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Abstract: Because of the existence of uncertainty measurement in the process of bearings degradation,
it is difficult to carry out the reliability analysis. The random performance degradation model is used
to analyze the reliability life of high-speed train bearing with the characteristics of slow degradation
process and relatively stable degradation path. The unknown coefficients are viewed as random
variables in the model. According to the analysis to a bearing testing data, the reliability analysis of
the bearing life is finally completed. The results show that the method can assess reliability of the
bearing life with zero failure by taking full advantage of the performance degradation data in the
small sample size.
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1. Introduction

The requirements for the performance and reliability of key devices are increasing as the
complexity of modern industrial equipment increases. The complex equipment is mechanical and has
multiple parts. Its working performance changes as the service cycle increases or as environmental
stress changes. That is, common degradation, wear, and so on will occur.

With the development of modern information acquisition technology, it is relatively easy for the
signal of the system to degrade. However, the degenerate signals generally have random characteristics
in practice, such as the fatigue crack growth of metal, the reduction of gyroscope precision, and the
reduction of lithium battery capacity. Therefore, it is very difficult and sometimes even impossible to
obtain the results of its reliability assessment for a stochastic degradation system.

In fact, uncertainty measurement and individual differences between systems widely vary in the
process of system degradation, resulting in uncertainty of system reliability. Integrating the influence of
uncertainty measurement and individual differences into reliability analysis to achieve more accurate
reliability analysis of stochastic degradation systems is worth studying. In recent years, many scholars
have been devoted to this [1-8]. Zhang [4] models the degradation state evolution of a system through a
diffusion process with piecewise but time-dependent drift coefficient functions. A numerical study and
a case study of Li-ion batteries were carried out to illustrate and demonstrate the proposed prognostic
method. Pan et al. [6-8] analyzed product reliability using accelerated degradation modeling based on
Wiener and gamma processes with fewer pan re-products. Zheng et al. [5] built a nonlinear degradation
model based on a nonlinear diffusion degradation process to incorporate the uncertainty measurement
and the unit-to-unit variability into the estimated RUL. To analyze the reliability of the light emitting
diode, Wang [9] studied the two types of lifetime prediction based on gamma processes. Tsai [10] used
the gamma process to provide information about the reliability of highly reliable products that are not
likely to fail within a reasonable period of time under traditional life tests, or even accelerated life tests.
Although the Wiener process has been widely applied in terms of degradation modeling, in all of the
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above models, the parameters’ estimation was commonly based on the same distribution and large
sample. The individual differences were not considered, and the performance degradation analysis
was limited by a small sample.

In this paper, according to the range of performance degradation and engineering experience,
a random performance degradation model with a slow degradation process and a relatively stable
degradation path, where the unknown coefficients are viewed as random variables, was employed to
analyze the reliability of the high-speed train bearing (HSTB). We then made a corrective estimation
for the parameters of the model by adopting the maximum likelihood estimation method to solve the
problem of a small sample. The reliability function was then determined. By using the living test data
of a type of bearing, we verified the feasibility of the above method. The results show that the method
can assess reliability of the bearing life with zero failure by taking full advantage of the performance
degradation data in the small sample size.

Section 2 first constructs a random performance degradation model with both the random
performance degradation and individual differences. An estimation method for the unknown
parameters in the model and a solution to the question of a small sample are presented in Section 3.
Section 4 provides an example to verify the validity of the reliability model, and Section 5 concludes
the paper.

2. Random Degradation Model

2.1. Model Assumption

The degradation model satisfies the following assumptions:

L Product failure is caused by degradation, and degradation failure shows that the change trend
of a certain performance parameter is monotonous over time. Let Z(t) denote the performance
parameter value at time ¢. The measured data, written as X(t), corresponding to Z(t), are called
“degraded.” The measured error is written as &(t). Thus, we have Z(t) = X(t) + (). In this paper,
we would not consider the measured error, i.e., Z(t) = X(#).

II.  The tested samples are randomly selected. The test condition and the measurement errors of all
products are the same.

II. The observed values of the performance parameters obey the independent and identical
distribution at all times, whether it is continuous damage or is discrete. The measure
is nondestructive.

IV.  The product is identified as a failure when the performance degradation value increases to the
failure threshold [.

2.2. Degradation Model

If there are n samples measured in the performance degradation test, the m-fold measures of test
data are respectively made at times t1, f, ... , f;;. Thus, the performance degradation data are obtained
as follows:

Xq(ty), X1(t2), - - ., X1(tm)
Xo(ty), Xao(t2), - - -, Xo(tm)

Xn(tl)/ Xn(tZ)/ sy Xl’l(tm)
where Xl-(t]-) is the performance degradation value for the ith sample at time t, i=1,2,...,nandj=1,
2,...,m. According to Assumption III, we know that X (t;), Xa(t;), ... , Xu(t;) obey the independent
and identical distribution.

To estimate the sample reliability, we process for the obtained data. The detailed procedure is
as follows:
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(1) Collect the degradation data, make the statistical analysis, remove the anomalous data, and judge
which distribution is coincident with the performance degradation value at every moment.

(2) Solve the average and variance of performance degradation value at all times and finally
computing the reliability of the tested bearings.

The failure reason is usually too much or too little lubricant, the wear of the cage, or the occurrence
of fatigue pitting for the HSTB. However, the external characteristic of failure is the rise of the bearing
temperature. Thus, we can forecast the bearing life by viewing the bearing temperature as the
parameter of performance degradation. We then randomly select two higher reliability bearings,
installed in the same testing machine, to carry out the reliability test, which is conducted in the
constant load and speed. The test data are measured nondestructively at the same time and once every
10 s so that Assumptions II and III are confirmed. The tendency chart of the tested bearings about
relative temperature, which is relative to the ambient temperature, is shown in Figure 1.
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Figure 1. The changed tendency of the bearing’s relative temperature.

From Figure 1, although we can see three sudden changes in the curve, which are caused by the
suspension of the testing machine since the lubrication pressure is under the lower limit of the set value
during the test, overall, the bearing’s relative temperature rises slowly with time. This phenomenon
reflects the gradual degenerating trend of bearing performance.

We know that, even though the HSTB is a high-reliability and long-life product, the temperature
change still shows slow linear rise as time goes on. Relative to an ordinary bearing, the degenerated
process is slower, and the degenerated path is more stationary. In addition, as a result of uncertain
random factors in the testing environment, there is a rising trend in the curve in Figure 1. In light of the
above features of the bearing relative temperature, we used the Wiener process for modeling [6-11].
This mathematical model can be expressed as follows:

X(t0,6%) = b + vt + SW(t) (1)
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where X(t;0,6%) is the relative temperature of bearing at time t, b is the initial value of bearing
relative temperature, v and J are unknown parameters, and W(t) is the standard Wiener process,
with E[W(t)] =0, E[W(t1)W(t2)] = min(tq, t).

According to Equation (1), we know that the degradation process, i.e., E[X(f)] = b + vt, is linear,
so it is often applied to models for products of linear degradation. Nevertheless, it can also be used to
describe the nonlinear if we make some transformation for the time variable ¢.

In Equation (1), if b and v are regarded as constant, the difference cannot be reflected between
multiple samples. All samples obey the same distribution. However, they are different in processing
technique, manufacturing error, assembling technique, and so on, and the bearing performance is also
different in different working environments.

The above problems may cause instability in bearing performance, so the accuracy in the reliability
assessment may be reduced if the individual differences are not considered when the sample reliability
is evaluated, and it is necessary to describe this uncertain random character. Therefore, we regard b
and v as random variables, which obey the normal distribution, i.e., b ~N(uy, (75), v ~N(o, (75).

Most products’ failure in performance will occur as the performance parameter first reaches the
failure threshold. The product fails when the performance degradation value X(t) reaches a particular
level I. Thus, the failure time T can be defined as [12]

T =inf(X(t) > 1,t > O}. @)

For the failure time T, the inverse Gaussian distribution is mainly a description for the time needed to
achieve the set distance, so its distribution is defined as the inverse Gaussian distribution in [13]. It is
expressed in the following form

F(t) = <I><b+50\/t;l> -I—exp(z(s};l)d)(_bg\j;_l) 3)

where ®(t) is the standard normal distribution function of ¢. Thus, the probability density function
(PDF) of t can be expressed as

[ 2 I—b—ot)?
f(t) = 02 P (—%) 4)

on the condition of the known failure threshold /, and the parameters b and v are viewed as random
variables. We can gain the PDF of bearing life as

FD = JZ0 JZ0 F(8) - N(blp, 63) - N (0| o, 65) dbdo

5)
. > 2 242\ . _w (
= l/\/27T(5 E+0;+552) exp ( 2(52t+6§+5§f2))'

Its distribution function is

ot t oy, 2
Fiy = [ finax= [ 1/\/an(@x 3 ”59‘2)"2'“10(2((;2;( o ﬁs%z))dx ©
) —0o0 b o

so the reliability function of bearing can be evaluated by the following integral:

) 1 — _ x 2
R(t) =1- F(i’) = /1L l/\/27t((52x + 5% + 5%x2)x2 - exp (_2((52x :l_b(sg —’I’EU(S%)xZ) ) dx. )
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3. Parameter Estimation

After arranging for the collected test data, we get the bearing relative temperature X;(t;) for the ith
test sample at time t;, so we take points from the above bearing relative temperature data as follows:
(to, Xi(t0)), (F1, Xi(t)), . .., (tk, Xi(tp)), and tg < t < ... < t; <t. Itis noted that X; = [X;(ty), Xi(t1), ...,
X;(t)] [14,15].

By Equation (1), for the ith test sample, we have

Axij = Z)iAf]' + (5iAW(f]‘) 8)

where Axi]- = Xl(t/) — Xi(tjfl), At]:f]' — tjfl, AW(tJ)=W(t]) — W(tjfl), i=1,2,...,n, andj =12,..., k.
According to the Wiener process, AW(t;) ~N(0, At;), so we have

AXZ']' ~N(Z)1‘At]‘, 51'2Ai’]') (9)

and the Wiener process has the property of stationary independent increments, so we can obtain the
joint PDF about Ax;1, Axjp, ..., Axy; i.e., the sample likelihood function is

L(v;, 6;) = f(Axi1, Dxjp, - .., Axp)=f(Axi)f (Axiz) . .. f(Axi). (20)

Substituting Equation (9) in Equation (10), and taking logarithm on both sides of the equal sign in (10),

we get
k k (AX," — UiAt')z
InL(v;, 6;) =InJ]f(At;) = Y (In / LA (11)
=1 =1 /271(52At 267t
Calculating separately the partial derivative to v; and J; in Equation (11), we get
dlnL & Axjj— it
90 2 o 2AL .
j=1
2
dnL & 1 (Ax;—viAt))

T T (19

Thus, by solving Equations (12) and (13), we get the maximum likelihood estimate of v; and J; as
follows:

5 1 Kk Ax;:

0=y ; . (14)
)2 %
A 1 & (Axi]' — UAZ'At]'

j=1 ]
Assuming the sample size is 1, from Equations (8)—(15), we can get the drifting coefficient
Dy, = {01, Do, -+, Oy} and diffusion coefficient Ds = {51, 5y, -+, 5,1} of every test sample, and the
original value of bearmg relative temperature is Dy, = {by, by, -+, by}. 9; and §; is the estimating

value of drifting coefficient and the diffusion coefficient of the ith bearing, respectively, and b; is the
original temperature of the ith bearing,i=1,2,... ,n.
We can then calculate the estimating values of py, (sz, Uy, and (75, which are as follows:

1”
bi oy = 5 Llbi -

=
S

Il
S|~
‘M=

Il
—_
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L]
o = — i, 0y = —
n &~ n

At the same time, the estimation of diffusion coefficient ¢ is defined as the average of the diffusion
_ n n
coefficient ¢ of all test samples. Thatis, § = E(5) = 1 ¥ 4;.
i=1

Substituting them in Equation (7), we get

o e a2
R(t) = ! -exp| — (E iy = o) dx (16)
t 2 & 4 2 L 248242
\/Zn((S X + 62 + 02x2)x2 2(0"x + 0 + 05x?)

4. Example Analysis

Since the HSTB test is still in the design stage, it is unable to provide the required test data for
verifying the validity of the above method. Consequently, we used the test data of two bearings that
are similar to the HSTB, shown in Figure 1, as an example to carry out our analysis. The initial values
of the bearing relative temperature are b(1) = —0.2 °C and b(2) = —0.9 °C. After the data points from the
test data were extracted every minute and the abnormal data were removed, we had 245 degradation
data points shown in Figure 2.
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Figure 2. Processed bearing performance degradation data.

For the HSTB, considering that it is hard to obtain good data in a short time since the reliability
requirement is higher, the degradation rate is smaller, the degradation process is also slower, and the
design index requirement requires a year for the bench test, so we can extend the interval time of data
point extraction, such as once every 12 h or every other day, to obtain more effective performance
degradation data.

According to Equations (14) and (15), the estimated values of the drift parameters v and the
diffusion parameters J are obtained.

o(1) = 0.019, 6(1) = 0.1142

9(2) = 0.025,5(2) = 0.1141.
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By calculation, we have
fiy = —0.55, 62 = 0.097
fly = —0.003, &2 = 2.27 x 107°.

Then, averaging for the diffusion coefficients of bearings, we get
5= (6(1)+5(2)/2 = 0.11415.

According to the requirements of the bearing design index, the bearing is regarded as a failure
when the bearing temperature is 40° higher than the ambient temperature. That is, the failure threshold
of the bearing relative temperature is 40°. Therefore, substituting the estimate of the above parameters
and the failure threshold in Equations (5), (6), and (16), we get the distribution function, the PDF, and
the reliability function of the bearing life shown in Figure 3.
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Figure 3. (a) Distribution function of bearing life; (b) probability density function (PDF) of bearing life.
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Figure 4. Reliability function of bearing life.
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A railway bearing bench test demands 800,000 km equivalent mileage, and the loading test
demands a possible reach of 1 million km and a potential speed higher than 200 km /h [16]. Thus, the
loading test should not be less than 3333.3 h, and reliability should not be less than 99% for a train
speed of 300 km/h.

In Figure 4, we can clearly observe that Curve 2 is more consistent with the actual situation than
Curve 1, which is obtained from the literature [17]. The reliability of the test bearings is very high,
almost 100%, within 4000 h. At the same time, after the bearing works for 6000 h, with the continual
wear and tear of bearing operation, the reliability decline gradually increases. This result basically
meets the request of the tested bearings installed in the train, whose highest speed is 200 km/h.
However, the observation data was only recorded for 12 h, which is not enough to evaluate reliability,
so there is a small gap between the results attained above and the information provided by the
manufacturer. Therefore, in order to better evaluate bearing reliability, we still need a long test period
to make necessary corrections to reliability evaluation results.

5. Conclusions

Compared with the traditional method based on failure data, performance degradation data
can be measured real time during bearing operation, and the results of the reliability analysis can be
further revised as the test continues. To avoid additional testing, more sufficient reliability information
is necessary. Moreover, differences in product performance may be caused by differences in processing
technology, manufacturing errors, and assembling technology in batch production. Therefore, in order
to forecast the life of different products and determine general characteristics, we take the unknown
coefficients in the model as random variables, so that the model can take the differences between
individuals into account and avoid any reduction in the accuracy of reliability assessment.

Future work may aim to study multiple performance degradation indices to improve the efficiency
of reliability assessment, since a single performance index generally requires a longer test time.
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