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Abstract: Capacity uncertainty is a common issue in the transportation planning field. However,
few studies discuss the intermodal routing problem with service capacity uncertainty. Based on
our previous study on the intermodal routing under deterministic capacity consideration,
we systematically explore how service capacity uncertainty influences the intermodal routing
decision. First of all, we adopt trapezoidal fuzzy numbers to describe the uncertain information of
the service capacity, and further transform the deterministic capacity constraint into a fuzzy chance
constraint based on fuzzy credibility measure. We then integrate such fuzzy chance constraint into
the mixed-integer linear programming (MILP) model proposed in our previous study to develop
a fuzzy chance-constrained programming model. To enable the improved model to be effectively
programmed in the standard mathematical programming software and solved by exact solution
algorithms, a crisp equivalent linear reformulation of the fuzzy chance constraint is generated.
Finally, we modify the empirical case presented in our previous study by replacing the deterministic
service capacities with trapezoidal fuzzy ones. Using the modified empirical case, we utilize
sensitivity analysis and fuzzy simulation to analyze the influence of service capacity uncertainty
on the intermodal routing decision, and summarize some interesting insights that are helpful for
decision makers.
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1. Introduction

Intermodal transportation utilizes various transportation modes (e.g., railway, road, and waterway)
to realize the transportation of containers. It has been widely acknowledged to be a better means of
transportation compared with the unimodal transportation in many aspects (e.g., transportation
economy and sustainability) [1,2], especially in the long-haul transportation setting. The intermodal
routing decision aims at selecting the best routes to move containers from their origins to destinations
through an intermodal service network to fulfill customers’ transportation demands. With the rapid
development and promotion of intermodal transportation in international trade, the intermodal routing
problem is now at the forefront of transportation planning [3].

During the intermodal routing decision process, one of the challenges that decision makers
need to deal with is how to consider the restriction of the service capacity on the intermodal
route selection. In the existing literature, some studies do not consider the capacity constraint and
formulated uncapacitated intermodal routing models to optimize their respective specific problems,
e.g., Ziliaskopoulos and Wardell (2000) [4], Lam and Srikanthan (2002) [5], Boussedjra et al. (2004) [6],
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Xiong and Wang (2014) [7] and Sun and Chen (2013) [8], etc. However, the uncapacitated scenario is
impossible to be realized in transportation practice due to the following aspects.

(1) From the viewpoint of network topology, it is difficult (but not impossible) for transportation
providers to assign adequate trucks and drivers to conduct all the road services on the arcs in the
entire intermodal service network. Therefore, the road service capacity is limited.

(2) The capacity of a railway freight train is restricted by the limited power of the locomotive and
the limited effective length of the railway tracks at the railway freight stations. Moreover, similar
to road services, there are not infinite railway services on the network arcs. The railway service
capacity is hence also limited.

Consequently, the intermodal routing decision based on the uncapacitated modeling is
unreliable, because the actual existing capacities of the transportation services on the planned
routes have considerable possibility of being violated, which will consequently result in failure.
Therefore, the intermodal service network is capacitated. Thus the essence of the intermodal routing
decision is the effective utilization of the limited resources of transportation services [3]. The service
capacity is an important issue that should not be neglected during the routing decision.

The majority of the current studies concentrated on the capacitated intermodal routing problem,
e.g., Chang (2008) [9], Sun et al. (2008) [10], Kim et al. (2008) [11], Ayar and Yaman (2012) [12],
Moccia et al. (2011) [13], Lei et al. (2014) [14], Sun and Lang (2015a, 2015b) [15,16] and Sun et al.
(2016) [17], etc. In the capacitated intermodal routing literature, deterministic numbers are used
to express the service capacities. A capacity constraint is built to ensure that the total containers
loaded on a certain service should not exceed its payload (e.g., the capacity of service 1 on arc 2 is 50
TEUs where TEU is the unit of ISO standard containers, which means that the total containers from
different transportation orders assigned to service 1 on arc 2 should not exceed 50 TEUs). Compared
with uncapacitated intermodal routing, the consideration of service capacity better matches the
transportation practice and can greatly improve the feasibility of the intermodal routing decision.

It is widely known that the intermodal routing decision should be made before the actual
transportation starts [18]. During such a forward-looking decision process, decision makers cannot
get exact information on all the transportation service capacities. First of all, the transportation
services in the intermodal service network should also implement many other transportation tasks
that fall out of the decision targets. Such tasks will occupy part of the capacities of the transportation
services. However, predicting these tasks accurately is a heavy burden that is time-consuming and
requires a lot of manpower. Consequently, it is infeasible to predict such transportation tasks and then
deduct their occupied capacities from the total capacities. Secondly, there are many influencing factors
that will also reduce the capacity utilization, e.g., vehicle faults, traffic accidents and bad weather.
Therefore, it is difficult for decision makers to find a deterministic number to represent the capacity of
a transportation service.

If decision makers insist on using deterministic numbers to represent the capacities of
transportation services, two consequences will occur in the actual transportation if the containers are
moved according to the intermodal routing decision with capacity certainty. The intermodal routing
decision will be meaningless in this case.

(1) Optimistic estimation: the deterministic capacities evaluated by decision makers are larger than
the actual available capacities of the services, which are known only when the transportation
starts. In this case, the planned intermodal routes may be infeasible because it is possible that
some transportation services cannot carry the number of containers assigned to them according
to the routing decision. Taking Figure 1 as an example, the estimated capacity values of the
services on the road-railway-road intermodal route are 35 TEUs, 45 TEUs, and 30 TEUs (black).
Based on these values, the route can move the containers with 30 TEUs from node 1 to node
4. However, since the estimation is optimistic, the actual values are smaller than the estimated
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ones. When the actual values are 25 TEUs, 30 TEUs and 20 TEUs (red), the route is infeasible
because the road services on arc (1, 2) and arc (3, 4) cannot carry that number of containers.
Thus, such route planning in the transportation practice failed. Consequently, under optimistic
estimation, the planned route may be infeasible in practice.
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Figure 1. Possible consequence of the optimistic estimation.

(2) Pessimistic estimation: the deterministic capacities evaluated by the decision makers are smaller
than the available capacities of the services. In this case, the planned intermodal routes will be
certainly feasible but may be not the best ones. Taking Figure 2 as an example, under pessimistic
estimation, the best planned intermodal route is “(1) road service—(2) railway service—(3) road
service—(4)”. The cost of the route is 2200 RMB. Since the estimation is pessimistic, the actual
values are larger than the estimated ones. In this case, a railway service from node 2 to node 4
can be used to move the containers in practice. Thus, the actual best intermodal route would
be “(1) road service—(2) railway service—(4)”. The cost of this route is 1800 RMB, which saves
400 RMB compared to the planned best route. Consequently, under a pessimistic estimation,
the planned best route is feasible in practice but may not be the actual best scheme.
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Figure 2. Possible consequences of the pessimistic estimation.

During the decision-making process, the situation will be more complicated due to the mixture of
optimistic and pessimistic estimations of the service capacities. To avoid the consequences above, it is
essential to fully consider the service capacity uncertainty in the intermodal routing decision to improve
its reliability in supporting practical decision-making. However, according to the best of our knowledge,
there are rare intermodal routing decision studies that systematically explore the influences of service capacity
uncertainty on the intermodal routing decision, neither from a stochastic programming perspective nor a fuzzy
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programming perspective. Faced with such a research gap and in order to bridge it, this study mainly
focuses on the following aspects:

(1) How do we model the service capacity uncertainty in a way that is easily realized in transportation practice?
(2) How do we analyze and summarize the influences of service capacity uncertainty on the intermodal

routing decision?

In our previous study [15], we presented a mixed-integer nonlinear programming (MINLP) model
and developed a linearization-based exact solution strategy to solve the multicommodity intermodal
routing problem with schedule-based railway services and time-flexible road services. This study was
oriented on a consideration of deterministic service capacity, but still provided a solid foundation for us
to discuss the issues of service capacity uncertainty. All the explorations regarding this study are on the
basis of the transportation scenario, modeling framework, and solution strategy from our previous study.

The remainder of this study is organized as follows. In Section 2, we formulate the service capacity
uncertainty from the viewpoint of fuzziness and use trapezoidal fuzzy numbers to represent the
uncertain service capacities. In Section 3, we model the fuzzy chance constraint of the service capacity
based on the credibility measure and generate crisp equivalent linear reformulations of the fuzzy
chance constraint. Then we can use the proposed reformulations to replace the deterministic capacity
constraint in the MILP model constructed in our previous study [15] to create a linear programming
model that focuses on the intermodal routing problem with service capacity uncertainty. In Section 4,
we present a case study to show how service capacity uncertainty influences the intermodal routing
decision with the help of sensitivity analysis and fuzzy simulation. Finally, the conclusions of this
study are drawn in Section 5.

2. Modeling the Service Capacity Uncertainty

2.1. Capacity Uncertainty: Stochasticity vs. Fuzziness

Generally, there are two approaches to address the various uncertain issues (e.g., demand
uncertainty [18–20] and travel time/length uncertainty [21–23]) in the transportation planning field,
stochastic programming and fuzzy programming.

When using stochastic programming to formulate the uncertain service capacity constraint, first of
all, we require a tremendous amount of reliable historical data to fit the probability distribution of the
uncertain capacities of the transportation services in the intermodal service network [18,23]. Collecting and
processing large-scale data during the decision-making process is cumbersome and costly. As indicated
by Zarandi et al. (2008) [23], in most cases, there are not enough data to accomplish such a probability
distribution. Moreover, limited data show that the variation of the service capacities, especially the railway
service capacities, within a period does not observe regular tendencies. Thus, we cannot simply assume
that the uncertainty of the service capacity follows a classic distribution form, e.g., normal distribution or
Poisson distribution.

However, decision makers can easily use fuzzy logic knowledge to estimate the service capacity
uncertainty based on their or other experts’ knowledge, experience, and judgment. As a result, it is
worthwhile to try fuzzy estimation of the service capacity uncertainty when stochastic service capacity
is unattainable. So, in this study, we model fuzzy service capacity instead of stochastic service capacity.

2.2. Fuzzy Service Capacity: Trapezoidal Fuzzy Numbers vs. Triangular Fuzzy Numbers

Trapezoidal or triangular fuzzy numbers can be used to represent the fuzzy service capacity
(see Figure 3). As for a transportation service with fuzzy capacity Q, Q =

(
Qmin, QL, QU, Qmax)when

represented by a trapezoidal fuzzy number, where Qmin and Qmax are the minimum and maximum of the
all the possible capacity values, respectively, and QL and QU are the lower bound and upper bound of all
the most likely capacity values. Q =

(
Qmin, QM, Qmax)when formulated by a triangular fuzzy number,

where QM is the most likely capacity value.
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Compared with the triangular method, trapezoidal fuzzy capacity is preferable when considering
the following advantages:

(1) Using trapezoidal fuzzy capacity is more flexible for decision-making, allowing the existence
of more than one most likely service capacity, which meets the practice that different decision
makers and experts usually hold different opinions on the most likely values.

(2) The trapezoidal fuzzy capacity can be easily approximated to a triangular one by significantly
reducing the range of

[
QL, QU].

Above all, in this study, we formulate a trapezoidal fuzzy service capacity by Equation (1) to
express the capacity uncertainty of the transportation services:

Q =
(

Qmin, QL, QU , Qmax
)

. (1)

For any given capacity value Q, its fuzzy membership degree µ(Q) can be calculated by
Equation (2) [18,24]. This function will be further used in the fuzzy simulation in the case study section.

µ(Q) =


Q−Qmin

QL−Qmin , if Qmin ≤ Q < QL

1, if QL ≤ Q < QU

Q−Qmax

QU−Qmax , if QU ≤ Q < Qmax

0, otherwise

(2)
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3. Fuzzy Chance Constraint of the Service Capacity

3.1. Deterministic Capacity Constraint

In intermodal routing modeling without capacity uncertainty, the deterministic capacity constraint
is formulated as in Equation (3) [15]:

∑k∈K qk·Xk
ijs ≤ Qijs ∀(i, j) ∈ A ∀s ∈ Sij, (3)

where k is the transportation order index, K is the transportation order set, (i,j) is the directed arc from
node i to node j, A is the arc set in a given intermodal service network, s is the transportation service
index, Sij is the transportation service set on arc (i, j), qk is the containers of transportation order k
(unit: TEU), Qijs is the deterministic capacity of service s on arc (i, j) (unit: TEU), and Xk

ijs is a 0–1
variable: if the containers of transportation order k are planned to be moved on arc (i, j) by service s,
Xk

ijs = 1, otherwise 0. Equation (3) is a hard constraint and ensures that the following event must hold.

“As for a certain transportation service operated on the arc in the intermodal service network,
the total number of the containers of all the transportation orders assigned to it by decision makers
should not exceed its capacity.”

With the help of Equation (3), decision makers can design intermodal route schemes that can
greatly reduce the possibility of violating the capacities. However, as claimed in Section 1, two negative
consequences may still lower the feasibility in practice.

3.2. Fuzzy Chance Constraint

Using trapezoidal fuzzy numbers to represent the uncertain service capacity, the event represented
by a deterministic capacity constraint is transformed into a fuzzy event. Furthermore, we can transform
the deterministic capacity constraint Equation (3) into a fuzzy chance constraint based on one of the
three fuzzy measures, possibility, necessity, and credibility measures. For detailed descriptions of the
three fuzzy measures, refer to Zheng and Liu’s work (2008) on the fuzzy vehicle routing model [25].

According to Zheng and Liu (2008) [25] and Zarandi et al. (2008) [23], possibility and necessity
measures lack the self-duality property, while the credibility measure is a self-dual measure.
A fuzzy event may fail even if its possibility equals 1, and hold even if its necessity equals 0.
However, the credibility measure can avoid such consequences, i.e., the fuzzy event must fail (hold) if
its credibility equals 0 (1). So we construct the fuzzy chance constraint based on the credibility measure.

Based on the credibility measure [25,26], the fuzzy chance constraint of the service capacity is
proposed as Equation (4):

Cr{∑k∈K qk·Xk
ijs ≤ Qijs} ≥ α ∀(i, j) ∈ A ∀s ∈ Sij. (4)

In Equation (4), Qijs =
(

Qmin
ijs , QL

ijs, QU
ijs, Qmax

ijs

)
is the fuzzy capacity of transportation service s

on arc (i, j). The representations of the four parameters in Qijs are identical to these of Qmin, QL, QU

and Qmax, respectively.
Cr{ } represents the credibility of the fuzzy incident in { }. The fuzzy chance constraint ensures

that the creditability of the fuzzy incident in { } should not be smaller than confidence α.
α (α ∈ [0, 1]) is the confidence set by the decision makers during the decision-making process.

It reflects the decision makers’ preference regarding the capacity uncertainty.
The values of α significantly influence the intermodal routing results, which can be verified by

using a sensitivity analysis in the case study section. Hence, determining the best value of α for
a certain case is of great significance, which will also be discussed by using fuzzy simulation in the
same section.



Information 2018, 9, 24 7 of 16

In our previous study [15], we proposed a MINLP model to formulate the intermodal routing
problem with schedule-based railway services and time-flexible road services. We then designed
a linearization technique to generate an equivalent MILP model that can be solved by any exact
solution algorithm implemented by any standard mathematical programming software. By replacing
the deterministic capacity constraint in the MILP model with Equation (4), we can gain a fuzzy
chance-constrained programming model to deal with the intermodal routing problem with service
capacity uncertainty.

3.3. Crisp Equivalent Linear Reformulations of the Fuzzy Chance Constraint

Equation (4) cannot be directly programmed as a linear function in standard mathematical
programming software. Thus the fuzzy chance-constrained programing model cannot be a
straightforward input into the standard mathematical programming software and be solved by the
exact solution algorithms. Therefore, we should first gain the crisp equivalent linear reformulation(s)
of the fuzzy chance constraint Equation (4).

There are a deterministic a and a trapezoidal fuzzy number b = (b1, b2, b3, b4) where
b1 < b2 < b3 < b4. According to Zarandi et al. (2008) [23], there exists following Equation (5)
regarding Cr{ }:

Cr{a ≤ b} =



1, if a ≤ b1
2b2−b1−a
2(b2−b1)

, if b1 ≤ a ≤ b2
1
2 , if b2 ≤ a ≤ b3

b4−a
2(b4−b3)

, if b3 ≤ a ≤ b4

0, otherwise

. (5)

By replacing a with ∑k∈K qk·Xk
ijs and b = (b1, b2, b3, b4) with Qijs =

(
Qmin

ijs , QL
ijs, QU

ijs, Qmax
ijs

)
,

we can remove Cr{ } from the equation and gain the crisp equivalency (Equation (6)) to the fuzzy
chance constraint (Equation (4)):

Cr
{

∑k∈K qk·Xk
ijs ≤ Qijs

}
=



1, if ∑k∈K qk·Xk
ijs ≤ Qmin

ijs

2QL
ijs−Qmin

ijs −∑k∈K qk ·Xk
ijs

2
(

b2−Qmin
ijs

) , if Qmin
ijs ≤ ∑k∈K qk·Xk

ijs ≤ QL
ijs

1
2 , if QL

ijs ≤ ∑k∈K qk·Xk
ijs ≤ QU

ijs

Qmax
ijs −∑k∈K qk ·Xk

ijs

2
(

Qmax
ijs −QU

ijs

) , if QU
ijs ≤ ∑k∈K qk·Xk

ijs ≤ Qmax
ijs

0, otherwise

≥ α. (6)

However, the crisp equivalency (Equation (6)) is still a nonlinear function. Then, according to the
piecewise linear relationship between a and b in the credibility measure shown in Figure 4, we conduct
the following modifications (Equations (7) and (8)) to gain crisp equivalent linear reformulations:

Qmax
ijs − ∑

k∈K
qk·Xk

ijs ≥ 2α·
(

Qmax
ijs −QU

ijs

)
if 0 ≤ α ≤ 0.5, ∀(i, j) ∈ A ∀s ∈ Sij (7)

2QL
ijs −Qmin

ijs −∑k∈K qk·Xk
ijs ≥ 2α·

(
QL

ijs −Qmin
ijs

)
if 0.5 ≤ α ≤ 1, ∀(i, j) ∈ A ∀s ∈ Sij. (8)
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By replacing the fuzzy chance constraint (Equation (3)) with its crisp equivalent linear
reformulations (Equations (7) and (8)), we can gain the crisp equivalent MILP model for the intermodal
routing problem with fuzzy service capacity. The crisp equivalent MILP model can be effectively
programmed in the mathematical programming software (e.g., LINGO) and solved by any exact
solution algorithms (e.g., Branch-and-Bound Algorithm) to generate the global optimal solution to
the problem.

4. Case Study

In this study, we modify the case study presented in our previous study [15] by replacing the
deterministic capacities of the transportation services with trapezoidal fuzzy ones. Then the modified
case can be used to explore how service capacity uncertainty influences the intermodal routing decision.
For a detailed description of the empirical case, readers are referred to [15]. The trapezoidal fuzzy
capacities of the transportation services in the intermodal service network are in Appendix A.

4.1. Simulation Environment

In this study, we use mathematical programming software LINGO version 12 (LINDO Systems
Inc., Chicago, IL, USA) [27] to implement the Branch-and-Bound Algorithm to solve the intermodal
routing problem with service capacity uncertainty that is formulated by the crisp equivalent MILP
model. All the simulations in this study were run on a ThinkPad Laptop with Intel Core i5-5200U 2.20
GHz CPU 8 GB RAM. The scale of the case is shown in Table 1.

Table 1. Scale of the empirical case.

Variables 0–1 Variables Constraints

10,375 5675 36,028

4.2. Illcesults

First of all, we set the confidence: α = 0.9. The corresponding optimization results of the
intermodal routing problem with service capacity uncertainty are indicated in Table 2. The best
solution in Table 2 refers to the minimal generalized costs for routing the multiple commodity flows.
The generalized costs include the transportation costs en route, the loading/unloading operation costs,
the inventory costs, the additional pick-up and delivery costs, and the carbon dioxide emission costs.
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Table 2. Optimization results when confidence α is 0.9.

Algorithm Best Solution Solution State Computational Time

Branch-and-Bound Algorithm 5,339,867 RMB Global Optimum 95 s *

* Average value of 10 simulations.

4.3. Sensitivity Analysis to Indicate the Influence of the Confidence on the Routing Decision

Confidence α in Equations (7) and (8) is determined by the decision makers during the intermodal
routing decision process. The values of α have a great effect on the optimization results generated
by the optimization model, which can be investigated by using sensitivity analysis. In this analysis,
the value of confidence α varies from 0.1 to 1.0 with a step size of 0.1, and we can get the corresponding
optimization results (best solution, i.e., the minimal generalized costs for transporting the multiple
commodity flows) with respect to the variation, which is shown in Figure 5. From Figure 5, we can
draw some interesting decisions, listed as follows.
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Figure 5. Sensitivity of the intermodal routing with respect to the confidence value.

(1) The value of confidence α influences the intermodal routing decision. Therefore, where to set the
value is an important issue for decision makers.

(2) In general, a stepwise increase of the minimal generalized costs for the intermodal routing
decision emerges when the value of confidence α increases linearly. Specifically in this case,
the sensitivity of the intermodal routing with respect to confidence α is especially significant
when α varies from 0.4 to 0.5 and from 0.8 to 0.9.

(3) The transportation economy (reflected by the minimal generalized costs for the intermodal
routing decision) and transportation reliability (reflected by the credibility of the intermodal
routing decision) cannot reach an optimum simultaneously. The transportation economy will
be reduced if the decision makers prefer higher reliability of the intermodal routing decision,
and vice versa.

As a result, it is a challenging but meaningful task for decision makers to determine an objective
value of confidence α to make a tradeoff between the transportation economy and its reliability.
Improving the transportation economy and meanwhile achieving reliable transportation is the objective
of the intermodal routing decision with service capacity uncertainty.
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4.4. Fuzzy Simulation to Determine the Best Confidence Value

We need to know the actual transportation to conduct the following procedures, so that the best
confidence α can be determined to realize the objective of the intermodal routing decision with service
capacity uncertainty.

As claimed in Section 1, it is impossible for decision makers to master the capacity of actual
transportation. We can, however, simulate the actual transportation scenario by using a fuzzy
simulation. In the simulation, deterministic service capacities are randomly generated based on
their fuzzy membership degree, shown as in Equation (2). The randomly generated capacities can be
treated as the actual deterministic capacities of the transportation services in the intermodal service
network. By using such capacities, we can realize Step 1 in Table 3. By inputting such capacities into
the deterministic capacity constraint as in Equation (3), we can generate the actual best routes by
using the MILP model from our previous study [15] and realize Step 2 in Table 3. The process of the
fuzzy simulation is illustrated by Figure 6. In this study, we run the simulation 50 times in order to
better match the transportation practice, and then use our knowledge of statistics to summarize some
insights and determine the best value of confidence α.

Table 3. Procedure of evaluating the confidence values.

Step 1
Check whether the planned routes violate the actual capacities of the transportation services
on them. If any one of the capacities is violated, the routing decision has failed (i.e., failed
decision); otherwise, it is feasible (i.e., a feasible decision).

Step 2 Compare the planned best routes with the actual best ones to evaluate their gaps. The smaller
the gap, the better the feasibility of the planned routes.

Step 3 Determine the best confidence value under consideration of the decision makers’ preference.
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Figure 6. Fuzzy simulation process.

After getting the 50 sets of the actual service capacities, first of all, we check whether the planned
best routes under different confidence values violate the capacity constraints corresponding to each
service capacity set (i.e., implement Step 1 in Table 3 50 times for each confidence value). Then we can
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count the number of failed and feasible decisions given by the intermodal routing corresponding to
each confidence value in the 50 simulations. The results are presented in Figure 7.Information 2018, 9, x  11 of 16 
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Figure 7. Fuzzy simulation results.

(1) Overall, the ratio of the feasible decisions to the 50 simulations improves as confidence α increases,
i.e., the reliability of the intermodal routing decision gets enhanced by giving confidence α a
larger value.

(2) The ratio of the feasible decisions improves slightly with the increase of confidence α when it
varies from 0.1 to 0.7, while it improves significantly when confidence α exceeds 0.7.

(3) The ratio of the feasible decisions greatly improves from 16% to 80% (by 400%) with a slight
increase of the minimal generalized costs from 5,261,339 RMB to 5,339,867 RMB (by 1.5%) when
confidence α is set to 0.9 instead of 0.8. Thus, to maintain an acceptable transportation reliability,
0.9 and 1.0 are recommended as the values of confidence α.

(4) The ratio of the feasible decisions greatly improves from 16% to 100% (by 525%) with a slight
increase of the minimal generalized costs from 5,261,339 RMB to 5,344,147 RMB (by 1.6%) when
confidence α is set to 1.0 instead of 0.8. Thus, to maintain an acceptable transportation reliability,
0.9 and 1.0 are recommended as the values of confidence α.

In particular, the ratio of the feasible decisions improves from 80% to 100% (by 25%) with a
relatively slight increase of the minimal generalized costs from 5,339,867 RMB to 5,344,147 RMB
(by 0.08%) when confidence α is set to 1.0 instead of 0.9.

In previous studies, decision makers use the most likely capacity to make intermodal routing
decisions. So, in order to demonstrate the effectiveness of the approach proposed in this paper, we use
the lower bound, upper bound, and the median value of the most likely capacity range to simulate the
intermodal routing decision under deterministic capacity. The best solutions to the intermodal routing
decisions under three deterministic capacity scenarios and corresponding ratios of feasible decisions
in the 50 fuzzy simulations are given in Table 4. As shown in Table 4, under deterministic capacity
scenarios, the ratios of the feasible decisions are 0%, which means that, as for this case, the feasibility
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of the intermodal routing decision will be dramatically improved by using the fuzzy programming
approach proposed in this paper instead of the deterministic programming one used in previous
studies. The effectiveness of the proposed approach is hence demonstrated.

Table 4. Results of the intermodal routing decisions under three deterministic capacity scenarios.

Optimization Results Lower Bound Scenario Median Value Scenario Upper Bound Scenario

Best solutions 5,245,192 RMB 5,168,634 RMB 5,123,383 RMB
Feasible ratios 0% 0% 0%

Next, we input the 50 sets of service capacities into the deterministic capacity constraint as in
Equation (3), and generate actual best routes corresponding to each set of service capacities by using the
MILP model established in our previous study. The statistics of the 50 best solutions (i.e., the minimal
generalized costs) are presented in Figure 8. Based on the statistics, we can implement Step 2 in Table 3.
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Figure 8. Best solutions to the 50 simulated actual intermodal transportation scenarios.

In this study, we use the root mean square (RMS) of the best solution to the intermodal routing
decision with service capacity uncertainty with respect to the ones to the 50 simulation intermodal
transportation scenarios in order to evaluate the gap between the planned best routes and the actual
best ones. The calculation of the mean squared error is given in Equation (9):

RMSα =

√√√√∑Nsim
g=1

(
zα − zg

)2

Nsim
∀α = 0.9 & 1.0, (9)

where RMSα is the above RMS under confidence α. Nsim is the total number of the fuzzy simulations,
and in this study, Nsim = 50. g is the index of the fuzzy simulation, and g = 1, 2, . . . , Nsim. zα is the
best solution to the intermodal routing decision with service capacity uncertainty under confidence
α. zg is the best solution to the intermodal routing decision with deterministic service capacities that
are generated in the gth fuzzy simulation. The comparison between the planned best routes under
confidence α = 0.9 and 1.0 is summarized in Table 5.
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Table 5. Comparison between the planned best routes under confidence α = 0.9 and 1.0.

Confidence Values Best Solutions Feasible Ratios RMSs

0.9 5,339,867 RMB 80% 92,306 RMB
1.0 5,344,147 RMB 100% 95,824 RMB

GAP * 0.08% ↑ 25% ↑ 3.8% ↑
* [(value corresponding to 1.0 − value corresponding to 0.9)/value corresponding to 0.9] × 100%.

According to Table 4, we can implement Step 3 as follows. Honestly, as the authors of this paper,
we prefer the first case if we were the decision makers.

(1) If the decision makers prefer high reliability and would like to sacrifice transportation efficiency
to some extent, the value of confidence α can set to 1.0, because the feasible ratio can remarkably
improve with a slight increase of the minimal generalized costs and the deviation to the practice.

(2) If the decision makers attach more importance to transportation efficiency and accept a feasible
ratio of 80%, the value of confidence α can be set to 0.9.

5. Conclusions

In this study, we systematically explore how service capacity uncertainty influences intermodal
decision-making. Such an exploration bridges the research gap in that there are rare intermodal routing
decision studies that consider the service capacity uncertainty. The main work accomplished in this
study is summarized as follows.

(1) We adopt a fuzzy programming approach that is easily realized in transportation practice
to formulate the service capacity uncertainty. Based on the fuzzy credibility measure,
the deterministic service capacity constraint is improved to be a fuzzy chance constraint whose
crisp equivalent linear reformulations can be effectively assessed.

(2) We use a sensitivity analysis to indicate the influence of service capacity uncertainty programmed
by the fuzzy chance constraint on the intermodal routing decision, and draw the conclusion
that the transportation economy and transportation reliability cannot reach an optimum
simultaneously, so a tradeoff between them should be made by the decision makers.

(3) We employ fuzzy simulation to help decision makers to select a suitable confidence value
during advanced decision-making to make an effective tradeoff between transportation economy
and reliability.

The fuzzy programming framework, which comprehensively utilizes fuzzy chance constraint
modeling, sensitivity analysis, and fuzzy simulation, provides a helpful response to the challenge
proposed by the uncertainty issues in various planning problems. It can be promoted for routing
problems in other research fields, e.g., wireless communications [28] and manufacturing systems [29],
as well as other transportation planning problems, e.g., service network design [30,31], when there is
a need to deal with uncertainty from a fuzzy programming perspective.
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Appendix A

Table A1. Fuzzy capacities of the transportation services.

Road Services Fuzzy Capacities Road Services Fuzzy Capacities

(1, 2) 112, 123, 141, 162 (20, 40) 45, 60, 90, 105
(1, 3) 96, 123, 135, 153 (22, 14) 72, 93, 120, 132

(1, 10) 75, 90, 114, 135 (22, 40) 66, 84, 105, 132
(2, 1) 72, 87, 99, 120 (22, 34) 90, 120, 135, 180
(2, 3) 60, 75, 99, 118 (22, 35) 60, 72, 105, 120
(2, 9) 90, 120, 138, 159 (22, 36) 75, 84, 114, 141
(3, 9) 36, 75, 90, 120 (22, 37) 105, 120, 141, 150

(3, 10) 30, 42, 60, 72 (22, 38) 72, 84, 99, 120
(3, 13) 72, 96, 114, 135 (23, 32) 48, 54, 72, 90
(4, 5) 66, 84, 99, 111 (24, 23) 30, 36, 45, 60
(4, 6) 45, 75, 96, 108 (24, 32) 24, 48, 75, 90
(4, 7) 66, 84, 99, 114 (25, 23) 15, 48, 72, 96
(4, 8) 126, 150, 156, 186 (25, 32) 63, 72, 87, 105

(4, 11) 90, 138, 171, 180 (26, 23) 33, 51, 60, 75
(4, 12) 42, 63, 99, 126 (26, 32) 63, 72, 90, 99
(4, 13) 90, 111, 120, 138 (27, 23) 105, 123, 132, 150
(4, 14) 69, 96, 120, 135 (27, 32) 57, 72, 90, 120
(4, 18) 42, 60, 90, 114 (28, 23) 60, 78, 93, 117
(8, 11) 36, 54, 78, 93 (28, 32) 84, 90, 117, 126
(8, 12) 102, 120, 138, 156 (29, 23) 63, 84, 105, 132
(8, 13) 78, 93, 105, 129 (29, 32) 105, 120, 141, 162
(9, 13) 78, 108, 132, 150 (30, 23) 33, 51, 66, 78
(9, 18) 75, 93, 99, 114 (30, 32) 66, 78, 84, 123
(10, 13) 48, 84, 102, 120 (31, 23) 111, 120, 150, 180
(10, 18) 54, 75, 99, 123 (31, 32) 63, 102, 120, 144
(13, 18) 30, 51, 69, 96 (32, 23) 81, 102, 135, 165
(14, 21) 135, 168, 186, 204 (33, 15) 135, 150, 162, 183
(14, 22) 93, 132, 81, 105 (33, 40) 72, 123, 144, 159
(14, 32) 120, 138, 159, 171 (33, 34) 75, 96, 132, 171
(15, 18) 63, 90, 120, 135 (33, 35) 96, 129, 147, 177
(15, 40) 99, 108, 138, 153 (33, 36) 102, 147, 168, 180
(16, 18) 57, 78, 96, 129 (33, 37) 126, 150, 165, 183
(16, 40) 42, 66, 90, 120 (33, 38) 105, 120, 144, 159
(17, 18) 72, 81, 99, 132 (39, 14) 141, 168, 180, 195
(17, 40) 84, 108, 123, 141 (39, 21) 111, 132, 159, 186
(18, 40) 54, 75, 93, 108 (39, 22) 72, 108, 123, 156
(19, 18) 42, 75, 93, 120 (39, 23) 93, 114, 144, 165
(19, 40) 75, 105, 120, 150 (39, 32) 120, 138, 171, 186
(20, 18) 72, 84, 111, 120 (40, 15) 60, 75, 108, 135
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Table A1. Cont.

Railway Services Fuzzy Capacities Railway Services Fuzzy Capacities

(1, 3) 105, 132, 180, 210 (14, 26) 9, 18, 42, 60
(2, 3) 156, 183, 216, 234 (14, 27) 12, 30, 60, 72
(5, 3) 135, 150, 174, 195 (14, 28) 6, 12, 42, 54
(6, 3) 54, 90, 144, 156 (21, 23) 261, 300, 324, 345
(7, 3) 45, 60, 90, 114 (21, 24) 30, 42, 75, 90
(8, 9) 120, 150, 168, 180 (21, 26) 15, 24, 54, 81

(8, 10) 126, 165, 174, 198 (21, 27) 15, 30, 51, 60
(11, 9) 39, 66, 84, 96 (21, 28) 42, 60, 99, 120
(11, 10) 72, 84, 171, 201 (22, 24) 18, 24, 42, 57
(11, 13) 81, 120, 144, 171 (22, 25) 15, 30, 60, 90
(12, 9) 24, 60, 105, 120 (22, 26) 6, 18, 45, 63
(12, 10) 42, 60, 78, 90 (22, 28) 15, 24, 42, 60
(12, 13) 156, 180, 216, 228 (22, 29) 6, 12, 33, 54
(14, 15) 30, 48, 69, 87 (22, 30) 27, 36, 66, 78
(14, 16) 18, 30, 60, 72 (22, 31) 36, 48, 84, 99
(14, 17) 45, 66, 84, 93 (22, 32) 90, 108, 156, 189
(14, 18) 99, 126, 168, 177 (34, 40) 30, 42, 60, 75
(14, 19) 12, 30, 69, 84 (35, 40) 33, 48, 63, 90
(14, 20) 6, 15, 42, 54 (36, 40) 24, 30, 57, 66
(14, 23) 222, 300, 342, 360 (37, 40) 21, 36, 54, 78
(14, 24) 63, 84, 120, 129 (38, 40) 120, 144, 165, 183
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