient memory error, therefore, we could not record their results on these datasets.

http://www.statskingdom.com/160MeanT2pair.html
http://www.statskingdom.com/160MeanT2pair.html
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As can be seen from Table 13, the compared DTs show competing accuracy results compared
to the well-known decision trees, with and extra advantage of the ability to work on Big Data and,
therefore, can be used in practice, particularly for big data and image classification such as [36–38].

5. Conclusions

In this paper, we propose a new approach to improve the performance of the FPBST when
classifying small, intermediate and Big Datasets. The major improvement includes the abandonment
of the slow KNN, which is used with the FPBST to classify a small number of examples found in a
leaf-node. Instead, we convert the BST to be a decision tree by its own, seizing the labeled examples in
the training phase, by calculating the probability of each class in each node, we used various methods
to calculate these probabilities.

The experimental results show that the proposed decision trees improve the performance of the
FPBST in terms of classification accuracy, training speed, testing speed and the size of the model
(the tree in our case). We also made another simple enhancement on the FPBST algorithm in the
training phase, which is the swapping of the furthest pair of points based on their classes rather than
being based on their minimum/maximum Euclidean norms. This makes the resultant decision tree
more coherent in terms of the distribution of the classes, making them closer to each other as possible
as could, such enhancement further improved the accuracy of the proposed decision trees compared
to that of the FPBST as the results suggest.

The improvements made in this study allow the proposed DTs to be more suitable for variety of
real-world applications such as image classifications, face recognition, hand biometrics, fingerprint
systems, and other types of biometrics, particularly, when the training data is very large, where
traditional classification methods become impractical.

However, this approach is still based on finding the furthest-pair of points (diameter), which
has two major disadvantages, first, it takes time to find the diameter of the data at each node, and
second, these two points might be belonging to the same class, and this might affect the classification
accuracy. Therefore, we need to find a more accurate and perhaps a faster algorithm to cluster the
data in each node. Moreover, the Euclidean distance might not be the perfect choice for the proposed
methods, therefore, we need to investigate other distance metrics such as [39,40]. These limitations
will be addressed in our future work.
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