
  information

Article

An RTT-Aware Virtual Machine Placement Method

Li Quan 1, Zhiliang Wang 1,* and Fuji Ren 2

1 School of Computer and Communication Engineering, University of Science and Technology Beijing,
Beijing 100083, China; quanli19871103@163.com

2 School of Computer and Information, Hefei University of Technology, Hefei 230000, China;
ren2fuji@gmail.com

* Correspondence: wzl@ustb.edu.cn; Tel.: +86-10-6233-2641

Received: 29 November 2017; Accepted: 26 December 2017; Published: 29 December 2017

Abstract: Virtualization is a key technology for mobile cloud computing (MCC) and the virtual
machine (VM) is a core component of virtualization. VM provides a relatively independent running
environment for different applications. Therefore, the VM placement problem focuses on how to
place VMs on optimal physical machines, which ensures efficient use of resources and the quality of
service, etc. Most previous work focuses on energy consumption, network traffic between VMs and
so on and rarely consider the delay for end users’ requests. In contrast, the latency between requests
and VMs is considered in this paper for the scenario of optimal VM placement in MCC. In order to
minimize average RTT for all requests, the round-trip time (RTT) is first used as the metric for the
latency of requests. Based on our proposed RTT metric, an RTT-Aware VM placement algorithm is
then proposed to minimize the average RTT. Furthermore, the case in which one of the core switches
does not work is considered. A VM rescheduling algorithm is proposed to keep the average RTT
lower and reduce the fluctuation of the average RTT. Finally, in the simulation study, our algorithm
shows its advantage over existing methods, including random placement, the traffic-aware VM
placement algorithm and the remaining utilization-aware algorithm.

Keywords: virtual machine placement; round-trip time; cloud computing; mobile cloud computing

1. Introduction

With the popularization of the internet of things and cloud computing technology, a large number
of smart devices are used by people [1–3]. Smart devices need to leverage cloud computing to
expand their capabilities, because of their limited memory, storage and CPU. There is an increasing
need for services provided by the cloud. Mobile cloud computing (MCC) [4,5] is a new paradigm
for addressing this issue. We can migrate some resource-intensive services to the cloud by MCC.
Virtualization technology [6–8] provides a relatively independent and safe operating environment
for different services in the cloud. It enables the resource provisioning efficiently that the required
memory, storage and CPU resources can be packed into virtual machines (VMs). Therefore, a user’s
specific request could be handled by one or more VMs in the cloud. These VMs are placed on different
physical machines (PMs) that may be geographically distributed and in different locations of the
network topology.

The virtual machine placement problem [9] focuses on choosing optimal PMs to run needed
VMs when facing lots of requests. The optimization objectives of existing researches include energy
consumption, network traffic between VMs and so on and rarely consider the delay for requests.
However, there are always many delay-sensitive applications among various cloud-based applications.
They need assistance from cloud computing but also have minimum delay requirements, such as
sensor and in real-time applications.

Information 2018, 9, 4; doi:10.3390/info9010004 www.mdpi.com/journal/information

http://www.mdpi.com/journal/information
http://www.mdpi.com
http://dx.doi.org/10.3390/info9010004
http://www.mdpi.com/journal/information


Information 2018, 9, 4 2 of 15

In order to meet the minimum delay requirements for requests, we take the round-trip time
(RTT) [10] as the metric for placing VMs dynamically in a cloud. In this paper, the dynamic VM
placement is studied for minimizing average RTT of all requests. First, we propose an architecture
for dynamic VM placement, where users’ requests are allocated to the corresponding core switches
according to load balancer. The adopted network topology of physical machines is based on fat-tree [11]
that is a universal network for provably efficient communication. Then, we propose a dynamic
VM placement algorithm aimed at minimizing the average RTT for cloud service requests. Finally,
considering the unexpected situation where a core switch is out of work due to long-running or
physical damage. A dynamic VM rescheduling algorithm is introduced to keep the average RTT lower
and reduce the fluctuation of RTT.

This paper is organized as follows: Section 2 describes the related researches. We adopt a network
topology of physical machines deployed in the cloud, based on fat-tree, and model the problem
mathematically in Section 3. In Section 4, we introduce all related algorithms in detail. Section 5
shows the advantages of our proposed algorithms through experiment. In Section 6, we summarize
our paper.

2. Related Works

Numerous researchers have studied dynamic VM placement problem in cloud computing
environment [12–14]. In addition, some newer computing paradigms are used for delay-sensitive
tasks, such as Mobile Edge Computing, Fog Computing and Dew Computing. Luan et al. [15] outlines
the main features of Fog computing which can serve mobile users with a direct short-fat connection.
These newer paradigms use nearby resources to augment devices from fixed hardware [16] and other
mobile devices [17]. Nevertheless, different previous studies, this paper mainly focuses on the MCC
area where smart devices are augmented via remote cloud resources.

Xiong et al. [18] propose a novel VM placement policy that prefers placing a migratable VM
on a host that has the minimum correlation coefficient. The correlation coefficient represents the
relationship between the migrating VM and each host. A greater correlation coefficient indicates a
greater performance degradation for other VMs on this host due to the migration. They focus on
dynamic consolidation of VMs in the data center to reduce the energy consumption and improve
physical resource utilization.

Han et al. [19] consider energy consumption and propose a remaining utilization-aware (RUA)
algorithm for virtual machine (VM) placement. Besides a power-aware algorithm (PA) is proposed to
find proper hosts to shut down for energy saving. Their research focuses on the multimedia cloud
and tries to minimize its energy consumption on the basis of satisfying the consumers’ resource
requirements and guaranteeing the quality of service (QoS).

Luo et al. [20] focus on improving the overall performance of datacenters and propose a virtual
machine allocation and scheduling algorithm. In order to improve the utilization of physical machines
and lower energy cost, they design a self-adaptive network-aware virtual machine re-scheduling
algorithm. Resource fragments and high-cost network communication VMs could be detected
automatically by using the proposed algorithm and corresponding VMs are rescheduled through
appropriate live migrations.

Pan et al. [21] try to address heterogeneous VMs placement optimization problem by proposing a
cross-entropy-based admission control approach. In their paper, a cloud provider may offer multi-types
of VMs that are associated with varying configurations and different prices. In order to fulfill users’
requests, accept and place multiple VM service requests into its cloud data centers optimally to
maximize the total revenue is a major problem. They model the revenue maximization problem as a
multiple-dimensional knapsack problem.

Meng et al. [22] consider the scalability of cloud data centers to propose a traffic-aware virtual
machine (VM) placement method. They formulate the VM placement as an optimization problem
and prove its hardness. By optimizing the placement of VMs on PMs, traffic patterns among VMs



Information 2018, 9, 4 3 of 15

can be better aligned with the communication distance between them, e.g., VMs with large mutual
bandwidth usage are assigned to PMs in close proximity.

Yapicioglu et al. [23] propose an algorithm with low computational complexity to decrease
networking costs where power and communication patterns of VMs are taken into account. This paper
clusters VMs according to the dynamic network traffic data and places corresponding clusters into PMs.
They put frequently communicating VMs together into the same PM or as near as possible to decrease
the traffic between PMs while minimizing networking delay based on average communication path
and keeping the number of active servers and networking elements at a minimum to save energy.

Ilkhechi et al. [24] mainly study network and traffic aware VM placement from the perspective of
a provider, where a large number of endpoints are VMs located in PMs. In this scenario, they focus on
the network rather than data server constraints associated with VM placement problem. This paper
proposes a nearly optimal placement algorithm that maps a set of VMs into a set of PMs with
maximizing a particular metric named satisfaction.

Cohen et al. [25] focus on the network aspect and study the VM placement problem of applications
with intense bandwidth requirements. The available network link may be used by many PMs and thus
by the VMs placed on these PMs. They try to maximize the benefit from the overall communication sent
by the VMs to a single point in a data center and propose a polynomial-time constant approximation
algorithm for this problem.

Though many papers above have studied the dynamic VM placement problem, their optimization
objectives manly include energy consumption, resource utilization and traffic cost between VMs etc.
and rarely involve latency for requests. Many delay-sensitive applications in the MCC environment,
such as sensor and in real-time applications that have minimum delay requirements. Therefore, our
paper focuses on minimizing the average RTT for cloud service requests.

3. Dynamic VM Placement

3.1. Proposed Architecture

In order to place VMs dynamically according to users’ requests. We propose an architecture for
Dynamic VM Placement that makes up of four parts, as shown in Figure 1.

• User Request: we suppose that smart devices exploit cloud resources by request-response.
Smart devices’ requests require the cloud center to deploy VMs for providing appropriate service.

• Load Balancer: the load balancer could redirect the incoming requests to candidate switches
according to the number of requests.

• Physical Machine: physical machines are an important part of the cloud, which provide a
runtime environment for virtual machines. The physical machines are connected by fat-tree
network structure.

• Dynamic Allocation of VM: this part runs the scheduling algorithms that allocate the VM
dynamically for different requests to minimize the average RTT.

According to Figure 1, the users’ requests are connected to the load balancer that redirects these
requests to candidate core switches according to the number of requests. The core switches are on the
top tier of fat-tree topology in this architecture. When one of the core switches is out of work due to
long-running or physical damage, the load balancer will redirect those requests to other working core
switches. Moreover, the load balancer sends the detail information of these requests to the module:
Dynamic Allocation of VM. The algorithms proposed in this paper run in this module, which can place
the corresponding VMs in order to minimize the average RTT for these requests. An overview of our
proposed algorithms is given in Figure 2. We will discuss these algorithms in detail in Section 4.



Information 2018, 9, 4 4 of 15

Information 2018, 9, 4  3 of 14 

 

Yapicioglu et al. [23] propose an algorithm with low computational complexity to decrease 

networking costs where power and communication patterns of VMs are taken into account. This 

paper clusters VMs according to the dynamic network traffic data and places corresponding clusters 

into PMs. They put frequently communicating VMs together into the same PM or as near as possible 

to decrease the traffic between PMs while minimizing networking delay based on average 

communication path and keeping the number of active servers and networking elements at a 

minimum to save energy. 

Ilkhechi et al. [24] mainly study network and traffic aware VM placement from the perspective 

of a provider, where a large number of endpoints are VMs located in PMs. In this scenario, they focus 

on the network rather than data server constraints associated with VM placement problem. This 

paper proposes a nearly optimal placement algorithm that maps a set of VMs into a set of PMs with 

maximizing a particular metric named satisfaction. 

Cohen et al. [25] focus on the network aspect and study the VM placement problem of 

applications with intense bandwidth requirements. The available network link may be used by many 

PMs and thus by the VMs placed on these PMs. They try to maximize the benefit from the overall 

communication sent by the VMs to a single point in a data center and propose a polynomial-time 

constant approximation algorithm for this problem. 

Though many papers above have studied the dynamic VM placement problem, their 

optimization objectives manly include energy consumption, resource utilization and traffic cost 

between VMs etc. and rarely involve latency for requests. Many delay-sensitive applications in the 

MCC environment, such as sensor and in real-time applications that have minimum delay 

requirements. Therefore, our paper focuses on minimizing the average RTT for cloud service requests. 

3. Dynamic VM Placement 

3.1. Proposed Architecture 

In order to place VMs dynamically according to users’ requests. We propose an architecture for 

Dynamic VM Placement that makes up of four parts, as shown in Figure 1. 

 User Request: we suppose that smart devices exploit cloud resources by request-response. Smart 

devices’ requests require the cloud center to deploy VMs for providing appropriate service.  

 Load Balancer: the load balancer could redirect the incoming requests to candidate switches 

according to the number of requests. 

 Physical Machine: physical machines are an important part of the cloud, which provide a 

runtime environment for virtual machines. The physical machines are connected by fat-tree 

network structure. 

 Dynamic Allocation of VM: this part runs the scheduling algorithms that allocate the VM 

dynamically for different requests to minimize the average RTT. 

 

Figure 1. Architecture for Dynamic VM Placement. Figure 1. Architecture for Dynamic VM Placement.

Information 2018, 9, 4  4 of 14 

 

According to Figure 1, the users’ requests are connected to the load balancer that redirects these 

requests to candidate core switches according to the number of requests. The core switches are on the 

top tier of fat-tree topology in this architecture. When one of the core switches is out of work due to 

long-running or physical damage, the load balancer will redirect those requests to other working core 

switches. Moreover, the load balancer sends the detail information of these requests to the module: 

Dynamic Allocation of VM. The algorithms proposed in this paper run in this module, which can 

place the corresponding VMs in order to minimize the average RTT for these requests. An overview 

of our proposed algorithms is given in Figure 2. We will discuss these algorithms in detail in Section 4. 

 

Figure 2. Overview of Proposed Algorithms. 

3.2. Problem Formulation 

As shown in Figure 3, it is our adopted network architecture [26] of physical machines deployed 

in the cloud. The architecture makes use of fat-tree topology and is composed of three tiers. Core 

switches (𝐶𝑠𝑖 ) are on top tier of the network architecture, that deliver corresponding users’ requests 

according to load balancer shown in Figure 1. Each point of delivery (pod) comprises with 

aggregation switches (𝐴𝑔𝑠𝑗) and access switches (𝐴𝑐𝑠𝑘), they connect with all involving core switches. 

These two switches perform different network functions. The aggregation switches are capable of 

supporting many 10 GigE and GigE interconnects while providing a high-speed switching fabric with 

a high forwarding rate. They are required to provide redundancy and to maintain session state while 

providing valuable services to the access layer. In addition, the access switches can connect with PMs 

directly and provide a high GigE port density. The number of pods and three types of switches is 

related to the number of ports per switch. Besides, the number of ports per switch also determines 

the number of physical machines in pod. Suppose the number of ports per switch is 𝑝, then there 

Figure 2. Overview of Proposed Algorithms.

3.2. Problem Formulation

As shown in Figure 3, it is our adopted network architecture [26] of physical machines deployed
in the cloud. The architecture makes use of fat-tree topology and is composed of three tiers. Core
switches (Csi) are on top tier of the network architecture, that deliver corresponding users’ requests
according to load balancer shown in Figure 1. Each point of delivery (pod) comprises with aggregation
switches (Agsj) and access switches (Acsk), they connect with all involving core switches. These two
switches perform different network functions. The aggregation switches are capable of supporting



Information 2018, 9, 4 5 of 15

many 10 GigE and GigE interconnects while providing a high-speed switching fabric with a high
forwarding rate. They are required to provide redundancy and to maintain session state while
providing valuable services to the access layer. In addition, the access switches can connect with PMs
directly and provide a high GigE port density. The number of pods and three types of switches is
related to the number of ports per switch. Besides, the number of ports per switch also determines the
number of physical machines in pod. Suppose the number of ports per switch is p, then there will be p
pods that contain p/2 aggregation switches and p/2 access switches in each pod. There are p2/4 cores
switches that connect to each pod with p2/4 physical machines. Therefore, we can get 5p2/4 switches
that communicate with p3/4 physical machines in total.

Information 2018, 9, 4  5 of 14 

 

will be 𝑝 pods that contain 𝑝/2 aggregation switches and 𝑝/2 access switches in each pod. There 

are 𝑝2/4 cores switches that connect to each pod with 𝑝2/4 physical machines. Therefore, we can 

get 5𝑝2/4 switches that communicate with 𝑝3/4 physical machines in total. 

In this paper, a request communicates with VMs that provides corresponding services through 

mentioned above three tiers topology. These PMs that VMs could be placed on are commonly 

distributed location, where different pods are distributed in a datacenter as shown in Figure 3. Take 

a specific PM 𝑃𝑀1
𝐶 as an example, the distance between 𝑃𝑀1

𝐶 and the four core switches is same. 

However, the switches in the communication path between them are not exactly the same. This can 

lead to a different request delay that affects quality of service (QoS) [27]. In order to provide low 

delay service especially for delay-sensitive requests, these VMs should be placed on optimal PMs to 

make the average delay minimization.  

 

Figure 3. Network topology based on fat-tree. 

In this paper, there are two types of PMs and their number is the same. One (𝑃𝑀𝑙
𝐷) is fit to VMs 

that provides services for data, another (𝑃𝑀𝑚
𝐶 ) is fit to VMs that provides services for computing. 𝑙 

and 𝑚  are the index of PMs. We let 𝑃𝑀𝑙
𝐷(𝑚𝐷, 𝐶𝐷)  denote the attribute of 𝑃𝑀𝑙

𝐷 , 𝑚𝐷  and 𝐶𝐷 

respectively represent the spare memory and spare CPU. Similarly, let 𝑃𝑀𝑚
𝐶 (𝑚𝐶 , 𝐶𝐶) denote the 

attribute of  𝑃𝑀𝑚
𝐶 , 𝑚𝐶  and 𝐶𝐶  represent the spare memory and spare CPU respectively. 

Correspondingly, there are two types of VMs. One provides service for data (𝑉𝑀𝑎
𝐷 1 ≤ 𝑎 ≤ 𝐴 ), 

another provides service for computing (𝑉𝑀𝑏
𝐶  1 ≤ 𝑏 ≤ 𝐵). A and B respectively represent the kinds of 

corresponding service. The VMs for the 𝑎𝑡ℎ kind service of data are denoted as 𝑉𝑀𝑎
𝐷(𝑚𝑎

𝐷, 𝐶𝑎
𝐷), 𝑚𝑎

𝐷 

and 𝐶𝑎
𝐷 respectively represent the needed memory and CPU. Similarly, 𝑉𝑀𝑏

𝐶(𝑚𝑏
𝐶 , 𝐶𝑏

𝐶) denotes the 

𝑏th kind service of computing and its needed memory and CPU are represented by 𝑚𝑏
𝐶  and  𝐶𝑏

𝐶. 

Definition 1. 

{
𝑃𝑀𝑙

𝐷(𝑚𝐷, 𝐶𝐷) − 𝑉𝑀𝑎
𝐷(𝑚𝑎

𝐷, 𝐶𝑎
𝐷) > 0

𝑃𝑀𝑙
𝐷(𝑚𝐷, 𝐶𝐷) − 𝑉𝑀𝑎

𝐷(𝑚𝑎
𝐷, 𝐶𝑎

𝐷) < 0
 𝑚𝐷 − 𝑚𝑎

𝐷 > 0𝑎𝑛𝑑 𝐶𝐷 − 𝐶𝑎
𝐷 > 0

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (1) 

Similarly, 

{
𝑃𝑀𝑚

𝐶 (𝑚𝐶 , 𝐶𝐶) − 𝑉𝑀𝑏
𝐶(𝑚𝑏

𝐶 , 𝐶𝑏
𝐶) > 0

𝑃𝑀𝑚
𝐶 (𝑚𝐶 , 𝐶𝐶) − 𝑉𝑀𝑏

𝐶(𝑚𝑏
𝐶 , 𝐶𝑏

𝐶) < 0
 𝑚𝐶 − 𝑚𝑏

𝐶 > 0𝑎𝑛𝑑 𝐶𝐶 − 𝐶𝑏
𝐶 > 0

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2) 

Therefore, a VM could be placed on the selected physical machine, only when the target physical 

machine has enough memory and CPU capacities: 

PMl
D(mD, CD) − VMa

D(ma
D, Ca

D) > 0 (3) 

or 

Figure 3. Network topology based on fat-tree.

In this paper, a request communicates with VMs that provides corresponding services through
mentioned above three tiers topology. These PMs that VMs could be placed on are commonly
distributed location, where different pods are distributed in a datacenter as shown in Figure 3. Take a
specific PM PMC

1 as an example, the distance between PMC
1 and the four core switches is same.

However, the switches in the communication path between them are not exactly the same. This can
lead to a different request delay that affects quality of service (QoS) [27]. In order to provide low delay
service especially for delay-sensitive requests, these VMs should be placed on optimal PMs to make
the average delay minimization.

In this paper, there are two types of PMs and their number is the same. One (PMD
l ) is fit to VMs

that provides services for data, another (PMC
m) is fit to VMs that provides services for computing. l and

m are the index of PMs. We let PMD
l (mD, CD) denote the attribute of PMD

l , mD and CD respectively
represent the spare memory and spare CPU. Similarly, let PMC

m(mC, CC) denote the attribute of PMC
m,

mC and CC represent the spare memory and spare CPU respectively. Correspondingly, there are two
types of VMs. One provides service for data (VMD

a 1 ≤ a ≤ A), another provides service for computing
(VMC

b 1 ≤ b ≤ B). A and B respectively represent the kinds of corresponding service. The VMs for the
ath kind service of data are denoted as VMD

a
(
mD

a , CD
a
)
, mD

a and CD
a respectively represent the needed

memory and CPU. Similarly, VMC
b
(
mC

b , CC
b
)

denotes the bth kind service of computing and its needed
memory and CPU are represented by mC

b and CC
b .

Definition 1.{
PMD

l (mD, CD)−VMD
a
(
mD

a , CD
a
)
> 0

PMD
l (mD, CD)−VMD

a
(
mD

a , CD
a
)
< 0

mD −mD
a > 0 and CD − CD

a > 0
otherwise

(1)



Information 2018, 9, 4 6 of 15

Similarly,{
PMC

m(mC, CC)−VMC
b
(
mC

b , CC
b
)
> 0

PMC
m(mC, CC)−VMC

b
(
mC

b , CC
b
)
< 0

mC −mC
b > 0 and CC − CC

b > 0
otherwise

(2)

Therefore, a VM could be placed on the selected physical machine, only when the target physical
machine has enough memory and CPU capacities:

PMD
l (mD, CD)−VMD

a

(
mD

a , CD
a

)
> 0 (3)

or
PMC

m(mC, CC)−VMC
b

(
mC

b , CC
b

)
> 0 (4)

In this paper, we suppose that a request could be denoted as Rr
(
VMD

a , VMC
b
)

(1 ≤ r ≤ R),
R denotes the total number of user requests. We can see that two types of VM serve a request. In order
to ensure better QoS to requests especially for delay-sensitive requests, we try to minimize the latency
for all requests. This is rarely discussed in previous studies. Moreover, our paper considers the situation
that a VM can serve several requests. However, a VM only serves one request in previous studies.

We only consider the general situation where a request could be served by two kinds of VMs
(computing and data) in order to verify our proposed algorithms. There are also some applications that
access CPU-intensive services or data-intensive services in practice. These requests could be denoted
as Rr

(
VMC

b
)

for CPU-intensive services, or Rr
(
VMD

a
)

for data-intensive services. For the purpose of
generality, we only consider the general situation that a request is served by VMD and VMC. Moreover,
it is possible to allocate a data VM in a computing PM and vice versa. However, we mainly focus on
the average RTT for requests and intend to verify our proposed algorithms’ effectiveness for coexisting
two kinds PMs. Therefore, we do not discuss this specific situation in our paper.

Remark 1. The disk resources are easier to expand than CPU and memory. Most of the previous works [19,28,29]
did not consider the disk space as well. Moreover, we only regard these resources as a constraint in this paper
and they are not the main discussed contents of this paper.

The data machines mentioned in our paper are similar to Amazon servers and we proposed VMs (VMD

and VMC) are similar to Amazon image in which users can runs different applications. Amazon image types
are defined by operating system, architecture and other parameters. However, Amazon image is used to run
individualized applications for different users, which is similar to VMs (VMD and VMC) in our paper. They also
have the specific demand for CPU and memory resources.

We assume that the types of VMD and VMC is A and B. It means that each type of VMD

VMD
a (1 ≤ a ≤ A) provides different data services. In addition, the same is to VMC. This “Types” is

determined by different applications that run in VMD and VMC . Take VMD
a (1 ≤ a ≤ A) as an example,

VMD
1 and VMD

2 represent different applications.

In this paper, we regard RTT as the metric of delay [30] for requests based on fat-tree network
topology. According to the network topology shown in Figure 3, we define the RTT between the ith
core switch Csi and PMs as follows:

rttD
il = rtt

(
Csi , PMD

l

)
(5)

and
rttC

im = rtt
(

Csi , PMC
m

)
(6)



Information 2018, 9, 4 7 of 15

where rttD
il is the RTT between core switch Csi and PMD

l , rttC
im is the RTT between core switch Csi and

PMC
m. Function rtt represents the RTT between two network nodes. Therefore, we can get the RTT

matrix RTTD and RTTC that are updated with the latest RTT periodically.

RTTD =


rttD

11 rttD
12 rttD

13
rttD

21 rttD
22 rttD

23
rttD

31 rttD
32 rttD

33

· · · rttD
1l

· · · rttD
2l

· · · rttD
3l

· · · · · · · · ·
rttD

i1 rttD
i2 rttD

i3

· · · · · ·
· · · rttD

il

 (7)

RTTC =


rttC

11 rttC
12 rttC

13
rttC

21 rttC
22 rttC

23
rttC

31 rttC
32 rttC

33

· · · rttC
1m

· · · rttC
2m

· · · rttC
3m

· · · · · · · · ·
rttC

i1 rttC
i2 rttC

i3

· · · · · ·
· · · rttC

im

 (8)

Therefore, suppose that a request Rr
(
VMD

a , VMC
b
)

is arranged to the ith core switch Csi ,
its needed VMD

a and VMC
b is placed on PMD

l and PMC
m respectively. The request’s average RRT

could be calculated as follow:

Rrtt(Rr) =
(

RTTD
i,l + RTTC

i,m

)
/2 (9)

Then we can define our optimization problem to minimize the total average RTT for R requests:

Artt = min ∑R
r=1 Rrtt(Rr)

R
= min

l ∈ L
m ∈ M

∑R
r=1

(
RTTD

i,l + RTTC
i,m

)
/2

R
(10)

4. Algorithms

In this section, we will introduce the algorithms in detail according to the overview shown in
Figure 2. Two VM scheduling algorithms (RTTVMPA and VMRA) are proposed for minimizing the
average RTT for users’ requests. Moreover, the RTT-Aware VM placement algorithm (RTTVMPA)
contains two sub-algorithms that will be also discussed in this section.

First, the RTTVMPA gets the state of all PMs and current users’ requests. RTT Matrix RTTD

and RTTC are calculated following the Formulae (5) and (6). Then sort the PMs in ascending order
according to RTT for each core switch. However, the RTT between different core switches and PMs is
different, the algorithm should update the state of PMs according to steps 7 and 9. Therefore, the PMs
with the smallest RTT could be selected first for those requests that are allocated to same core switch,
which can reduce the RTT for users’ requests. Finally, the RTTVMPA schedules the corresponding
VMs according to selected index of PMs. The RTTVMPA is describe as Algorithm 1:

Different from previous studies for VM placement, which a VM serves only one request. Our paper
considers the situation that a VM could serve multiple requests. Therefore, the step 16 intends to use
existing VMs that could serve current request. If the existing VMs reach the maximum number that
they can serve, the algorithm will deploy new VMs in step 19. For above purpose, we will introduce
VM sharing algorithm (VMSA) and VM establishing algorithm (VMEA) as follows.

First, we suppose a VM could serve n requests. Let state < PM, VM, count > (0 ≤ count ≤ n)
denote the state of VM placed on PM. count is the number of current serving requests. If count = n,
the virtual machine VM cannot serve other requests. The VM sharing algorithm (VMSA) is describe as
Algorithm 2:



Information 2018, 9, 4 8 of 15

Algorithm 1 RTT-Aware VM placement algorithm (RTTVMPA)

1. Begin
2. Initial R = 0, Artt = 0, indexD = 0, indexC = 0
3. Get list of PMDs as ListPMD;< l, PMD

l (mD, CD), rttl > ∈ ListPMD, rttl = 0, (1 ≤ l ≤ L)
4. Get list of PMCs as ListPMC;< l, PMC

m(mC, CC), rttm > ∈ ListPMC, rttm = 0, (1 ≤ m ≤ M)

5. Get the RTT Matrix RTTD and RTTC

6. For each core switch Csi (1 ≤ i ≤ I) do: step:7—22
7. For each PMD

l in ListPMD do: rttl = RTTD
i,l do: step:8

8. Sort ListPMD in ascending order by rttl
9. For each PMC

m in ListPMC do: rttm = RTTC
i,m do: step:10

10. Sort ListPMC in ascending order by rttm

11. Get requests set rs belonging to Csi
12. Get the number of requests in rs, r, R = R + r

13. For each request Rr

(
VMD

a , VMC
b

)
in rs do: step:14–22

14. Get the indexDth PMD
l in ListPMD

15. Get the indexCth PMC
m in ListPMD

16. Bool← VMSA
(
VMD

a , PMD
l
)

17. If Bool is false, Bool← VMEA
(
VMD

a , PMD
l
)

18. If Bool is false, indexD = indexD + 1

19. Bool← VMSA
(

VMC
b , PMC

m

)
20. If Bool is false, Bool← VMEA

(
VMC

b , PMC
m

)
21. If Bool is false, indexC = indexC + 1
22. Calculate Rrtt(Rr) according to Equation (9)
23. Calculate the Artt according to Equation (10)

Algorithm 2 VM sharing algorithm (VMSA)

Input: VM, PM
Out: Bool
1. Bool← false
2. If VM is on PM, then get state < PM, VM, count>
3. If count < n
4. count = count + 1
5. Share current VM
6. Bool← true
7. End if
8. End if

According to VMSA, if count = n, we need establish a new VM to serve requests. The VM establishing
algorithm (VMEA) is describe as Algorithm 3:

Algorithm 3 VM establishing algorithm (VMEA)

Input: VM, PM
Out: Bool
1. Bool← false
2. If PM− VM > 0 according to Equation (1) or Equation (2)
3. Establish VM on current PM and set state < PM, VM, count>
4. count=1
5. Bool← true
6. End if



Information 2018, 9, 4 9 of 15

Remark 2. In practice, the number of requests that can be served is dynamic so that we cannot make a
quantitative analysis for the relation between “n” and average RTT. Therefore, we suppose “n” is determined by
the specific applications that run in VMs. We assume the maximum number of requests that can be served is
“n”. We can investigate the influence of the number of requests that a VM serves on our proposed RTTVMPA.

Furthermore, our paper considers an abnormal situation where the core switches are out of work,
due to long-running or physical damage. We propose a VM rescheduling algorithm (VMRA) to ensure
minimum delay in above situation.

Suppose a core switch Csi is abnormal, the requests connected to Csi are allocated to other worked
core switches by load balancer according to our adopted network topology for PMs. This situation will
lead to different network paths between requests and needed VMs, which will increase the average
RTT of the overall network. Therefore, we consider rescheduling related VMs to optimal PMs so that
reduce the fluctuation of RTT when a core switch is abnormal.

According to Equation (9), we can get:

min(Rrtt(Rr)) = min
l ∈ L

m ∈ M

RTTD
i,l + RTTC

i,m

2
= min

l∈L

RTTD
i,l

2
+ min

m∈M

RTTC
i,m

2
(11)

Therefore, we could get min
l∈L

RTTD
i,l

2 and min
m∈M

RTTC
i,m

2 respectively to make Rrtt(Rr) minimization.

We suppose that there are E VMDs and VMCs that serve the requests connected to the abnormal core
switch previously and each VMD and VMC serve for t requests. In order to minimize the average RTT
when a core switch is abnormal, we can reschedule the related VMs as follow:

min
l∈L

∑t RTTD
i,l

2
(12)

and

min
m∈M

∑t RTTC
i,m

2
(13)

The VM rescheduling algorithm is described detail as Algorithm 4:

Algorithm 4 VM rescheduling algorithm (VMRA)

Input: E VMDs and VMCs that serve the requests connected to the abnormal core switch previous
1 For each VMD, VMC in VMDs, VMCs
2. Get requests set RD that served by VMD and RC that served by VMC

3. Get the index of PMD l to satisfy min
l∈L

∑RD RTTD
i,l

2

4. Get the index of PMC m to satisfy min
m∈M

∑RC RTTC
i,m

2

5. Reschedule the VMD to PMD
l

6. Reschedule the VMC to PMC
m

7. End for

5. Experiments

In this section, we mainly focus on four different experiments. First, we compare proposed
algorithm RTTVMPA with the other three VM placement algorithms. Second, we investigate the effect
of the number of requests that a VM can serve and the number of pods that network topology contains
on our proposed RTTVMPA separately. Finally, we verify the effectiveness of our proposed VMRA
when one of the core switches is abnormal.



Information 2018, 9, 4 10 of 15

We use CloudSim-4.0 to simulate a cloud-computing environment. CloudSim [31,32] is an
extensible cloud simulation platform developed by Melbourne University. It can simulate virtual cloud
resources like VMs and cloud entities like PMs. The related basic parameters are shown in Table 1.
We set the parameters of physical machines as follows. PMD: The number of CPU’s cores is two, Basic
frequency of CPU is 1.2 GHz and memory capacity is 6 GB. PMC: The number of CPU’s cores is two,
Basic frequency of CPU is 1.8 GHz and memory capacity is 8 GB. The resource requirements for virtual
machines are as follows. VMD: Basic frequency of CPU is 1 GH and memory capacity is 1 GB. VMC:
Basic frequency of CPU is 1 GHz and memory capacity is 2 GB. “Types of VMD” represents the types
of data services that VMD provides. The same is to “Types of VMC”.

Table 1. The basic parameters for experiments.

Basic Parameters Values

PMD CPU:2cores×2 1.2 GHz, 6 GB
PMC CPU:2cores×2 1.8 GHz, 8 GB
VMD CPU:1cores 1 GHz, 1 GB
VMC CPU:1cores 1 GHz, 2 GB

Types of VMD 10
Types of VMC 10

Number of requests that a VM serves 4

We construct the network topology with six pods, nine core switches and 54 PMs according to
Section 3.2. Besides, we assume the number of PMD and PMC is the same. We simulate 200 requests
and allocate these requests to nine core switches randomly. We generate the round-trip time matrix
RTTD and RTTC randomly that follow a uniform distribution in the interval [10, 150) ms.

We compare proposed algorithm RTTVMPA with the following three VM placement algorithms:

• Random placement: VMs are first placed on the available PMs that have free space for these VMs
but the latency for requests is not considered.

• Traffic-aware VM placement (TAVMP) algorithm [23]: TAVMP puts frequently communicating
VMs into the same PMs to decrease the traffic between VMs. Such as VMD and VMC that serve
one request should be place in the same pod according to TAVMP.

• Remaining utilization-aware (RUA) algorithm [19]: RUA intends to place VMs on less PMs to
improve resource utilization. Moreover, RUA could avoid placing VMs that have a large resource
requests on the same PMs for reducing resource competition between VMs. Therefore, it can
decrease the probability of PMs overloading and keep PMs’ status relatively stable.

In the process of placing VMs, existing methods, such as random placement, traffic-aware VM
placement algorithm and remaining utilization-aware algorithm, do not regard RTT as a condition
for choosing PMs. In contrast, consider the RTT between the current request and the candidate PMs
according to RTT matrix, our proposed algorithm sorts the candidate PMs in ascending order according
to RTT for each core switch. The PMs with the smallest RTT could be selected first for those requests
that are allocated to the same core switches, which can reduce the RTT for users’ requests. According
to the result of Figure 4, we can see that our proposed RTTVMPA could get the lower average RTT
compared with the other three algorithms. Moreover, RTTVMPA can keep a slow growth trend for
average RTT when the number of requests increases and the other three algorithms obtain a higher
average RTT.

We investigate the influence of the number of requests that a VM serves on our proposed
RTTVMPA. In this experiment, the number of requests that a VM serves vary from 4 to 8, other
settings are same to Table 1. It is shown that more number of requests that a VM serves can lead to a
lower average RTT for all requests in Figure 5.



Information 2018, 9, 4 11 of 15

Information 2018, 9, 4  10 of 14 

 

 Random placement: VMs are first placed on the available PMs that have free space for these VMs 

but the latency for requests is not considered. 

 Traffic-aware VM placement (TAVMP) algorithm [23]: TAVMP puts frequently communicating 

VMs into the same PMs to decrease the traffic between VMs. Such as 𝑉𝑀𝐷 and 𝑉𝑀𝐶 that serve 

one request should be place in the same pod according to TAVMP. 

 Remaining utilization-aware (RUA) algorithm [19]: RUA intends to place VMs on less PMs to 

improve resource utilization. Moreover, RUA could avoid placing VMs that have a large 

resource requests on the same PMs for reducing resource competition between VMs. Therefore, 

it can decrease the probability of PMs overloading and keep PMs’ status relatively stable. 

In the process of placing VMs, existing methods, such as random placement, traffic-aware VM 

placement algorithm and remaining utilization-aware algorithm, do not regard RTT as a condition 

for choosing PMs. In contrast, consider the RTT between the current request and the candidate PMs 

according to RTT matrix, our proposed algorithm sorts the candidate PMs in ascending order 

according to RTT for each core switch. The PMs with the smallest RTT could be selected first for those 

requests that are allocated to the same core switches, which can reduce the RTT for users’ requests. 

According to the result of Figure 4, we can see that our proposed RTTVMPA could get the lower 

average RTT compared with the other three algorithms. Moreover, RTTVMPA can keep a slow 

growth trend for average RTT when the number of requests increases and the other three algorithms 

obtain a higher average RTT. 

 

Figure 4. Shows the comparison of the four algorithms in different number of requests. 

We investigate the influence of the number of requests that a VM serves on our proposed 

RTTVMPA. In this experiment, the number of requests that a VM serves vary from 4 to 8, other 

settings are same to Table 1. It is shown that more number of requests that a VM serves can lead to a 

lower average RTT for all requests in Figure 5. 

Figure 4. Shows the comparison of the four algorithms in different number of requests.Information 2018, 9, 4  11 of 14 

 

 

Figure 5. Number of requests that a VM serves affect average RTT. 

We investigate the influence of the number of pods in our adopted network topology on our 

proposed RTTVMPA. Varying the number of pods from 6 to 10, other settings are same to Table 1. 

As shown in Figure 6, we can notice that more pods could keep lower average RTT for the same 

number of requests. 

 

Figure 6. Number of pods affect average RTT. 

In order to verify our proposed VMRA, we simulate the case where one of the core switches is 

abnormal and the load balancer can assign corresponding requests to other working core switches. 

In this experiment, one of the core switches is abnormal randomly when the number of requests is 75 

and 150. Therefore, re-allocation of these requests leads to the change of average RTT that can be seen 

when the data points are 75 and 150 as shown in Figure 7. We mark these key points in order to show 

these changes obviously. The proposed VMRA algorithm can reschedule the involving VMs to 

optimal PMs in order to decrease the fluctuation of average RTT. This situation is denoted as 

A_RTTVMPA_VMRA and the other situation with no VMRA is denoted as A_RTTVMPA. Then, we 

compare the average RTT of all requests in the above two cases. The normal situation is considered 

as a benchmark of comparison where all core switches are working normally. Moreover, the normal 

situation is denoted as N_RTTVMPA. Finally, we observe the change of the average RTT under the 

three different situations as mentioned above. 

Figure 5. Number of requests that a VM serves affect average RTT.

We investigate the influence of the number of pods in our adopted network topology on our
proposed RTTVMPA. Varying the number of pods from 6 to 10, other settings are same to Table 1.
As shown in Figure 6, we can notice that more pods could keep lower average RTT for the same
number of requests.

In order to verify our proposed VMRA, we simulate the case where one of the core switches is
abnormal and the load balancer can assign corresponding requests to other working core switches.
In this experiment, one of the core switches is abnormal randomly when the number of requests is
75 and 150. Therefore, re-allocation of these requests leads to the change of average RTT that can
be seen when the data points are 75 and 150 as shown in Figure 7. We mark these key points in
order to show these changes obviously. The proposed VMRA algorithm can reschedule the involving
VMs to optimal PMs in order to decrease the fluctuation of average RTT. This situation is denoted as
A_RTTVMPA_VMRA and the other situation with no VMRA is denoted as A_RTTVMPA. Then, we
compare the average RTT of all requests in the above two cases. The normal situation is considered
as a benchmark of comparison where all core switches are working normally. Moreover, the normal
situation is denoted as N_RTTVMPA. Finally, we observe the change of the average RTT under the
three different situations as mentioned above.



Information 2018, 9, 4 12 of 15

Information 2018, 9, 4  11 of 14 

 

 

Figure 5. Number of requests that a VM serves affect average RTT. 

We investigate the influence of the number of pods in our adopted network topology on our 

proposed RTTVMPA. Varying the number of pods from 6 to 10, other settings are same to Table 1. 

As shown in Figure 6, we can notice that more pods could keep lower average RTT for the same 

number of requests. 

 

Figure 6. Number of pods affect average RTT. 

In order to verify our proposed VMRA, we simulate the case where one of the core switches is 

abnormal and the load balancer can assign corresponding requests to other working core switches. 

In this experiment, one of the core switches is abnormal randomly when the number of requests is 75 

and 150. Therefore, re-allocation of these requests leads to the change of average RTT that can be seen 

when the data points are 75 and 150 as shown in Figure 7. We mark these key points in order to show 

these changes obviously. The proposed VMRA algorithm can reschedule the involving VMs to 

optimal PMs in order to decrease the fluctuation of average RTT. This situation is denoted as 

A_RTTVMPA_VMRA and the other situation with no VMRA is denoted as A_RTTVMPA. Then, we 

compare the average RTT of all requests in the above two cases. The normal situation is considered 

as a benchmark of comparison where all core switches are working normally. Moreover, the normal 

situation is denoted as N_RTTVMPA. Finally, we observe the change of the average RTT under the 

three different situations as mentioned above. 

Figure 6. Number of pods affect average RTT.Information 2018, 9, 4  12 of 14 

 

 
(a) 

 
(b) 

Figure 7. (a) shows the trend of average RTT for three different conditions; (b) shows the fluctuation 

of average RTT for A-RTTVMPA and A-RTTVMPA-VMRA compared with N-RTTVMPA. 

The results of this experiment are shown in Figure 7, A_RTTVMPA_VMRA is better than 

A_RTTVMPA when the core switch is abnormal. When the number of requests is 75 and 150,  

the increase of average RTT is obvious for A_RTTVMPA. Because those requests that connect to the 

abnormal core switch are assigned to another working core switch. In order to keep a lower average 

RTT, our proposed VMRA tries to reschedule corresponding VMs according to changes of core switches. 

The A_RTTVMPA_VMRA can obtain a lower average RTT than A_RTTVMPA by using VMRA to 

reschedule the related VMs to optimal PMs that satisfy the Formula (11). However, the A_RTTVMPA 

keeps those corresponding VMs on the original PMs, which leads to a higher average RTT.  

We use the difference between two methods and benchmark to show the change of average RTT 

when a core switch is abnormal and the comparable result is shown in Figure 7b. These changes are 

calculated by the following formula. The change of average RTT for A_RTTVMPA shown by a yellow 

line: 

𝐴𝑟𝑡𝑡(𝐴_𝑅𝑇𝑇𝑉𝑀𝑃𝐴) − 𝐴𝑟𝑡𝑡(𝑁_𝑅𝑇𝑇𝑉𝑀𝑃𝐴) (14) 

In addition, the change of average RTT for A_RTTVMPA_VMRA shown by a red line: 

𝐴𝑟𝑡𝑡(𝐴_𝑅𝑇𝑇𝑉𝑀𝑃𝐴_𝑉𝑀𝑅𝐴) − 𝐴𝑟𝑡𝑡(𝑁_𝑅𝑇𝑇𝑉𝑀𝑃𝐴) (15) 

As shown in Figure 7b, it is obvious that RTTVMPA with VMRA could get smaller change for 

average RTT than RTTVMPA when a core switch is abnormal. We use the change of average RTT to 

show the fluctuation of average RTT for two different methods, due to a core switch being abnormal. 

Obviously, the average RTT can obtain a smooth fluctuation by using A_RTTVMPA_VMRA. However, 

the A_RTTVMPA is the opposite. The comparisons for the two methods are listed in Table 2. Therefore, 

we can conclude that the RTTVMPA with VMRA can keep average RTT lower and reduce the 

fluctuation when facing to an abnormal situation. 

Table 2. The comparisons for different methods. 

Methods Average RTT Fluctuation of Average RTT 

A_RTTVMPA Lower Smooth 

A_RTTVMPA_VMRA Higher Unsmooth 

6. Conclusions 

In this paper, we mainly study an optimal virtual machine placement method for minimizing 

the average RTT for users’ requests. This is important for delay-sensitive applications, such as sensor 

and in real-time applications. Considering the RTT between the current requests and the candidate 

PMs, we propose an RTT-Aware VM placement algorithm. Our proposed algorithm tries to place 

VMs on the PMs that have the lower RTT from requests, by sorting the candidate PMs in ascending 

order according to RTT for each core switch. This can obtain lower average RTT for requests 

Figure 7. (a) shows the trend of average RTT for three different conditions; (b) shows the fluctuation of
average RTT for A-RTTVMPA and A-RTTVMPA-VMRA compared with N-RTTVMPA.

The results of this experiment are shown in Figure 7, A_RTTVMPA_VMRA is better than
A_RTTVMPA when the core switch is abnormal. When the number of requests is 75 and 150,
the increase of average RTT is obvious for A_RTTVMPA. Because those requests that connect to
the abnormal core switch are assigned to another working core switch. In order to keep a lower
average RTT, our proposed VMRA tries to reschedule corresponding VMs according to changes of
core switches. The A_RTTVMPA_VMRA can obtain a lower average RTT than A_RTTVMPA by
using VMRA to reschedule the related VMs to optimal PMs that satisfy the Formula (11). However,
the A_RTTVMPA keeps those corresponding VMs on the original PMs, which leads to a higher
average RTT.

We use the difference between two methods and benchmark to show the change of average RTT
when a core switch is abnormal and the comparable result is shown in Figure 7b. These changes
are calculated by the following formula. The change of average RTT for A_RTTVMPA shown by a
yellow line:

Artt(A_RTTVMPA)− Artt(N_RTTVMPA) (14)

In addition, the change of average RTT for A_RTTVMPA_VMRA shown by a red line:

Artt(A_RTTVMPA_VMRA) − Artt(N_RTTVMPA) (15)



Information 2018, 9, 4 13 of 15

As shown in Figure 7b, it is obvious that RTTVMPA with VMRA could get smaller change
for average RTT than RTTVMPA when a core switch is abnormal. We use the change of average
RTT to show the fluctuation of average RTT for two different methods, due to a core switch being
abnormal. Obviously, the average RTT can obtain a smooth fluctuation by using A_RTTVMPA_VMRA.
However, the A_RTTVMPA is the opposite. The comparisons for the two methods are listed in Table 2.
Therefore, we can conclude that the RTTVMPA with VMRA can keep average RTT lower and reduce
the fluctuation when facing to an abnormal situation.

Table 2. The comparisons for different methods.

Methods Average RTT Fluctuation of Average RTT

A_RTTVMPA Lower Smooth
A_RTTVMPA_VMRA Higher Unsmooth

6. Conclusions

In this paper, we mainly study an optimal virtual machine placement method for minimizing
the average RTT for users’ requests. This is important for delay-sensitive applications, such as sensor
and in real-time applications. Considering the RTT between the current requests and the candidate
PMs, we propose an RTT-Aware VM placement algorithm. Our proposed algorithm tries to place VMs
on the PMs that have the lower RTT from requests, by sorting the candidate PMs in ascending order
according to RTT for each core switch. This can obtain lower average RTT for requests comparing
with Random placement, traffic-aware VM placement algorithm and remaining utilization-aware
algorithm. We also propose a VM rescheduling algorithm that can keep average RTT lower and reduce
the fluctuation of average RTT when a core switch is abnormal. In future studies, we will consider the
effective utilization of cloud resources in addition to the delay for users’ requests. Moreover, reducing
the packet loss rate and increasing the throughput of communication networks are also important
requirements for users’ requests.

Acknowledgments: This paper is supported by National Natural Science Foundation of China (Key Project,
No. 61432004): Mental Health Cognition and Computing Based on Emotional Interactions. National Key Research
and Development Program of China (No. 2016YFB1001404): Multimodal Data Interaction Intention Understanding
in Cloud Fusion. National Key Research and Development Program of China (No. 2017YFB1002804) and National
Key Research and Development Program of China (No. 2017YFB1401200).

Author Contributions: The work presented in this paper represents a collaborative effort by all authors, whereas
Li Quan wrote the main paper. Zhiliang Wang and Fuji Ren discussed the proposed algorithm and comparison of
the experiment. All the authors have read and approved the final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Santamaria, A.F.; Serianni, A.; Raimondo, P.; De Rango, F.; Froio, M. Smart wearable device for health
monitoring in the Internet of Things (IoT) domain. In Proceedings of the Summer Computer Simulation
Conference, Montreal, QC, Canada, 24–27 July 2016; p. 36.

2. Majeed, A. Internet of things (IoT): A verification framework. In Proceedings of the Computing and
Communication Workshop and Conference, Las Vegas, NV, USA, 9–11 January 2017; pp. 1–3.

3. Perumal, T.; Datta, S.K.; Bonnet, C. IoT device management framework for smart home scenarios.
In Proceedings of the 2015 IEEE 4th Global Conference on Consumer Electronics (GCCE), Osaka, Japan,
27–30 October 2015.

4. Dinh, H.T.; Lee, C.; Niyato, D.; Wang, P. A survey of mobile cloud computing: Architecture, applications and
approaches. Wirel. Commun. Mob. Comput. 2013, 13, 1587–1611. [CrossRef]

5. Gai, K.; Qiu, M.; Zhao, H.; Tao, L.; Zong, Z. Dynamic energy-aware cloudlet-based mobile cloud computing
model for green computing. J. Netw. Comput. Appl. 2016, 59, 46–54. [CrossRef]

http://dx.doi.org/10.1002/wcm.1203
http://dx.doi.org/10.1016/j.jnca.2015.05.016


Information 2018, 9, 4 14 of 15

6. Morabito, R.; Beijar, N. Enabling data processing at the network edge through lightweight virtualization
technologies. In Proceedings of the IEEE International Conference on Sensing, Communication and
Networking, London, UK, 27–30 June 2016.

7. Muller, A.; Wilson, S. Virtualization with Vmware Esx Server; Syngress Publishing: Rockland, MA, USA, 2005.
8. Lamourine, M. Openstack. Login Mag. USENIX SAGE 2014, 39, 17–20.
9. Shiva, P.S.M.; Venkatesh, R.R.; Rolia, J.; Islam, M. Virtual Machine Placement. U.S. Patent 9,407,514,

2 August 2016.
10. Kim, D.; Lee, J. End-to-end one-way delay estimation using one-way delay variation and round-trip time.

In Proceedings of the Fourth International Conference on Heterogeneous Networking for Quality, Reliability,
Security and Robustness & Workshops, Vancouver, BC, Canada, 14–17 August 2007; pp. 1–8.

11. Leiserson, C.E. Fat-trees: Universal networks for hardware-efficient supercomputing. IEEE Trans. Comput.
2012, C-34, 892–901. [CrossRef]

12. Usmani, Z.; Singh, S. A survey of virtual machine placement techniques in a cloud data center.
Procedia Comput. Sci. 2016, 78, 491–498. [CrossRef]

13. Zhan, Z.H.; Liu, X.F.; Gong, Y.J.; Zhang, J.; Chung, S.H.; Li, Y. Cloud computing resource scheduling and a
survey of its evolutionary approaches. ACM Comput. Surv. 2015, 47, 1–33. [CrossRef]

14. Pacini, E.; Mateos, C.; Garino, C.G. Distributed job scheduling based on swarm intelligence: A survey.
Comput. Electr. Eng. 2014, 40, 252–269. [CrossRef]

15. Luan, T.H.; Gao, L.; Li, Z.; Xiang, Y.; Sun, L. Fog computing: Focusing on mobile users at the edge. arXiv 2015,
arXiv:1502.01815.

16. Satyanarayanan, M.; Bahl, P.; Cáceres, R.; Davies, N. The case for vm-based cloudlets in mobile computing.
IEEE Pervasive Comput. 2009, 8, 14–23. [CrossRef]

17. Hirsch, M.; Rodriguez, J.M.; Zunino, A.; Mateos, C. Battery-aware centralized schedulers for CPU-bound
jobs in mobile Grids. Pervasive Mob. Comput. 2016, 29, 73–94. [CrossRef]

18. Fu, X.; Zhou, C. Virtual machine selection and placement for dynamic consolidation in cloud computing
environment. Front. Comput. Sci. 2015, 9, 322–330. [CrossRef]

19. Han, G.; Que, W.; Jia, G.; Shu, L. An efficient virtual machine consolidation scheme for multimedia cloud
computing. Sensors 2016, 16, 246. [CrossRef] [PubMed]

20. Luo, G.; Qian, Z.; Dong, M.; Ota, K.; Lu, S. Network-aware re-scheduling: Towards improving network
performance of virtual machines in a data center. In Proceedings of the International Conference on
Algorithms and Architectures for Parallel Processing, Dalian, China, 24–27 August 2014; pp. 255–269.

21. Pan, L.; Wang, D. A cross-entropy-based admission control optimization approach for heterogeneous virtual
machine placement in public clouds. Entropy 2016, 18, 95. [CrossRef]

22. Meng, X.; Pappas, V.; Zhang, L. Improving the scalability of data center networks with traffic-aware virtual
machine placement. In Proceedings of the 2010 IEEE Conference on Computer Communications (INFOCOM),
San Diego, CA, USA, 15–19 March 2010; pp. 1–9.

23. Yapicioglu, T.; Oktug, S. A traffic-aware virtual machine placement method for cloud data centers.
In Proceedings of the IEEE/ACM International Conference on Utility and Cloud Computing, London,
UK, 8–11 December 2014; pp. 299–301.

24. Ilkhechi, A.R.; Korpeoglu, I. Network-Aware Virtual Machine Placement in Cloud Data Centers with Multiple
Traffic-Intensive Components; Elsevier North-Holland, Inc.: Duivendrecht, The Netherlands, 2015; pp. 508–527.

25. Cohen, R.; Lewin-Eytan, L.; Naor, J.; Raz, D. Almost optimal virtual machine placement for traffic intense
data centers. In Proceedings of the 2013 IEEE Conference on Computer Communications (INFOCOM), Turin,
Italy, 14–19 April 2013; Volume 12, pp. 355–359.

26. Al-Fares, M.; Loukissas, A.; Vahdat, A. A scalable, commodity data center network architecture.
ACM Sigcomm Comput. Commun. Rev. 2008, 38, 63–74. [CrossRef]

27. Pedersen, J.M.; Tahir Riaz, M.; Dubalski, B.; Ledzinski, D.; Júnior, J.C.; Patel, A. Using latency as a QoS
indicator for global cloud computing services. Concurr. Comput. Pract. Exp. 2014, 25, 2488–2500. [CrossRef]

28. Lim, J.B.; Yu, H.C.; Gil, J.M.; Lim, J.B.; Yu, H.C.; Gil, J.M. An efficient and energy-aware cloud consolidation
algorithm for multimedia big data applications. Symmetry 2017, 9, 184. [CrossRef]

29. Tang, Y.; Hu, Y.; Zhang, L. A classification-based virtual machine placement algorithm in mobile cloud
computing. KSII Trans. Internet Inf. Syst. 2016, 10, 1998–2014.

http://dx.doi.org/10.1109/TC.1985.6312192
http://dx.doi.org/10.1016/j.procs.2016.02.093
http://dx.doi.org/10.1145/2788397
http://dx.doi.org/10.1016/j.compeleceng.2013.11.023
http://dx.doi.org/10.1109/MPRV.2009.82
http://dx.doi.org/10.1016/j.pmcj.2015.08.003
http://dx.doi.org/10.1007/s11704-015-4286-8
http://dx.doi.org/10.3390/s16020246
http://www.ncbi.nlm.nih.gov/pubmed/26901201
http://dx.doi.org/10.3390/e18030095
http://dx.doi.org/10.1145/1402946.1402967
http://dx.doi.org/10.1002/cpe.3081
http://dx.doi.org/10.3390/sym9090184


Information 2018, 9, 4 15 of 15

30. Keller, M.; Karl, H. Response time-optimized distributed cloud resource allocation. In Proceedings of the
2014 ACM SIGCOMM Workshop on Distributed Cloud Computing, Chicago, IL, USA, 17–22 August 2016;
pp. 47–52.

31. Calheiros, R.N.; Ranjan, R.; Beloglazov, A.; Rose, C.A.F.D.; Buyya, R. Cloudsim: A toolkit for modeling
and simulation of cloud computing environments and evaluation of resource provisioning algorithms.
Softw. Pract. Exp. 2011, 41, 23–50. [CrossRef]

32. Long, W.; Lan, Y.; Xia, Q. Using cloudsim to model and simulate cloud computing environment.
In Proceedings of the International Conference on Computational Intelligence and Security, Mount Emei,
China, 14–15 December 2013; pp. 323–328.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1002/spe.995
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Works 
	Dynamic VM Placement 
	Proposed Architecture 
	Problem Formulation 

	Algorithms 
	Experiments 
	Conclusions 
	References

