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Abstract: Smart card data is increasingly used to investigate passenger behavior and the demand
characteristics of public transport. The destination estimation of public transport is one of the
major concerns for the implementation of smart card data. In recent years, numerous studies
concerning destination estimation have been carried out—most automatic fare collection (AFC)
systems only record boarding information but not passenger alighting information. This study
provides a comprehensive review of the practice of using smart card data for destination estimation.
The results show that the land use factor is not discussed in more than three quarters of papers and
sensitivity analysis is not applied in two thirds of papers. In addition, the results are not validated
in half the relevant studies. In the future, more research should be done to improve the current
model, such as considering additional factors or making sensitivity analysis of parameters as well as
validating the results with multi-source data and new methods.
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1. Introduction

Automated fare collection (AFC) systems are exploited by many public transit agencies [1].
Although the main purpose is to make charging and management more convenient [2], massive and
continuous smart card data also can be recorded and served, which can provide lots of precious
opportunities for researchers. The data can be used in various fields such as analysis of transit riders’
travel patterns [3–5], behavior analysis [6–9], performance assessment of bus transport reform [10–13]
and planning of the public transportation system [14–17]. In the study of smart card data, the
spatio-temporal information on boarding and alighting is very important [18–20]. Only with these records
can the above analysis be more accurate and the utilization of AFC system be more efficient [21,22].

However, many AFC systems only record boarding time and boarding location [2], as most of
them just need users swiping smart card at the beginning of the travel, which is called entry-only
system [23]. For example, AFC system of New York City, America [24], AFC system of Chicago,
America [5], public transport system of Santiago, Chile [25], AFC system of Guangzhou, China [26].
Only several AFC systems belong to entry-exit system, which need users swiping smart card both at
the beginning and the end of travel, just like AFC system of South East Queensland, Australia [4], AFC
system of Seoul [27]. Hence many researchers devoted themselves to inferring missing destination
information for entry-only AFC systems [2,5,21,24,28–30]. However, these scholars used various
methods and obtained different matching rate. Thus, this review focuses on the assessment of existing
destination estimation research and intends to summarize the main estimation method. Then analysis
the influence factors, data quality, sensitivity and validation. Specifically, this paper has three objectives:
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(1) Identifying the related literature by search method (2) Evaluating the quality of literature from four
perspectives, that’s the comprehensiveness of factors, the perspective of sample size, matching rate
and validating samples. (3) Helping researchers choose the suitable method to mining smart card data
correlation about destination inferring. To our best knowledge, this is the first review about public
traffic destination estimation using smart card data.

The rest of this paper covers the following sections: Section 2 provides the literature search
method; Section 3 presents the search results and related analysis; Section 4 describes the quality
of reviewed studies; And discussion of this paper presented in Section 5. Finally, Section 6 draws
conclusions and makes suggestions for future work.

2. Methods

2.1. Search Strategy

ScienceDirect and Web of Science are the most influential and comprehensive databases in the
world, and the American Society of Civil Engineers (ASCE) and Springerlink also contain work
from a variety of disciplines including civil engineering, so we chose these four databases for our
literature search. Three groups of search terms were used: (1) smart card, IC card, public transit fare
card; (2) Automated Fare Collection, AFC, Automated Data Collection Systems; and (3) OD matrix,
destination estimation, travel trajectory. To match the feature of different databases, these keywords
must be combined differently. Also, the references of the literature should be reviewed.

2.2. Inclusion and Exclusion Criteria

To plug the eligible articles, the paper must meet the following conditions: (1) Be published in
English. (2) Use the smart card data as its data source. (3) Related to estimation of passengers’ destination.

Subject to language restrictions, this paper mainly refers to literature published in English.
In addition, most excellent research present the fruit in English. So, we set the first condition. There
are lots of studies estimate public traffic destination using mobile phone signaling data or video data,
while this paper focus on smart card data, so we set the second condition. For many researchers have
analyzed the transit riders’ travel patterns, travel behavior or performance of bus transport reform,
this review mainly considers the estimation of passengers’ destination, so we set the third condition.

2.3. Data Extraction

In order to standardize the literature information, this paper adopts matrix method to extract key
factors. Main projects include studying characteristics (e.g., author, institution of the writer, journals,
year, keywords), models (e.g., trip-chain model, attraction rate model, deep-learning model), factors
(e.g., boarding time and location, land use, walking distance), matching rate, validated samples, results
and analysis.

2.4. Quality Assessment

In order to evaluate the quality of references, this paper selects four dimensions and ten indexes to
assess, that is: (1) Accessing comprehensiveness of factors; (2) Assessing data collecting methodological
quality; (3) Assessing method application; (4) Assessing model validation. Quality assessment form is
shown in Table 1.

Regarding the factors that affect the passengers to select the alighting stops, main elements
mentioned in recent studies including network density, bus stops density, the convenience of transfer,
the land use characteristics of alighting stops, ridership, travel times, walking distance and activity
duration. This paper divides these factors into three categories, concretely, transfer information
(including the convenience of transfer, ridership, travel times, walking distance and activity duration),
public transport network (including network density and bus stops density) and land use.
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There are many errors (e.g., system error, user error, device error) which may generate in the data
collection process [31], therefore it’s vital to assess smart collection data quality. Three indicators are
taken into consideration, namely, sample size, whether data cleaning and data description is done.
We choose these indicators for the reason that sample size is one of the major issues affecting the
accuracy of the estimation, data cleaning is another influence factor and description of matching data
can reflect the utilization of the data.

In order to appraise the methodological quality, the assessment checklist comprises two standards:
detail level about algorithm description and matching rate. The matching rate reflects the suitability
of the model and high matching rate means the model can infer most of the destination, while low
matching rate means that the model need to be improved.

If the paper has a sensitive analysis of the key factors (e.g., walking distance or transfer time),
maybe he can choose an appropriate parameter. Thus, the sensitivity analysis is included in the model
assessment. Finally, using the survey data or real alighting data to validate the model is very necessary.

Table 1. Checklist for evaluating studies’ quality.

Criterion Description Score

Accessing comprehensiveness of factors 0–3

Transfer information
Include 1

Not Include 0

Public transport network Include 1
Not Include 0

Land use
Include 1

Not Include 0

Assessing smart card data collection quality 1–5

Sample size
Small (<10,000) 1

Medium
(10,000–100,000) 2

Large (>100,000) 3

Data cleaning Include 1
Not Include 0

Matching data description Include 1
Not Include 0

Assessing method application 1–4

Algorithm description Include 1
Not Include 0

Matching rate
Low (<70%) 1

Medium (70–90%) 2
High (>90%) 3

Assessing model validation 0–2

Sensitivity analysis Include 1
Not Include 0

Validation
Include 1

Not Include 0
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3. Result

The literature search and selection process are shown in Figure 1. The papers searched from
databases are 2445 (ScienceDirect), 2037 (Web of Science), 1184 (Springer), 367 (ASCE). After stripping
out the repeated literature, a total of 984 papers are left, then after browsing the titles and abstracts,
231 papers are left. There are three reasons for removing ineligible papers: irrelevant to destination
estimation main data source is not smart card data but GPS data or AVL data, different titles with the
same content. Thus, 17 publications are extracted. After reading the reference list of related reviews,
potential papers are identified. Eventually, 20 published paper are included in this review, which is
shown in Table 2.
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Table 2. Summary of studies included in this review.

Reference Pub. Year Country Journal AFC Systems Model Tools Data Source Transit Model Reference

Jung 2017 Korea IET Intelligent Transport Systems Entry-exit Deep Learning
Architecture Python Seoul metropolitan

government Bus [21]

Azalden Alsger 2016 Australia Transport Research Part C Entry-only Trip-Chaining Model / TransLink Bus, Metro,
Ferry [28]

António A. Nunes 2015 Portugal IEEE Transactions on Intelligent
Transportation Systems Entry-only Trip-Chaining Model / STCP Bus [21]

Azalden Alsger 2015 Australia Transportation Research Record Entry-exit Trip-Chaining Model TransLink Bus, Metro,
Ferry [21]

Marcela Munizaga 2014 Chile / Entry-exit Trip-Chaining Model / Transantiago Bus-Metro
Metro-Bus [5]

Mengmeng Zhang 2014 China Transport Information and Safety Entry-only Probability Model SQL C/C++ Bus company of
Jinan Bus [11]

W. Kuhlman 2014 Netherlands Delft University of Technology Entry-exit / Biogeme Bus, Tram and
Metro [32]

Marcela Munizaga 2012 Chile 12th WCTR Entry-exit Trip-Chaining Model / Transantiago Bus and Metro [10]

Daming Li 2011 China Database Systems for Advanced
Applications Entry-only Trip-Chaining Model MYSQL C++ Bus Company of

Jinan Bus [10]

Wei Wang 2011 England Public Transportation Entry-only Trip-Chaining Model SQL TfL (Transport For
London) Bus and Rail [11]

Neema Nassir 2011 America Transportation Research Record: Entry-only Trip-Chaining Model SQL Metro Transit bus [14]

A Reddy 2009 America Transportation Research Record Entry-only Trip-Chaining Model / NYCT Bus and Rail [11]

JJ Barry 2008 America Transportation Research Record Entry-only Trip-Chaining Model / NYCT Subway, bus,
ferry and tram [7]

Jinhua Zhao 2007 America Computer-Aided Civil and
Infrastructure Engineering Entry-only Trip-Chaining Model SQL C/C++ CTA Bus and Rail [30]

Zhang Lianfu 2007 China International Conference on
Wireless Communications Entry-only Doubly-constrained

Growth Factors Method / Bus Company of
Changchun Bus [5]

Huili Dou 2007 China Transport Information and Safety Entry-only Probability Model / Bus company of the
City Bus [8]

Martin TRÉPANIER 2006 Canada IFAC Entry-only Trip-Chaining Model VB/SQL STO Bus [15]

Jie YU 2006 China Systems Engineering Entry-only BP Artificial Neural
Network / Bus Company of

Suzhou Bus [5]

Cui 2006 America Massachusetts Institute of
Technology Entry-only Trip-Chaining Mode SQL CTA Bus and Rail [26]

James J. Barry 2002 America Transportation Research Record Entry-only Trip-Chaining Model / NYCT Metro /
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3.1. Features of Reviewed Studies

The main selected information extracted from 20 papers are shown in Table 2. From the view of
the geographical region of the studies, the research is mainly distributed within 9 countries including
China (n = 4), America (n = 6), Australia (n = 2), Canada (n = 1), Chile (n = 2), England (n = 1), Korea
(n = 1), Netherlands (n = 1) and Portugal (n = 1).

From the application of the method, trip chaining model is widely used, especially in China,
America and England, because in these countries most AFC systems are entry-only systems. While
research in Korea, Australia, Chile and Netherlands is focused on the validation of the trip-chaining
model, because these countries have entry-exit AFC systems. In addition, the probability model is
mainly used in China. Deep learning model is used in China and Korea.

3.2. Main Destination Estimation Model Description

3.2.1. Trip Chaining Model

Trip chaining model was first applied by Barry et al. [24] to infer the origin and destination trip
tables, which is based on two key assumptions: the alighting station of the current subway trip is the
aboard station of next subway trip and most riders end their last journey of the day at the station
where they begin their first trip of the day.

Two years later, J Zhao [5] improved the theory by putting forward three hypotheses. Firstly,
there is no other mode of transportation (e.g., car, motorcycle, bicycle, etc.) between two consecutive
trips. Secondly, travelers will not walk a long distance when transferring. Thirdly, travelers will end
their last trip of the day at the station where they begin their first trip of the day.

These three basic assumptions especially the latter two hypotheses are widely used in
research including bus-bus, bus-rail and rail-rail trips. Such as J Zhao et al. [5], Cui [33],
Trepanier et al. [2], Barry et al. [23], Nassir et al. [34], Daming Li et al. [21], Munizaga and Palma [25,28],
António A. Nunes et al. [35] and Alsger Azalden et al [30]. In the process of model application, many
researchers continue to revise these assumptions in order to obtain better inferring performance.

As to the first hypothesis, there is still no improvement. Because if someone chooses private
transportation instead of taking the public transport system, his travel tracks cannot be tracked by
smart card. However, due to the popularity of the public bicycles, especially in China, this assumption
may be extended by relaxing the condition of the second hypothesis. For example, if a passenger rides
public bicycle to next bus stop after getting off the bus, the distance between the first alighting station
and the next aboard station may be more longer than walking distance.

For the second hypothesis, there are two commonly parameters, walking distance and walking
time. The maximum walking distance is various in different papers. Zhao et al. [5] set the acceptable
walking distance as 1320 feet, that’s 402 m. The tolerance distance Trépanier et al. [2] selected is 2000 m,
while Cui [33] uses 1100 m. Wei Wang et al. [36] and Marcela Munizaga et al. [25,28] both applied
1000 m as the upper limit. Azalden Alsger et al. [35] set 800 m and António A. Nunes et al. [1] set
640 m. Azalden Alsger et al. [30] accesses the matching rate under different walking time. Table 3
shows the maximum walking distance applied in current research.

As for the third assumption, some researchers also made improvement, because the third
assumption cannot infer the destination of single trip, which may lead to lower matching rate.
Trépanier et al. [2] carry out that when dealing with the single trip, we need pair them with history
data to obtain more personal travel potential information. According to the hypothesis, the time of a
day is 0:00 to 23:59 but Munizaga et al. [28] find that many activities in the midnight are a continuation
of the previous day, thus the time of a day should be from 4:00 to 3:59 of next day.
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Table 3. Maximum walking distance used by the literature.

Maximum Walking Distance 402 m 640 m 800 m 1000 m 1100 m 2000 m

Zhao et al. (2004)
√

Trépanier et al. (2006)
√

Cui (2006)
√

Wei Wang et al. (2011)
√

Marcela Munizaga et al. (2012, 2014)
√

António A. Nunes et al. (2015)
√

Azalden Alsger et al. (2015)
√

Azalden Alsger et al. (2016)
√ √ √

3.2.2. Probability Model

This model is first applied by Dou Huili et al. [37] to estimate passengers’ OD matrix. The main
idea of the model is to calculate the alighting probability of the rest station, considering travel distance
and passenger number. More importantly, this paper finds an interesting regularity, that passengers’
travel distance is in according with the Poisson Distribution.

This model was cited by Rong-Zhen Wu et al. [38], Yang W et al. [39]. Zhang M et al. [40]
improved this model by adding factors of station transfer capacity and land use level around the
station. The station transfer capacity can be computations through the number of bus routes. The land
use level around the station can be computed by boarding number.

3.2.3. Deep Learning Model

With the successful application of Artificial Intelligence (AI) in various fields, many researchers
use AI (Deep learning is one branch of the AI family) to solve traffic problems, such as travel
mode choice predication [41], short-term traffic flow prediction [42] and destination forecast of bus
passengers [29,43].

In China, Yu Jie [43] first applied a modified BP artificial neural network to estimate the bus
OD matrix. The input variable of the model is boarding number and the output variable is alighting
number. Then this paper uses the investigated bus OD data to train the model. But one deficiency of
this paper is that the training data only has six groups, although the result is ideal, this model needs a
big dataset to train the test set. Another insufficient is that only one variety cannot explain the complex
public travel behavior.

In Korea, Jaeyoung Jung et al. [29] developed a deep-learning model to estimate the alighting
number utilizing smart-card data and land-use data. This research constructs a model architecture
with four layers, including one input layer, one output layer and two hidden layers. The total nodes of
input layer are as many as 135, containing transaction variable (e.g., target boarding time, number of
transfers, network travel times, generalized travel times) and land-use variable (e.g., residential floor
area, commercial floor area, cultural floor area). The two hidden layers respectively contain 64 nodes
and 128 nodes and it is activated by input layer through rectified linear unit. In addition, the dropout
rate which set to prevent over fitting is 30%. For classification, a softmax function is applied in the
output layer. The deep learning model is presented in Figure 2, which is drown based on the original
literature, for an overview of the deep learning model.
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3.2.4. Comparison of Three Models

Through the above analysis, the advantages and disadvantages of the three methods are shown
in Table 4. The main advantage of trip chaining model is that it just requires smart card data and the
algorithm is relatively simple compared with probability model and deep learning model. Forecast
the destination of each passenger is another advantage of this model. But it’s difficult to validate
the model. The merit of probability model is that it takes into account more comprehensive factors.
But this model can only infer the total on-off passenger number. As to the deep learning model, the
considerations are very comprehensive and it can infer the alight station of each passenger, in addition,
it can be validated by real travel data. But this model can only be used in entry-exit AFC systems and
it need abundant data, which is hard to obtain.

Table 4. Overall structure of deep learning model.
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3.3. Analysis of Influence Factors

When inferring the destination of alighting station using smart card, researchers considered
different factors, to some extent, these factors affected the quality and performance of the model.
The main factors and the range of matching rate in previous studies are compared in Table 5. This paper
will analyze the influence factors from two sides, one is the analysis of different studies under the
same model, another is analysis of different models.

Firstly, the comparison of influence factors considered by different authors under the same model
is shown in Table 5. Obviously, Jung et al. [29] considered the most comprehensive factors, not only
containing transactions variable (e.g., boarding locations and time, alighting locations and time) and
transport network variable (e.g., bus stop /line density) but also including the land use variable.
Neural network algorithm was also used by Y Jie [43], who only applied two factors but not fully
utilized the advantage of algorithm.

M Zhang [40] took the boarding locations /time, boarding passengers numbers and land use into
account, however H L Dou [37] did not assess the effect of land use. The matching rate of two research
is only one percent different.

As to the trip-chaining model, the main consideration is boarding locations/time and walking
time/distance. AA Nunes [1] also took the travel zone into consideration to have an endogenous
validation for improving matching accuracy. Most inferred result ranges from 65.9 to 95.4%. Despite
the additional validation rules set by AA Nunes [1] the result of 62.4% is lower than the overall level.
In addition, LF Zhang [44] chose the Doubly-constrained Growth Factors Method including faction
of travel zone and boarding passengers to estimate the OD matrix, while this paper did not give
the result.

Secondly, comparing the variable of different models, it is clear that the deep learning model is
more comprehensive than the trip chaining and probability models. The key factors of probability
involve boarding number and network travel distance. Boarding locations/time and walking time are
the critical points of trip chaining model.

Just from the matching rate, this paper cannot infer which factor made an outstanding contribution.
Despite four factors, ‘boarding locations/time,’ ‘numbers of boarding passenger,’ ‘network travel
time/distance’ and ‘land use,’ which were employed by probability model worked well, it is still
impossible to say that’s the key factors, for there are many other hidden obstacles that may affect the
outcome, such as sample size or data cleaning.



Information 2018, 9, 18 10 of 21

Table 5. Comparison of influence factors in recent studies.

Models and
Influence Factors

Researchers
Jung et al. (2017) Y Jie (2006) M Zhang

(2014)
H L Dou

(2007)

A Alsger (2016, 2015); M Munizaga (2014, 2012);
D Li (2011); W Wang (2011); A Reddy (2009);

JJ Barry (2008); JH Zhao (2007); M Trépanier (2006);
Cui (2006); James J. Barry (2002); N Nassir (2011)

AA Nunes
(2015) LF Zhang (2007)

Destination
Estimation Model

Deep Learning
Architecture

BP Artificial
Neural

Network

Probability
Model

Probability
Model Trip-Chaining Model Trip-Chaining

Model

Doubly-constrained
Growth Factors

Method

Boarding locations
and time

√ √ √ √ √

Alighting locations
and times

√

Boarding passenger
numbers

√ √ √ √ √

Alighting passenger
numbers

√

Network travel
times/distance

√ √ √

Number of transfers
√

Walking
time/distance

between consecutive
transactions

√ √

Bus stop/line density
√

Bus schedule

Travel zone
√ √

Land use
√ √

Matching rate
60% of tight

criterion 87% of
relaxing criterion

30 persons
day 90% 89% 65–95.4% 62.40% /
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3.4. Date Quality Analysis

This section focuses on the analysis of data quality from three aspects, namely; sample size, data
cleaning and results discussion.

3.4.1. Sample Size

Because the sample size is one of critical issues affecting the performance of destination
estimation [45], this paper makes a comparison of sample size and matching rate based on present
studies, which is shown in Table 6. The sample size of recent studies ranges from 396 records
to 38,000,000 records. The matching rate of 396 records is 88.74%, while, the matching rate of
38,000,000 records is 83.01% and matching rate of 6,000,000 records is 90%. So just from the sample
size in different studies, it is hard to say how large the sample size is suitable, due to the different AFC
systems, data quality and matching rule.

Table 6. Comparison of sample size and matching results.

Author Sample Size Matching Results

Jung et al. (2017) 124,513 records 60% of tight criterion
87% of relaxing criterion

A Alsger et al. (2016) 161,446 records 76–84%

A A Nunes et al. (2015) whole month of April 2010 62.4%

M Munizaga et al. (2014) 715 records 84.2%

M M Zhang et al. (2014) NO.83 Bus of Jinan 90%

M Munizaga et al. (2012)
36,000,000 records 80.77%

38,000,000 records 83.01%

D Li et al. (2011) Route 115 of Jinan city 75% peak hours, 85%

W Wang et al. (2011) 7386 records 66% Northbound
65% Southbound

N Nassir et al. (2011) 84,413 records 95.4%

W Wang et al. (2010)

8585 records 62.80%
12,074 records 64.10%
24,245 records 57.50%
10,057 records 69.30%
17,496 records 78.50%

JM Farzin et al. (2008) 658,000 records 76.7%

JJ Barry et al. (2008, 2002) 6,000,000 records 90%

J H Zhao et al. (2007) 2,500,000 records 71%

LF Zhang et al. (2007) Changchun morning rush hour 6:00~7:00
and evening hour 16:30~17:30 /

HL Dou et al. (2007) 396 records 88.74%

M TRÉPANIER (2006)
378,260 trips in July 2003

771,239 trips in October 2003
66% of all data

80% at peak hours

J YU et al. (2006) Bus of NO. 41 30 persons-day

Cui (2006) 2,736,454 records 79%

3.4.2. Data Preparation

Evidence showed that the AFC system transaction data often has some potential problems during
data collecting, which may be caused by software, erroneous data, faulty hardware or the users [31].
The main existing data defections and processing methods are shown in Table 7. Three types of problem
with the data are shown in Table 7: missing data (containing entries or alighting data, whole transaction,
next boarding information or direction of travel), illogical values and duplicate transactions. Removing
incomplete data was the main approach. While, the absent information may be filled by matching
history data, instead of deleting the data directly [46]. As to the data which can be repaired through
analysis or comparison, maybe it’s the best way. Summary of problems with data from smart card is
provided in Table 7.
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Table 7. Summary of problems with data from smart card.

Main Problems of Transaction Processing Method Studies

Missing entries/exit Eliminated

Kusakabe T et al. (2013)
N Nassir et al. (2011)
A Alsger et al. (2015)
A Alsger et al. (2016)

Missing one whole transaction in
the set of a person’s travel data Eliminated

Kusakabe T et al.(2013)
N Nassir et al. (2011)
A Alsger et al. (2015)

No next boarding information Eliminated Kusakabe T et al. (2013)

Illogical values across two attributes Thorough analysis and subsequent
pre-processing of data A A. Nunes et al. (2015)

Missing the direction of travel
attribute value

Checking travel direction of other
transaction records with same trip,
then mitigated it

A A. Nunes et al. (2015)

Duplicate transactions Eliminated A Alsger et al. (2015)

3.5. Sensitivity Analysis

To select more suitable parameters to improve the model accurate, sever authors have made some
sensitivity analysis which is shown in Table 8.

Table 8. Sensitivity analysis list of recent research.

Parameter Authors Detailed Parameter Main Conclusion

Walking
distance

A A. Nunes et al.
(2015)

400 m
640 m

1000 m

If the allowable walking distance selected short, the risk of rejecting
true positives is greater.
If the allowable walking distance selected longer, the opportunity of
accepting false positives will be bigger.

Walking
distance

A Alsger et al.
(2016)

400 m
800 m

1000 m
1100 m

When the tolerable distance set 400 m, the matching rate is highest.
While, when the distance drop to 800 m to 1100 m, the result not so
good. If the walking distance beyond 800 m, the result has no
significant difference.

Simple size A Alsger et al.
(2017)

Sample size from 1%
to 100% of selected

transactions

Sample size has a high impact of inferring error.
Sample size affect the accuracy of OD matrix, especially the small
sample size.

Matching
criterion Jung et al. (2017) Tight criterion

Relax criterion
Relaxing the criterion is in line with the biased behavior of bus
users and applies to the high-density bus network of Seoul.

AA Nunes et al. [9] and A Alsger et al. [30] both made a sensitivity analysis of walking distance.
It’s interesting that according to the first research, the walking distance is 1000 m while the matching
rate is highest. In the second study, walking distance of 400 m corresponds to the maximum number
of estimated O-D trips. Besides walking distance, A Alsger et al. [45] pointed that simple size also
had a significant impact on destination inferring results, especially the small sample size. Beyond the
above-mentioned analysis, Jung et al. [29] still did a sensitivity analysis of matching criteria, which
shows that when relaxing the criterion, the result was improved.

3.6. Validation

It is only after verification that the quality of algorithm can be ensured and then be generalized.
While, in the current study, half of the papers validated their derived results, the rest were not. Among
the validated methods, the sample data source and size are various too. Some of the date comes from
artificial investigation, such as M Munizaga et al. (2014) [28], M M Zhang et al. (2014) [40], JJ Barry
(2008, 2002) [23,24], J YU et al. (2006) [43], the AFC systems of those papers belong to entry-only system
and the sample size is relatively small. But several validation utilized alighting data of entry-exit
systems, like Jung et al. (2017) [29], A Alsger et al. (2016) [35], N Nassir et al. (2011) [34], whose sample
size is enormous too. The comparison of recent study is shown in Table 9.
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Table 9. Comparison of previous studies.

Literature Validation Data Data Source Validated Sample Size
Invalidated Sample Size (*)

Validated Accuracy
Invalidated Matching Rate (*) Transit Mode

Jung et al. (2017) AFC data Seoul metropolitan government 124,513 transactions 60% of tight criterion
87% of relaxing criterion Bus

A Alsger et al. (2016) GoCard data TransLink 161,446 transactions 76–84% Bus, Metro, Ferry

A A. Nunes et al. (2015) No validation STCP / 62.4% (*) Bus

A Alsger et al. (2015) AFC data TransLink 473,525 transactions 88% Bus, Metro, Ferry

M Munizaga et al. (2014) OD Metro surveys data OD Metro surveys 715 transactions (*) 84.20% Bus-Metro
Metro-Bus

M M Zhang et al. (2014) Bus surveys data Bus surveys Bus NO. 83 90% (*) Bus

M Munizaga et al. (2012) No validation Transantiago 36 million March 2009 (*)
38 million June 2010 (*)

80.77% March 2009 (*)
83.01% June 2010(*) Bus and Metro

D Li et al. (2011) No validation Bus Company of Jinan Bus NO. 115 of Jinan (*) 75% (*) Bus

W Wang et al. (2011) manually-surveyed bus trips TfL 7386 transaction (*) 66%Northbound (*)
65%Southbound (*) Bus and Rail

N Nassir et al. (2011)
No validation Metro Transit 84,413 transaction (*) 60.74% (*)

Bus
AFC-APC-VL data Metro Transit 10,886 transactions 95.4% (*)

A Reddy (2009) No validation / / / Metro

JJ Barry (2008)
Bus: ride check data

Metro:purchased Metrocard and
ten predetermined tours

NYCT / / Metro, buses, ferry, tramway

Jinhua Zhao(2007) No validation CTA rail system 2,500,000 transaction (*) 71.2% (*) Bus and Rail

Zhang Lianfu(2007) No validation Bus Company of Changchun / / Bus

HL Dou et al. (2007) Bus surveys data Bus company of the derived City 396 transaction 88.74% Bus

Martin TRÉPANIER(2006) No validation Smart card system of the Société
de transport del’Outaouais (STO)

378,260 trips made in July 2003
771,239 trips made in October 2003

66% of all data
80% at peak hours Bus

J YU et al. (2006) Bus surveys data Bus Company of Suzhou / 30 person-time/day Bus

Cui (2006) No validation CTA (Chicago Transit Authority) 2,736,454 trips (*) 79% Bus and Rail

J J. Barry et al. (2002) Travel diary survey NYCT and NYMTC

Group 1–100 residents with
two trips, total 200 trips

Group 2–200 residents more than
two trips, total 590 trips

90% Metro
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3.7. Possible Problems in Inferring Destination

The analysis of the possible problems in present method can provide better advice for the future
algorithm improvement. Problems may be generated at all stage of destination inferring.

One of the errors arises from data collecting, which may be caused by software bug, erroneous
data, faulty hardware or the faulty operation [1,25,47,48]. In order to prevent this problem from
happening, cleaning the data according different rules is essential. This is mentioned in Section 3.4.2.

The other possible problem is that many trips cannot be matched successfully [1,25,49]. One of
the reasons is that the maximum walking distance is not appropriate. If the walking distance is too
long, two different trips may be inferred to one trip. If it is too short, many transfer trips may cannot
be captured. Therefore, a distance sensitivity analysis may be a solution. The other possible situation
is that it might be the next day when the passenger ends his trip since he sets off from the previous day.
As to these transactions, the time of a day can be floated according the travel characters [28]. Moreover,
some transactions may take other tools to continue the next trip, such as car, taxi or bicycle, by which
individual tracks cannot be tracked through smart card. In this case, history transaction data can be
used [2]. In addition, the next boarding station may not be the nearest to the alighting stop of previous
trip, especially near the shopping area, so the matching rule” Travel will not walk a long distance
when transferring.” needs improving considering the land use.

Another possible problem is that passenger may not return to the origin station at the last travel,
so the matching rule “Travelers will end their last trip of the day at the station where they began their
first trip of the day.” also needs to be enriched. Possible problems in existing studies are provided in
Table 10.
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Table 10. Possible problems in existing studies.

Authors
Walking Distance

Exceeded Maximum
Distance

The Transaction
Is Single

Data Error
(Duplicate Transaction

Records, Missing or
Illogical Data)

Passenger Does Not
Return the Origin
Station at the Last

Travel

Mixed
Transportation

Modes

Wrong
Estimate

The Next Boarding
Station May Not Nearest
to the Alighting Stop of

Previous Trip

M Munizaga et al.
(2012)

√ √ √ √

D Li et al.
(2011)

√ √ √ √

A A. Nunes et al.
(2015)

√ √ √

J H Zhao et al.
(2007)

√ √

W Wang et al.
(2011)

√
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4. Quality of Reviewed Studies

The quality of papers is shown in Table 11 According to Table 8, all studies including the transfer
information, such as the convenience of transfer, ridership, travel times, walking distance, activity
duration, for these factors are necessary. As to the public transport network, only 6 (30%) studies take
it into account, however, the passengers are also influenced when they choose the alighting station.
In selected papers, just three authors (15%) analyze the land using around station, actually, different
land using features have various attraction rate and production rate, such as commercial zone may
attract more people especially during the holidays. Obviously, the destination inferring model also
needs to include this variable.

Table 11. Quality distribution of reviewed studies.

Criterion Description Score Number of Studies Percentage

Accessing comprehensiveness of factors 0–3

Transfer information
Include 1 20 100%

Not Include 0 0 0%

Public transport network Include 1 6 30%
Not Include 0 14 70%

Land use
Include 1 3 15%

Not Include 0 17 85%

Assessing smart card data collection quality 1–5

Sample size
Small (<10,000) 1 4 20%

Medium (10,000—100,000) 2 5 25%
Large (>100,000) 3 9 45%

Data cleaning Include 1 13 65%
Not Include 0 7 35%

Matching data description Include 1 3 15%
Not Include 0 17 85%

Assessing method application 1–4

Algorithm description
Include 1 17 85%

Not Include 0 3 15%

Matching rate
Low (<70%) 1 5 25%

Medium (70–90%) 2 8 40%
High (>90%) 3 4 20%

Assessing model validation 0–2

Sensitivity analysis Include 1 5 25%
Not Include 0 15 75%

Validation
Include 1 9 45%

Not Include 0 11 55%

In terms of smart card data collection’s quality, the sample size of 4 papers (22%) is no more
than 10,000 transactions, 5 studies(25%) use sample size between 10,000 and 100,000, 9 studies (55%)
use more than 100,000 transactions, there are also 2 studies(10%) not mentioning their sample size.
Moreover, 13 studies (65%) describe the process of data preprocessing, 7 studies (35%) do not mention
it. In addition, 3 studies (15%) have a detailed matching date description and 17 studies (85%) do not
describe the data in detail.

In view of method application, most research (17 studies, 85%) give an explicit algorithm flow,
however, several studies (3 studies, 15%) just have a brief description, from which later researchers
could not get enough information. As to the matching rate, results of 5 studies (25%) are no more
than 70%, results of 8 studies (40%) are between 70% and 90%, only 4 studies’ (20%) matching rate are
higher than 90%.

While, the matching rate is not the only criterion to judge the method quality, only by sensitivity
analysis and validation, the destination infer model can be more convincing. As shown in Table 11,
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5 studies (25%) make a sensitivity analysis, such as walking distance sensitivity analysis but most
studies (15 papers, 75%) do not contain sensitivity analysis of parameters, unfortunately, those
researchers may not choose the most appropriate parameters’ value. For the verification of the
conclusion, 9 papers (45%) have been verified, while 11 papers (55%) did not. However, no verification,
no final conclusion.

5. Discussion

The smart card data conquers a significant space in public traffic. In the application of smart card
date, origin-destination estimation of public transport plays a key role. Recently plenty of researchers
are interested in deducing public transport destination by using smart card data. This review mainly
focuses on the inferring process and papers’ quality of various scholars. The detail discussions are
as follows.

(1) Discussion of destination estimation model

There are three main models to inferring the travel destination: trip chaining model, probability
model and deep learning model.

In earlier studies, the researchers mainly use trip chaining model in their papers, which is based
on two basic assumptions. The first assumption is that the most likely alighting station of a passenger
is the boarding station of next journey. The second is that, the last alighting station is most likely
the same with the original boarding station of a day. However, with the appearance of shared bikes,
the allowed maximum walking time and walking distance between two continuous public travel
stations as well as the final station and the original station in a day need to be confirmed through
sensitivity analysis. In addition, the time ranges of ‘a day’ also need to be redefinition according to the
trip characteristics.

In the later study, probability model and deep learning model are also used to infer the
alighting station. Only the total number of passengers can be estimated through probability model.
The individual travel characteristics had been ignored in this model. while taking the factors of public
traffic network and land use into consideration were the highlights of this model.

Deep learning was commonly successfully applied to big data analytics. Initially, scholars used
BP artificial neural network to infer the destination but this paper did not give its’ total sample size,
so the accuracy of the model were not explained in detail. In fact, due to the limitations of the current
network learning rules, the calculated connection weight matrix may converge to the local optimal
value rather than the global optimal value. Recently, a deep learning model was trained by using
both boarding data and alighting data. The superiority of the model was very significant. Firstly,
the variables containing trips’ temporal and spatial information. Secondly, the entry-exit AFC system
gives the study a precious opportunity to verify the model, because the alighting data is available.
Just like other models, this model also has some obstacles. Such as a great amount of alighting data
should be provided to train the model, however it is difficult to obtain in the entry-only AFC systems.

(2) Discussion on influence factors, date quality and sensitivity analysis

In existing studies, the factors considered in the model are mainly divided into three categories,
that’s the public transport network, operation (e.g., network distance, density of bus route, density
of station, time table), travel information (e.g., boarding time, boarding station, travel time, walking
distance ) and land use (e.g., residential floor area, commercial floor area, cultural floor area). Trip
chaining model focuses on travel information, especially, boarding time, boarding station and walking
distance. But it ignores the factors of land use and public transport network. Both the probability
model and the deep learning model take into account three factors; however, the factors of the deep
learning model are more comprehensive. But from the matching results, it is hard to say which factors
play a key role in the calculation.
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The sample size of recently studies range from 396 records to 38,000,000 records. The matching
rate of 396 records is 88.74%, while, the matching rate of 38,000,000 records is 83.01% and matching rate
of 6,000,000 records is 90%. So just from the sample size in different studies, it is hard to say how large
the sample size is suitable, for the AFC systems, data quality, matching rule are different. But in one
study, validation have a significant impact on alight station estimation, especially in small sample size.

(3) Discussion on validation and possible problems

Many researchers have delved into inferring the alighting station, however such effort is hard
to validate on a large scale. In the early studies, some authors have validated the algorithm with
survey data. Those studies are in entry-only AFC systems. In later studies, many researchers use
actual alighting data to modify the model. Those data come from entry-exit AFC systems. For entry
only AFC systems, in addition to manual survey data, the bus video data and mobile MAC data can
also be used to validate the model, for these data can be obtained by technical means. In all research
that has been validated, J J. Barry (2002) [24] obtained the highest matching rate, mainly because the
metro network is simpler than the bus network.

The possible problems in the calculation process can be divided into two categories. Firstly, it is the
errors produced in the data collection due to equipment failure, system malfunction or operates miss.
Secondly, it is the errors that appear in data matching. For the first question, equipment inspection
and data cleaning are required. Such as, check the ticket machine, eliminate or repair the missing
data. For the second question, suitable matching rules, such as maximum walking distance, maximum
walking time or maximum travel time, need to be set.

6. Conclusion and Future Works

In this paper, we not only threw some light on current research but also made a systematical
and comprehensive review on destination estimation process. This review makes three contributions.
Firstly, this review has provided a detailed discussion of estimation model, influence factors, data
quality, sensitivity analysis and validation, which can provide a brief and clear glance to later scholars.
The second contribution relates to evaluation of existing studies. Unfortunately, most studies did not
carry out sensitivity analysis and result verification, which were necessary in the research. Thirdly,
this paper provides an opportunity to improve the recent model. Although there is no modification of
the algorithm in this paper, through the detailed analysis of inferring process, later researchers can
improve the model base on this paper.

In the near future, the following research field may be the potential challenges for public transport
destination estimation:

• Estimation model improvement: most trip chaining model mainly considers factors of boarding time,
boarding station and walking distance but the land use and public traffic network information
also need to be added to the model. As to the deep learning model, different function and dropout
rates need to be applied when activating the node values.

• Journey validation: Even through present studies use survey data or actual transaction data to
validate their model, survey data is hard to obtain. Better validation algorithms will be developed
to validate the alighting matching rate.

• Diversification of data source: with the development of technological improvement, more types
of data can be used to estimate the alight station, such as GPS date or AVL (Automatic Vehicle
Location) date, mobile phone MAC (Media Access Control) data, public transport video data.
Therefore, new algorithms based on these multi-source data will be needed.

Acknowledgments: The work in this paper was supported by Outstanding young scientists Research Award
Fund Project of Shandong Province (BS2014DX011).

Author Contributions: Tian Li wrote the paper, Kaixi Yang sorted out the literature, Peng Jing and Dazhi Sun were
responsible for the combing and revising the article. All authors have read and approved the final manuscript.



Information 2018, 9, 18 19 of 21

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Nunes, A.A.; Dias, T.G.; Cunha, J.F.E. Passenger Journey Destination Estimation from Automated Fare
Collection System Data Using Spatial Validation. IEEE Trans. Intell. Transp. Syst. 2015, 17, 133–142.
[CrossRef]

2. Trepanier, M. Destination Estimation from Public Transport Smartcard Data. IFAC Proc. Vol. 2006, 39,
393–398. [CrossRef]

3. Ma, X. Smart Card Data Mining and Inference for Transit System Optimization and Performance Improvement;
University of Washington: Seattle, WA, USA, 2013.

4. Kieu, L.M.; Bhaskar, A.; Chung, E. A Modified Density-based Scanning Algorithm with Noise for Spatial
Travel Pattern Analysis from Smart Card AFC Data. Transp. Res. Part C Emerg. Technol. 2015, 58, 193–207.
[CrossRef]

5. Zhao, J.; Qu, Q.; Zhang, F.; Xu, C.; Liu, S. Spatio-temporal Analysis of Passenger Travel Patterns in Massive
Smart Card Data. IEEE Trans. Intell. Transp. Syst. 2017, 18, 3135–3146. [CrossRef]

6. Kusakabe, T.; Asakura, Y. Behavioural Data Mining of Transit Smart Card Data: A Data Fusion Approach.
Transp. Res. Part C Emerg. Technol. 2014, 46, 179–191. [CrossRef]

7. Blythe, P.; Bryan, H. Understanding Behaviour through Smartcard Data Analysis. Transport 2007, 160,
173–177.

8. Ali, A.; Kim, J.; Lee, S. Travel Behavior Analysis Using Smart Card Data. KSCE J. Civ. Eng. 2016, 20,
1532–1539. [CrossRef]

9. Briand, A.S.; Côme, E.; Trépanier, M.; Oukhellou, L. Analyzing Year-to-year Changes in Public Transport
Passenger Behaviour Using Smart Card Data. Transp. Res. Part C Emerg. Technol. 2017, 79, 274–289. [CrossRef]

10. Kim, K.S.; Cheon, S.H.; Lim, S.J. Performance Assessment of Bus Transport Reform in Seoul. Transportation
2011, 38, 719–735. [CrossRef]

11. Pau, S.A. Using Smart Card Technologies to Measure Public Transport Performance: Data Capture and Analysis;
Universitat Politècnica De Catalunya: Barcelona, Spain, 2014.

12. Jin, K.E.; Ji, Y.S.; Moon, D.S. Analysis of Public Transit Service Performance Using Transit Smart Card Data
in Seoul. KSCE J. Civ. Eng. 2015, 19, 1530–1537.

13. Smart, M.; Miller, M.A.; Taylor, B.D. Transit Stops and Stations: Transit Managers’ Perspectives on Evaluating
Performance. J. Public Transp. 2009, 12, 59–78. [CrossRef]

14. Audouin, M.; Razaghi, M.; Finger, M. How Seoul Used the ‘t-money’ Smart Transportation Card to
Re-plan the Public Transportation System of the City; Implications for Governance of Innovation in
Urban Public Transportation Systems. In Proceedings of the 8th TransIST Symposium, Istanbul, Turkey,
17–18 December 2015.

15. Gschwender, A.; Munizaga, M.; Simonetti, C. Using Smart Card and GPS Data for Policy and Planning:
The Case of Transantiago. Res. Transp. Econ. 2016, 59, 242–249. [CrossRef]

16. Yap, M.; Nijënstein, S.; Vanoort, N. Improving Predictions of the Impact of Disturbances on Public Transport
Usage Based on Smart Card Data. In Proceedings of the 96th TRB Annual Meeting, Washington, DC, USA,
8–12 January 2017.

17. Utsunomiya, M.; Attanucci, J.; Wilson, N.H. Potential Uses of Transit Smart Card Registration and Transaction
Data to Improve Transit Planning. Transp. Res. Rec. J. Transp. Res. Board 2006, 1971, 119–126. [CrossRef]

18. Bagchi, M.; White, P.R. The Potential of Public Transport Smart Card Data. Transp. Policy 2005, 12, 464–474.
[CrossRef]

19. Zhang, F.; Yuan, N.J.; Wang, Y.; Xie, X. Reconstructing Individual Mobility from Smart Card Transactions:
A Collaborative Space Alignment Approach. Knowl. Inf. Syst. 2015, 44, 299–323. [CrossRef]

20. Bagchi, M.; White, P.R. What Role for Smart-card Data from Bus Systems? Munic. Eng. 2004, 157, 39–46.
[CrossRef]

21. Li, D.; Lin, Y.; Zhao, X.; Song, H.; Zou, N. Estimating a Transit Passenger Trip Origin-destination Matrix
Using Automatic Fare Collection System. In Proceedings of the 16th International Conference on Database
Systems for Advanced Applications, Hong Kong, China, 22–25 April 2011.

http://dx.doi.org/10.1109/TITS.2015.2464335
http://dx.doi.org/10.3182/20060517-3-FR-2903.00209
http://dx.doi.org/10.1016/j.trc.2015.03.033
http://dx.doi.org/10.1109/TITS.2017.2679179
http://dx.doi.org/10.1016/j.trc.2014.05.012
http://dx.doi.org/10.1007/s12205-015-1694-0
http://dx.doi.org/10.1016/j.trc.2017.03.021
http://dx.doi.org/10.1007/s11116-011-9330-4
http://dx.doi.org/10.5038/2375-0901.12.1.4
http://dx.doi.org/10.1016/j.retrec.2016.05.004
http://dx.doi.org/10.3141/1971-16
http://dx.doi.org/10.1016/j.tranpol.2005.06.008
http://dx.doi.org/10.1007/s10115-014-0763-x
http://dx.doi.org/10.1680/muen.2004.157.1.39


Information 2018, 9, 18 20 of 21

22. Karsten, N. Mifare—Little Security Despite Obscurity. In Proceedings of the 24th Congress of the Chaos
Computer Club, Berlin, Germany, 27–30 December 2007.

23. Barry, J.J.; Freimer, R.; Slavin, H.L. Use of Entry-only Automatic Fare Collection Data to Estimate Linked
Transit Trips in New York City. Transp. Res. Rec. J. Transp. Res. Board 2009, 2112, 53–61. [CrossRef]

24. Barry, J.J.; Newhouser, R.; Rahbee, A.; Sayeda, S. Origin and Destination Estimation in New York City with
Automated Fare System Data. Transp. Res. Rec. J. Transp. Res. Board 2002, 1817, 183–187. [CrossRef]

25. Munizaga, M.A.; Palma, C. Estimation of a Disaggregate Multimodal Public Transport Origin-Destination
Matrix from Passive Smartcard Data from Santiago, Chile. Transp. Res. Part C Emerg. Technol. 2012, 24, 9–18.
[CrossRef]

26. Yu, C.; He, Z.C. Analysing the Spatial-temporal Characteristics of Bus Travel Demand Using the Heat Map.
J. Transp. Geogr. 2017, 58, 247–255. [CrossRef]

27. Han, G.; Sohn, K. Activity Imputation for Trip-chains Elicited From Smart-card Data Using a Continuous
Hidden Markov Model. Transp. Res. Part B 2016, 83, 121–135. [CrossRef]

28. Munizaga, M.; Devillaine, F.; Navarrete, C.; Silva, D. Validating Travel Behavior Estimated from Smartcard
Data. Transp. Res. Part C Emerg. Technol. 2014, 44, 70–79. [CrossRef]

29. Jung, J.; Sohn, K. Deep-learning Architecture to Forecast Destinations of Bus Passengers from Entry-only
Smart-card Data. IET Intell. Transp. Syst. 2017, 11, 334–339. [CrossRef]

30. Alsger, A.; Assemi, B.; Mesbah, M.; Ferreira, L. Validating and Improving Public Transport Origin-Destination
Estimation Algorithm Using Smart Card Fare Data. Transp. Res. Part C Emerg. Technol. 2016, 68, 490–506.
[CrossRef]

31. Robinson, S.; Narayanan, B.; Toh, N.; Pereira, F. Methods for Pre-processing Smartcard Data to Improve Data
Quality. Transp. Res. Part C Emerg. Technol. 2014, 49, 43–58. [CrossRef]

32. Kuhlman, W. The Construction of Purpose-Specific OD Matrices Using Public Transport Smart Card
Data. 2015. Available online: https://repository.tudelft.nl/islandora/object/uuid:7190712e-0913-4849-
89ae-d1a1a88e66d2/datastream/OBJ (accessed on 13 January 2018).

33. Cui, A. Bus Passenger Origin-Destination Matrix Estimation Using Automated Data Collection Systems;
Massachusetts Institute of Technology: Cambridge, MA, USA, 2007.

34. Nassir, N.; Khani, A.; Sang, G.L.; Hickman, M. Transit Stop-level Origin-destination Estimation through Use
of Transit Schedule and Automated Data Collection System. Transp. Res. Rec. J. Transp. Res. Board 2011, 2263,
140–150. [CrossRef]

35. Alsger, A.A.; Mesbah, M.; Ferreira, L.; Safi, H. Use of Smart Card Fare Data to Estimate Public Transport
Origin-Destination Matrix. Transp. Res. Rec. J. Transp. Res. Board 2015, 2535, 88–96. [CrossRef]

36. Wang, W.; Attanucci, J.; Wilson, N. Bus Passenger Origin-destination Estimation and Related Analyses Using
Automated Data Collection Systems. J. Public Transp. 2011, 14, 131–150. [CrossRef]

37. Dou, H.; Liu, H.; Yang, X. OD Matrix Estimation Method of Public Transportation Flow Based on Passenger
Boarding and Alighting. Comput. Commun. 2007, 25, 79–82.

38. Zhou, X.; Yang, X.; Wu, X. Origin-destination matrix estimation method of public transportaion flow based
on data from bus integrated-circuit cards. J. Tongji Univ. 2012, 40, 1027–1030.

39. Yang, W.; Wang, H.; Ye, X.; Xu, C.; Jiang, D. OD Matrix Inference for Urban Public Transportation Trip Based
on GPS and IC Card Data. J. Chongqing Jiaotong Univ. 2015, 34, 117–121.

40. Zhang, M.; Guo, Y.; Ma, Y. A Probability Model of Transit OD Distribution Based on the Allure of Bus Station.
J. Transp. Inf. Saf. 2014, 32, 57–61.

41. Nam, D.; Kim, H.; Cho, J.; Jayakrishnan, R. A Model Based on Deep Learning for Predicting Travel Mode
Choice. In Proceedings of the Transportation Research Board 96th Annual Meeting Transportation Research
Board, Washington, DC, USA, 8–12 January 2017.

42. Polson, N.G.; Sokolov, V.O. Deep Learning for Short-term Traffic Flow Prediction. Transp. Res. Part C
Emerg. Technol. 2017, 79, 1–17. [CrossRef]

43. Jie, Y.U.; Yang, X.G. Estimation a Transit Route OD Matrix Using On/off Data: An Application of Modified
BP Artificial Neural Network. Syst. Eng. 2006, 24, 89–92.

44. Zhang, L.; Zhao, S.; Zhu, Y.; Zhu, Z. Study on the Method of Constructing Bus Stops OD Matrix Based on IC
Card Data. In Proceedings of the International Conference on Wireless Communications, Networking and
Mobile Computing, Shanghai, China, 21–25 September 2007.

http://dx.doi.org/10.3141/2112-07
http://dx.doi.org/10.3141/1817-24
http://dx.doi.org/10.1016/j.trc.2012.01.007
http://dx.doi.org/10.1016/j.jtrangeo.2016.11.009
http://dx.doi.org/10.1016/j.trb.2015.11.015
http://dx.doi.org/10.1016/j.trc.2014.03.008
http://dx.doi.org/10.1049/iet-its.2016.0276
http://dx.doi.org/10.1016/j.trc.2016.05.004
http://dx.doi.org/10.1016/j.trc.2014.10.006
https://repository.tudelft.nl/islandora/object/uuid:7190712e-0913-4849-89ae-d1a1a88e66d2/datastream/OBJ
https://repository.tudelft.nl/islandora/object/uuid:7190712e-0913-4849-89ae-d1a1a88e66d2/datastream/OBJ
http://dx.doi.org/10.3141/2263-16
http://dx.doi.org/10.3141/2535-10
http://dx.doi.org/10.5038/2375-0901.14.4.7
http://dx.doi.org/10.1016/j.trc.2017.02.024


Information 2018, 9, 18 21 of 21

45. Alsger, A.; Tavassoli, A.; Mesbah, M.; Ferreira, L. Evaluation of Effects from Sample-Size Origin-Destination
Estimation Using Smart Card Fare Data; American Society of Civil Engineers: Reston, VA, USA, 2017.

46. Nagy, V. Theoretical Method for Building OD Matrix from AFC Data. Transp. Res. Procedia 2016, 14, 1802–1808.
[CrossRef]

47. Ma, X.; Wu, Y.J.; Wang, Y.; Chen, F.; Liu, J. Mining Smart Card Data for Transit Riders’ Travel Patterns.
Transp. Res. Part C Emerg. Technol. 2013, 36, 1–12. [CrossRef]

48. Robinson, S.; Manela, M. Automatic Identification of Vehicles with Faulty Automatic Vehicle Location and
Control Units in London Buses’ IBUS System. Transp. Res. Rec. J. Transp. Res. Board 2012, 2277, 21–28.
[CrossRef]

49. Zhao, J.; Rahbee, A.; Wilson, N.H.M. Estimating a Rail Passenger Trip Origin-destination Matrix Using
Automatic Data Collection Systems. Comput.-Aided Civ. Infrastruct. Eng. 2007, 22, 376–387. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.trpro.2016.05.146
http://dx.doi.org/10.1016/j.trc.2013.07.010
http://dx.doi.org/10.3141/2277-03
http://dx.doi.org/10.1111/j.1467-8667.2007.00494.x
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methods 
	Search Strategy 
	Inclusion and Exclusion Criteria 
	Data Extraction 
	Quality Assessment 

	Result 
	Features of Reviewed Studies 
	Main Destination Estimation Model Description 
	Trip Chaining Model 
	Probability Model 
	Deep Learning Model 
	Comparison of Three Models 

	Analysis of Influence Factors 
	Date Quality Analysis 
	Sample Size 
	Data Preparation 

	Sensitivity Analysis 
	Validation 
	Possible Problems in Inferring Destination 

	Quality of Reviewed Studies 
	Discussion 
	Conclusion and Future Works 
	References

