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Abstract: With the rapid development of Internet of Things (IoT), more and more static and mobile 
sensors are being deployed for sensing and tracking environmental phenomena, such as fire, oil 
spills and air pollution. As these sensors are usually battery-powered, energy-efficient algorithms 
are required to extend the sensors’ lifetime. Moreover, forwarding sensed data towards a static sink 
causes quick battery depletion of the sinks’ nearby sensors. Therefore, in this paper, we propose a 
distributed energy-efficient algorithm, called the Hilbert-order Collection Strategy (HCS), which 
uses a mobile sink (e.g., drone) to collect data from a mobile wireless sensor network (mWSN) and 
detect environmental phenomena. The mWSN consists of mobile sensors that sense environmental 
data. These mobile sensors self-organize themselves into groups. The sensors of each group elect a 
group head (GH), which collects data from the mobile sensors in its group. Periodically, a mobile 
sink passes by the locations of the GHs (data collection path) to collect their data. The collected data 
are aggregated to discover a global phenomenon. To shorten the data collection path, which results 
in reducing the energy cost, the mobile sink establishes the path based on the order of Hilbert values 
of the GHs’ locations. Furthermore, the paper proposes two optimization techniques for data 
collection to further reduce the energy cost of mWSN and reduce the data loss. 

Keywords: mobile wireless sensor networks; phenomena detection; mobile sink; energy-efficient 
algorithm; IoT 

 

1. Introduction 

The Internet of Things (IoT) is emerging as a new computing paradigm that connects uniquely 
identifiable objects (sensing devices) to an internet-like network. IoT is the natural continuity of the 
ambient intelligence where a large number of sensing devices are interconnected to detect and track 
the environment [1]. These sensing devices are either static or mobile sensors and usually form a 
network and collectively monitor environmental phenomena, such as fire, oil spills, and poisonous 
gases [2,3] Sensors’ data could be used in other applications such as habitat monitoring [4,5], 
undersea monitoring [6], battlefield observation [7], and industrial safety and control [8]. Typically, 
the sensors communicate wirelessly and thus form a wireless sensor network. As these sensors are 
usually battery-powered, energy-efficient algorithm design is required to extend the network’s 
lifetime [9]. 

This paper proposes a distributed energy-efficient data collection strategy, called the Hilbert-
order Collection Strategy (HCS), to collect environmental data using a mobile wireless sensor 
network (mWSN) and detect possible phenomena. The mobile sensors of mWSN (i.e., mobile phones 
or taxis) self-organize themselves into groups and then the sensors of each group elect a group head 
(GH). Typically, a GH is a sensor with the maximum remaining power in the group. Each GH collects 
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the sensed data from sensors in its group at the beginning of every time window, w, and then 
processes the collected data to detect possible local phenomena within the geographical boundary of 
the group. Traditionally, collected data by GHs can be reported to a static sink in one hop if the 
environment is a small geographical region. In relatively big environments, multi-hop routing to a 
static sink is used; however, this may lead to congestion at sensors around the static sink. As a result, 
these sensors suffer from high-energy drainage, which disrupts the flow of data to the sink [10]. To 
alleviate this problem, a mobile sink is proposed to collect the groups’ data from GHs. 

In the proposed HCS, the groups’ data are collected by a mobile sink (i.e., drone) that passes by 
the locations of GHs. Then, the collected data is processed to discover possible global phenomena. 
The mobile sink visits all GHs in a specific order, called data collection path, to collect their data. The 
mobile sink enters the field that contains the GHs once every τ − duration, which is termed the trip 
time, to collect data from GHs. It is essential that the trip time τ is less than, or equal to, the time 
window w. Note that the time window w is the time taken by GHs to collect data from the mobile 
sensors within their groups, process the data and then wait for the mobile sink to pass by to collect 
the data. This suggests that a mobile sink should carefully plan its path to visit all GHs in the shortest 
time possible. Hence, the proposed HCS forms the data collection path based on the Hilbert-order of 
the GHs’ locations. Hilbert order of GHs’ locations provides an overall short data collection path for 
the mobile sink as compared to orders of GHs given by other space filling curves as shown by our 
experiments. 

The paper also proposes two optimization techniques for data collection, called Phenomena-
aware Collection Technique (PCT) and Lazy Update Technique (LUT), to further reduce the data loss 
and energy cost of the mWSN. PCT reduces the number of GHs that form the data collection path to 
only those GHs that detected local phenomena and therefore the data collection path is shortened. As 
a result, the trip time τ is reduced, which results in reducing the data loss. On the other hand, LUT 
proposes to update the data collection path every nth windows, where n > 1, instead of being updated 
every window. That is the overhead of selecting new GHs and forming a new data collection path is 
delayed, which reduces the overall energy cost of mWSN.  

To evaluate the proposed HCS algorithm, we developed a new energy model. The proposed 
HCS algorithm and optimization techniques are validated using a comprehensive set of experiments 
implemented on NS2 network simulator. 

The main contributions of this paper are summarized as follows: 

• A distributed energy-efficient algorithm, called Hilbert-order data collection strategy (HCS), to 
collect environmental data and detect possible phenomena. HCS method uses Hilbert-order 
method to compute the data collection path of the mobile sink. 

• Two data collection optimization techniques, namely Phenomena-aware Collection Technique 
(PCT) and Lazy Update Technique (LUT), to reduce the data loss and overall energy cost of the 
network.  

• An energy model for the proposed mobile wireless sensor network. 

The rest of the paper is organized as follows. In Section 2, we review the related work. Section 3 
presents a formal definition of phenomena detection in mWSN and outlines the proposed solution. 
The proposed HCS algorithm and the optimization techniques, PCS and LUT, are presented in Section 
4. In Section 5, we present the energy cost model of the proposed approach. Section 6 presents our 
simulation experiments. Finally, Section 7 concludes the paper. 

2. Related Work 

IoT has been recently used to intelligently monitor the environment. Using a large number of 
sensing devices that are interconnected, environment information is sensed and reported to a sink to 
detect and track phenomena [1]. Detecting phenomena using sensor networks has received the 
attention of many researchers in the data mining community. In this section, we survey the related 
work of phenomena detection by sensor networks. 
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2.1. Detecting Environmental Phenomena 

Several research works were conducted to detect outliers in data streams produced by wireless 
sensor networks (WSNs). The problem of detecting phenomena using deployed sensors is defined as 
the detection of outliers in the collected sensor’s data [11]. Rajasegarar et al. [12] propose a cluster-
based global outlier detection technique. This approach reduces the communication overhead 
between sensors and the sink by summarizing the data at the cluster head and then reporting 
summaries to the sink rather than raw sensor measurements. In [13], a static WSN collects and reports 
Discrete Fourier Transformation representations of the data streams to reduce the dimensionality of 
the streams. Then, a grid based clustering technique is used to detect phenomena. The work in [2] 
improved the system in [13] by using a distributed scheme to reduce the energy cost of the WSN; 
however, both systems consider static nodes and static sink. The work in [14] proposed a cluster-
based system for distributed event detection. A similar system proposed by [15] in which sensors are 
divided into cells based on their location. Each cell has a group head that collects the data from the 
sensors within the cell. An event is detected by matching the collected data with a template grid. 
Sheng et al. [16] presented a histogram-based technique to identify global outliers. To reduce the 
communication overhead, a nearest neighbor-based approach was proposed by the authors of [17], 
in which each sensor uses similarity function to detect local anomalies and then send detected outliers 
to neighboring nodes for verification. The above systems only consider static sensors. 

Few research works address the problem of gathering data in mobile sensor networks by a 
mobile sink. For example, Liu et al. [18] minimize the energy consumption of data gathering in mobile 
WSN by first electing group head and then cluster data using a mechanism called CM (Clustering 
with Mobility). In [19,20], the authors discussed the effects of various group formation mechanisms 
in mobile sensor networks using a Simple Mobility model. Davies [21] used a Random Walk Mobility 
model where a sensor node can randomly choose a speed within a given range and a direction to 
move. Random Direction Mobility model was suggested by Royer et al. [22], in which each sensor 
has a constant speed and can randomly choose a direction to travel. 

2.2. Mobile Sinks in WSN 

Recent research studies have focused on collecting data using mobile sinks to reduce congestions 
at sensors around the static sink. However, a critical issue that should be addressed is the delay in 
data collection, which causes data loss.  

The authors of [23] proposed a tree-based heuristics topology control algorithm to maximize the 
lifetime of WSNs with mobile sinks. Within a predefined delay tolerance level, each node does not 
need to send the data immediately as it becomes available. Instead, a node can store data temporarily 
and transmit it when the mobile sink arrives at the most favorable location. In [10], a framework is 
presented to study the impacts of multi-hop packet routing in WSNs with mobile sinks. Cluster heads 
buffer the received data until the mobile data harvester contacts it. A ring structure is propose by [24] 
to provide load-balanced data delivery and achieve uniform-energy consumption across the 
network. To reduce load on the ring nodes, each ring node independently selects new ring nodes 
among their neighbors when their batteries nears dying, while conserving the closed loop and the 
encapsulation of the network center properties. The drawback of Ring Routing is its scalability on 
larger scale WSN. Recently, some researchers computed the shortest data collection path for a mobile 
sink such as the Traveling Salesman Problem, TSP [25,26]. Although TSP based methods produce a 
short traveling path for the mobile sink, they require calculation of a distance matrix (distances 
between all the nodes), which is one of the largest drawbacks of TSP implementation. The work in 
[27] proposed a mobile sink routing strategy for a network based on a combined time-driven and 
event-driven pattern, which periodically transmits routine data to the sink. The authors of [28] 
proposed an approach to calculate an optimal sink path that takes into consideration the nodes 
distribution, which is effective in environments with unbalanced node distribution, however finding 
the optimal path requires high communication overhead. In [29], an approach to use a mobile sink to 
collect data from cluster representatives is proposed. The sink chooses its path based on the closest 
clusters’ representatives. The authors of [25] proposed a data collection scheme in which a mobile 
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sink moves in the environment in an undetermined path and broadcast its location from time to time 
to all nodes. Although the paper shows a faster data delivery, the approach consume considerable 
amount of energy in forwarding the data—sometimes via multiple hops—to the location of the sink. 

3. HCS Design Issues 

In this section, we formulate the problem and outline the solution as well as important design 
issues, such as sink mobility, sensors’ mobility and time window.  

3.1. Problem Formulation 

The key problem addressed in this paper is to utilize IoT to detect environmental phenomena, 
such as fire, air pollution and oil spills. Given a mWSN, which is a set of mobile sensors S = {s1 + s2 + 
… + sNs}, where Ns is the total number of mobile sensors that sense data about the environment, the 
aim is to design an efficient algorithm to collect and process such data to detect environmental 
phenomena. 

To maintain updated information about the phenomena, the proposed algorithm should collect 
and process the environment data periodically. That is once every time window w. 

Definition 1: (time window, w) is the time taken by GHs to collect data from the mobile sensors within their 
groups, process the data and then wait for the mobile sink, MS, to pass by to collect the data.  

Where the time of w is decided by the urgency of the application. If we assume that each group 
of mobile sensors are moving in a certain region of the monitored field, then the proposed algorithm 
should collect the data from each group of mobile sensors. For example, let the monitored field be 
the city of Dubai, which consists of different regions, and in each region there are mobile sensors (i.e., 
sensors mounted on taxis, or mobile phones) sensing the environment, then a mobile sink MS should 
pass by these different groups to collect the data. Then, MS aggregates the data and detects the global 
environmental phenomena. 

Definition 2: (trip time, τ) is the time taken by MS pass by the GHs in the monitored field to collect the data 
of all groups. 

Therefore, it is essential that w ≥ τ. The tradeoff is that as w is extended to be very large, the 
freshness of the collected data becomes low since the mobile sensors report their sensed data at the 
beginning of every window. However, if w is small, that is τ > w, then data loss might occur. That is 
because a new window starts before MS finishes its data collection and thus some mobile sensors will 
start collecting the new data that results in overwriting the collected data of the previous window. 
Thus, the proposed solution for phenomena detection, should balance the times of w and τ to avoid 
data loss. Moreover, to extend the lifetime of the mobile sensor network, the total energy cost ξtotal of 
the mWSN should be minimized. 

3.2. Solution Outline 

We propose Hilbert-order Collection Strategy, HCS, which is an energy-efficient data collection 
strategy to minimize the data loss and energy cost of the network. In HCS, mobile sensors self-
organize themselves into groups and then the sensors of each group elect a GH. Each GH collects the 
sensed data from sensors in its group every time window, w, and then processes the data to detect 
possible local phenomena within the geographical boundary of the group. A MS passes by the 
locations of GHs to collect the group’s data, which is processed to discover possible global 
phenomena. 

Thus, HCS shortens the data collection path of MS by ordering the locations of GHs by their 
Hilbert values. As a result, τ is reduced, which in turn reduces the data loss. Additionally, the paper 
proposes PCT and LUT, which are optimization techniques to further shorten the data collection path 
and greatly reduce the energy cost of the mWSN, respectively. PCT limits the number of GHs 
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reporting the phenomena to those that detected the phenomena and LUT delays update of electing 
new GHs for the following window until the nth window instead of performing the update at the end 
of every window. 

3.2.1. Sensor Mobility 

Sensors move according to the Random Walk model within w, where a sensor randomly chooses 
a speed within a given range and direction at the beginning of every window wi. We assume that the 
sensor’s speed and direction are fixed within wi. However, the speed and direction of individual 
sensors may change in different windows. Within a window, different sensors may have different 
speeds and directions. The mobile sink travels according to the computed data collection path. We 
assume that the trip time, τ, of the mobile sink does not exceed the time allowed by the its battery. 

3.2.2. Time Window 

Monitoring an environment means sensing continuously the surrounding area and reporting 
the sensed data. The reported data from each sensor is considered as an infinite data stream. Due to 
the characteristics of these data streams (infinite, continuous and high rate), a practical solution to 
detect phenomena from data streams is to divide the time dimension into time windows, w. The data 
corresponding to each window is processed and reported in the following phases (see Figure 1). 

• Group Formation: mobile sensors associate themselves to the nearest GH. 
• Local Phenomena Reporting: mobile sensors of each group report the observed phenomena data 

as well as their status information (remaining battery power, speed and direction) to their GH. 
• GHs Election for Next Window: new set of GHs are elected for the next window based on their 

status and phenomena information. 
• Data Collection by Mobile Sink: MS aggregates the collected local phenomena data to form a global 

phenomenon and computes the new data collection path for the next window. 

The details of these phases will be discussed in Section 4. 

Group 
Formation 

Local Phenomena 
Reporting 

GHs Election for 
Next Window  

Data Collection 
by Mobile Sink 

 

wi-1     wi+1 

 

Figure 1. Phases of phenomena detection in the proposed scheme. 

3.2.3. Data Collection Path 

In HCS, the Data Collection by Mobile Sink phase (see Figure 2), the MS computes a new data 
collection path of the next window based on the locations of the collected new set of GHs, which were 
computed by the current GHs. The MS uses a space-filling curve to create an optimized order of GHs 
to be visited in the next window. HCS uses the Hilbert-order values of the GHs’ spatial locations to 
compute the data collection path. The proximity property of the Hilbert-order results in a shorter 
data collection path. Hence, the data loss is greatly reduced. Note that data loss occurs when the trip 
time τ of MS is greater than the window time w. 

The Hilbert-order value of a specific GH is determined based on its (x, y) location in a two-
dimensional space [30]. Figure 2 shows an example of four group heads {A, B, C, D}. The space is a 
grid of size 4 × 4 cells. The Hilbert order of all groups will be computed by MS. The Hilbert-order 
value of GH A is formed by interleaving the value 01 of the x-coordinate and the value 10 of the y-
coordinate. Thus, the Hilbert-order value of the group head A is (0111). Numbers in the cells of Figure 
2 show the Hilbert-order value of each cell. In HCS, the data collection path of the MS is GH A, GH B, 

wi 
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GH C and finally GH D. However, for HCS with PCT, the data collection path is GH A, GH B and GH 
C; that is the path only includes the GHs that detected the phenomena. 

 
Figure 2. An example that shows the data collection path of all group heads. 

4. Phenomena Detection using mWSN and MS 

Given a set of mobile sensors S = {s1 + s2 + … + sNs}, where Ns is the total number of mobile sensors, 
we propose the HCS algorithm, which is a distributed energy-efficient algorithm to detect 
phenomena in an mWSN environment. Table 1 presents the descriptions of frequently used symbols 
that in the rest of the paper. 

Table 1. Definitions of the frequently used symbols. 

Symbol Definition
GH Sensor elected as a group head 
NS The number of mobile sensors  
MS The mobile sink 
τ the trip time (see Definition 2) 
w Window time (see Definition 1) 

NGH The number of elected group heads 
NGM The number of sensors in a group 
NPM The number of sensors which detected phenomena inside a group 
ET Energy cost by the sensor’s transmitter  
ER Energy cost by the sensor’s receiver  

The proposed HCS that detects environmental phenomena has the following assumptions: 

• The mobile sensors have prior knowledge of the normal range of values (non-phenomena 
values). 

• The mobile sensors are homogenous; that is they have the same processing power, initial battery 
life, storage, and communication range. 

• Individual mobile sensors may have different speeds and direction. 
• The mobile sensors are all distributed on the ground of the monitored field, while the MS flies 

over at about equal height from GHs. 
• GHs are normal mobile sensors. 

Below we discuss the phases of the proposed HCS. 
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4.1. HCS for Phenomena Detection 

At the beginning of every window, the new GHs announce themselves (broadcast their IDs) to 
the sensors in the environment. Then, each sensor associates itself to the closest GH; this is called 
Group Formation phase, see Figure 1. In the Local Phenomena Reporting phase, sensors that sensed 
phenomena report two types of information to their GHs: (1) sensed phenomena information; and (2) 
sensor status information (remaining battery power, speed and direction). Each GH collects the 
phenomena information from the sensors within its group and then it aggregates the collected 
information to discover local phenomena (phenomena within the boundaries of its group). In the 
third phase, GHs Election for Next Window, each current GH selects a GH for the next window based 
on the received status information of the sensors and the computed local phenomena location. That 
is, the new GH should have enough remaining power, and be located within the computed local 
phenomena as indicated by its speed and direction. Note that when the network is first deployed, the 
GHs in the initial window are selected randomly (this happens only once in the lifetime of the 
network). In the final phase, Data Collection by Mobile Sink, the MS passes by GHs to collect their 
local phenomena information as well as the elected new GHs for the next window. Then, MS joins the 
collected local phenomena information to form the global phenomena (phenomena in the whole 
environment), which is then sent to an application domain for further processing and tracking. 
Additionally, MS builds a new data collection path of the next window based on Hilbert order of the 
locations of the collected new set of GHs.  

4.2. HCS Algorithm 

In the HCS algorithm (see Algorithm 1), the GHs announce themselves as the new set of GHs by 
broadcasting their IDs (Lines 1–3) to all sensors in the environment. Then, each mobile sensors si 
associates itself with the closest GH (Lines 4–8) to minimize future communication costs. As a result, 
sensors are clustered into multiple disjoint groups. Each group has its own GH. Then, each sensor 
that observes a phenomenon, reports its phenomena observation, poi, as well as its status to its GH 
(Lines 9–14). The status of a sensor includes remaining battery power, speed and direction that will 
be used by the GH to select a GH for the next window. In line 15–20, each GH joins the collected 
phenomena observations (all poj) to detect local phenomena LPi. Also, each GH elects a new GH, 
GHinew, for the next window using the distributed group head election algorithm (DGH), which was 
proposed in [3]. In DGH, each current GH elects a new GH based on the on the sensors’ statuses (all 
ssj) and the computed local phenomena information, LPi. Thus, selection of the new set of GHs is 
based on the battery power, speed and direction. Thus, it is assumed that new GHs for the next 
window will be within the sensing range of all its members and be able to collect their data. In lines 
21–24, every GHi report its LPi to MS. Additionally, every GHi reports the computed GH for the next 
window, GHinew, to MS. Note that GHs that did not detect local phenomena would remain as the GHs 
for the next window and thus would report themselves to MS among the GHinew. Then, MS joins all 
the collected local phenomena to create global phenomena GP (see line 25), which is sent to an 
application domain to further processing and tracking of the detected environmental phenomena. 
Then, in line 26, MS uses the GHinew to compute the data collection path for the next window. The data 
collection path is computed based on the Hilbert-order values of the spatial locations of all new GHs. 

Algorithm 1: HCS 
Input: poi, ssi // poi is Phenomena observation, ssi is Sensor status. 
Output: GP, DataCollPath // GP is global phenomena; DataCollPath is the computed data 

collection path for the next window. 
1:  for each GHi in GHs do 
2:     broadcastID(GHs) 
3:  end for 
4:  for each si in S do 
5:     if s ∉ GHs 
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6:        AssociateWithClosestGH (GHs) 
7:     end if 
8:  end for 
9:  for each si in S do 

10:     if si sensed phenomenon 
11:        reportObservationToGH (po, GH) 
12:        reportStatusToGH (ss, GH) 
13:     end if 
14:  end for 
15:  for each GHi in GHs do 
16:     if GHi detected local phenomena  
17:        LPi = computeLocalPhenomena (all poj) 
18:        GHinew = electNewGHusingDGH (all ssj, LPi) 
19:     end if 
20:  end for 
21:  for each GHi in GHs do 
22:     reportLocalPhenomenaToSink (LPi, MS) 
23:     reportNewGHsToSink (GHinew, MS) 
24:  end for 
25:  GP = computeGlobalPhenomena (all LPi) 
26:  DataCollPath = computeDataCollectionPath (all GHinew) 
27:  Return GP 

4.3. Optimizations of HCS 

To increase the lifetime of the mWSN, we propose two optimization techniques for data 
collection to the proposed HCS, namely the Phenomena-aware Collection Technique (PCT) and Lazy 
Update Technique (LUT). 

4.3.1. PCT 

To reduce energy cost, PCT optimizes HCS by limiting the number of participating GHs in 
reporting the local phenomena to MS (see the GH Election for Next Window phase shown in [3]). That 
is in HCS with PCT, the data collection path of MS only contains those GHs that detected local 
phenomena. Usually, phenomena size is less the environment size. Thus, the smaller the phenomena 
in the environment, the smaller the number of GHs that detects it. That is in HCS with PCT, the data 
collection path should contain the new set of GHs, GHinew, of the groups in which the local phenomena 
were detected. However, it is assumed that a phenomenon is dynamic (moving, expanding and/or 
shrinking), it may reach another set of GHs in the environment in the next window. Therefore, the 
MS should predict the set of GHs, GHpredicted, to which the phenomena will move in the next window. 
This prediction is based on the speed and direction of the global phenomena, which was computed 
from the collected local phenomena information. Thus, MS uses the GHinew and GHpredicted sets of GHs 
to computes the data collection path for the next window. The data collection path is computed based 
on the Hilbert-order values of the spatial locations of two sets of GHs. To implement HCS with PCT, 
we replace lines 26 by the following two lines to predict GHpredicted and to compute the data collection 
path for the next window from the two sets of GHs: all GHinew and GHpredicted. 

GHpredicted = predictFutureGHs(GP) 

DataCollPath = computeDataCollectionPath(all GHinew, GHpredicted)  

Therefore, HCS with PCT reduces the data collection path of MS since only those GHs that detect 
phenomena will participated in the reporting to MS. This reduces the consumed energy of network 
(see Figure 5) as compared to the HCS, in which all GHs participate in reporting to MS.  
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4.3.2. LUT 

LUT reduces the energy cost by performing the election of new GHs (see Figure 1), and thus 
forming the groups, at the end of every nth window instead of at the end of every window. The 
selected n value will be fixed for all GHs across the mWSN. Note that LUT is applied on top of PCT. 
That is after computing data collection path of PCT the path will remain the same for fixed for n 
windows. By delaying the overhead of electing new GHs, LUT reduces the overall energy cost of 
mWSN as compared with HCS with PCT (without using LUT). However, the chances of losing some 
phenomena data becomes higher as the value of n increases. The reason is that as GHs are not updated 
across windows, the possibility of phenomena moving to other regions increases after the first 
window (n = 1). 

5. Energy Cost Model 

This section provides detailed analysis of the energy cost for the proposed algorithms. The two 
most critical sources of energy cost that impact the lifetime of the sensors and were the main focus of 
research in this field are the communication energy cost and the computation energy cost [23,31]. 
Another source of energy cost is the memory storage cost of the sensors [32]; however, due to the 
nature of our application, collected information by a mobile sensor within a window are discarded 
when the window ends. Communication cost is defined as the energy cost required for sending or 
receiving packets between two different sensors. The computation cost is defined as the energy cost 
required by the sensor’s CPU to perform computational operations. 

Table 1 compares the communication cost with the computations cost of a sensor with processor 
MSP-430 and radio antenna CC2420, which are common characteristics in mWSNs. Table 2 shows 
that the wireless communication cost is three orders of magnitude more than the computational cost 
of the sensor. Therefore, the proposed algorithms focus on minimizing the communication cost. We 
assume a scheduling scheme such as ALOHA-Q [33,34], is used to minimize the energy cost during 
rebroadcasting information and idle listening; therefore, the resulting energy cost from idle listening 
is minimal and can be ignored. The amount of energy required to send j packets from one sensor to 
another (	 	, 	, ) is computed as in [3,33]. ( , , ) = Etrans * j * k * dα (1) ( , ) = Ereceive * j * k (2) 

where Etrans is the energy cost in the sensor’s transmitter electronics and Ereceive is the energy consumed 
by a sensor while receiving a k-bit packet. The parameter k is the packet size in bits, d is the distance 
between the sending and the receiving sensors, and α is the path loss exponent that expresses the 
radio frequency propagation path loss suffered over the wireless channel [35]. We assume that all 
sensors have the same sensing range and thus it is valid to assume that d is fixed for all sensors. Note 
that the communication cost depends greatly on the distance between the sender and the receiver 
sensors powered to α. 

Table 2. The computation cost and communication cost per byte data. 

 MSP-430 Instruction 
Computation 

CC2420 Radio 
Transmission 

CC2420 Radio 
Receiving 

Energy (μJ/byte) 0.0008 1.8 2.1 
Ratio 1 2250 2600 

Below we discuss the energy cost of the different phases of the proposed phenomena detection 
algorithm. 

I. Group Formation 

The elected GHs for the current window broadcast their new status to inform other sensors in 
the network. Since a GH broadcast cannot reach the whole environment; therefore, we assume that 
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each non-elected sensor rebroadcasts the announcement messages it receives from each elected GH 
once. The energy cost per sensor in this phase is as follows: 

 = broadcast cost * NGH + ( , )* NS * NGH (3) 

where the broadcast cost * NGH is the cost of rebroadcasting the messages of the NGH group heads, and 
ER(j,k)* NS * NGH is the cost of receiving the broadcasts of the NGH group heads. Hence, the total energy 
cost ξ1 for this phase by all sensors NS is 

ξ1 = ∑  (4) 

After GHs announce themselves as the new group heads, each sensor associates itself to the 
closest GH. 

II. Local Phenomena Reporting 

In this phase, each GHi gathers information from the sensors in its group and forms a local view 
of the phenomena. The sensors of each group report their information (speed, direction, location, 
remaining battery power) along with the phenomena information to their GHs. The sensor’s 
information is used in the GH election phase to determine the new GHs. Note that the proposed 
algorithms use the DGH election algorithm in [3] to elect the new GHs of the next window. Hence, 
the energy cost per GH and energy cost per member sensor in a group are given by Equations (5) and 
(6), respectively. 

 = ( , + )* NGM (5) 

 = ( , + , ) (6) 

where  represents the size of sensors’ information and  represents the size of the 
detected phenomenon information if it exists. Thus, the total energy cost ξ2 for this phase is: 

 = +  (7) 

III. Data Collection by Mobile Sink 

In this phase, as the mobile sink pass by a GH, the GH delivers its collected data collect to the 
mobile sink. The energy cost per GH is: 

= , ,  (8) 

where d is the distance between the GH and the mobile sink, j is the number of packets that contain 
the data of every reporting sensor in the group, and NPM is the number of sensor that reported the 
local phenomena information in the group. The distance d is fixed between all GHs and the mobile 
sink. Therefore, the total energy cost ξ3 for this phase is:  

 =  (9) 

IV. Group Heads Election for Next Window 

In this phase, GHs are electeda for the next window using the DGH election algorithm proposed 
by [3]. The election of new GHs is purely computational performed by the current GHs with no 
required communication. Thus, the energy cost of this phase is negligible. 

Therefore, the total energy cost ξtotal of all phases is: 
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ξtotal =   (10) 

6. Experimental Results 

This section evaluates the time and energy consumption of the proposed phenomena detection 
algorithm, HCS, and the optimization algorithms. We implemented HCS as explained in Section 5. In 
the implementation of Phase four, we adopted the distributed group head election algorithm, called 
DGH, that was proposed by [3] to elect the new set of GHs for the following window. In DGH, at the 
end of every window wi, each group independently chooses its GH for the next time window wi+1. 
That is each current GH in wi selects the most suitable sensor in its group to be the next GH of the 
group. The selection criteria of new GH is based on the closeness of the sensor to existing phenomena 
(if any), in addition to the remaining battery power, speed, and direction. 

The mWSN was implemented using the network simulator NS2. Table 3 presents the values of 
the different parameters used in the experiments. All experiments are performed on a PC running 
Ubuntu with Intel Core 2 Duo CPU 2.20 GHz, and 4 GB of RAM. 

Table 3. Parameter values used in the experiments 

Variable Value
ET 1.8 μJ/byte 
ER 2.1 μJ/byte 
NS 1000 mobile sensors 

NGH 5, 10, 50, 100, 200, 300, 500 
K 5 bytes 

Sensor Speed Range 0–5 m/s 
α 2 

6.1. Evaluation of the Data Collection Strategy 

Given an mWSN with fixed number of mobile sensors, the experiment in Figure 3 measures the 
effect of different orderings of GHs (different data collection paths) on the total time required to 
collect phenomena information for different number of groups. The experiment compares the 
proposed Hilbert-based ordering of GHs, which constitutes the data collection path of MS, with other 
orderings of the GHs, such as the Random, Z-order and Spiral. In Figure 3, the x-axis represents the 
number of GHs in the environment and the y-axis represents the total time required to collect the data 
from all GHs. The time values in this experiment are the average of 50 experiments.  

Figure 3 shows that the Hilbert based ordering of GHs, which is used by the proposed HCS 
algorithm, requires the least time to collect data from all GHs. That is Hilbert ordering results in the 
shortest data collection path of MS. The Hilbert ordering achieves a saving of more than 90.0% of the 
total data collection time required by the Random approach, more than 88.0% as compared to the 
Spiral approach, and more than 25.0% as compared to the Z-order approach. 

Figure 4 measures the effect of different orderings of GHs (different data collection paths of MS) 
on the data loss for different number of GHs. Note that the number of GHs is equivalent to the number 
of groups in the environment. Also, since the number of mobile sensors is fixed, the number of GHs 
gives an indication of the average size of the formed groups. The more GHs in the environment the 
smaller the average size of the groups and vice versa. In Figure 4 the x-axis represents the number of 
GHs in the environment and the y-axis represents the percentage of data loss. The values in the figure 
are the average of 50 experiments. 
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Figure 3. Comparing the total time required of by the mobile sink to collect data from all group heads 
(GHs) using different orderings of GHs (different collection paths). 

In this experiment, we fixed the window time, w, to be large enough to collect data from 100 GHs 
using Hilbert-based ordering. That is, the data collection time τ of MS in this experiment is equal to 
w. Thus, this window time is used to compute the percentage of data loss for all orderings of GHs 
(Hilbert, Z-order, Spiral and Random) across different number of GHs (see Figure 4). The data loss 
occurs when a new window wi+1 starts before the data of the current window wi is collected by MS. 
Note that for Hilbert-based ordering of GHs the percentage of data loss is zero when the number of 
GHs is less than, or equal to, 100; then, the percentage of data loss starts to increase gradually. It is 
shown that the percentage of data loss when using Hilbert ordering (proposed by HCS) is the lowest 
as compared with the other orderings of GHs. This result confirms that Hilbert-based ordering of GHs 
gives the shortest data collection path for MS as compared to other orderings of GHs. For example, 
with 200 GHs in the environment (about 20% of all GHs), a data loss of 3% for Hilbert-based ordering, 
12% for Z-order, and 74% for both Random and Spiral ordering. 

 

Figure 4. Comparing the percentage of data loss using different orderings of GHs 

6.2. Evaluation of the Optimization Techniques 

0

500

1000

1500

2000

2500

3000

0 100 200 300 400 500 600

Ti
m

e 
(S

)

Number of Group Heads

Random

Spiral

Z-Order

Hilbert

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0 100 200 300 400 500 600

Da
ta

 lo
ss

 %

Number of Group Heads

Random

spiral

Z-Order

Hilbert



Information 2017, 8, 123  13 of 17 

 

To further reduce the energy cost of the mWSN, we propose two data collection optimization 
techniques to the proposed HCS, namely the Phenomena-aware Collection Technique (PCT) and 
Lazy Update Technique (LUT). PCT shortens the data collection time and thus reduces data loss by 
limiting the number of GHs reporting the phenomena to MS. That is, the data collection path of MS is 
shortened to only include those GHs that detected local phenomena. On the other hand, LUT reduces 
the energy cost by performing the election of new GHs, and thus forming the groups (see Figure 6), 
at the end of every nth window instead of at the end of every window. By delaying the overhead of 
electing new GHs, and thus forming the groups, LUT reduces the overall energy cost of mWSN. 

6.2.1. Effect of PCT 

In Figure 5, given an mWSN with fixed number of mobile sensors, this experiment compares the 
percentage of data loss of the proposed HCS with that of the HCS with PCT. Note that HCS with PCT 
is similar to the HCS except that MS passes by only the GHs that detected the phenomena instead of 
all GHs in the environment. The experiment compares HCS and the HCS with PCT algorithms on the 
data loss for different number of GHs. In Figure 5, the x-axis represents the number of GHs in the 
environment and the y-axis represents the percentage of data loss averaged over 50 experiments. In 
this experiment, we fixed size of the phenomena and the number of GHs that detected the phenomena 
to 100 GHs. Figure 5 shows that percentage of data loss of HCS with PCT algorithm is much lower 
than that of HCT. This is due to the fact that in HCS with PCT only the GHs that detected the local 
phenomena report the phenomena to MS and thus the data collection path of MS is shorter than a path 
the includes all GHs in the environment. Therefore, MS is able to visit more GHs, which have data, 
and thus reduce the data loss. Note that the data loss results from the fact that a new window starts 
before MS can visit all GHs. The collected data at the unvisited GHs by MS will lost. 

 
Figure 5. Comparing the data loss percentage using Hilbert Collection Strategy and different 
participating strategy. 
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Figure 6. Average latency cost of detecting phenomena when using Lazy Update Technique (LUT). 
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percentage of unvisited GHs. In Figure 6, the x-axis represents the number of GHs in the environment 
and the y-axis represents the latency averaged over 50 experiments. HCS corresponds to the case 
where n = 1; that is the update of new GHs is performed at the end of every window. Figure 6 shows 
that the latency when n = 1 is the lowest (almost no latency) as compared with higher values of n. 
This is because when n = 1, the GHs will be updated every window and thus MS will have an updated 
list of GHs that detected phenomena. At n > 1, more and more GHs detect the phenomena but are not 
visited by MS causing more and more latency. 

7. Conclusions 

This paper addresses the problem of detecting phenomena such as oil spills, air pollution, etc., 
in the IoT environment. The environment consists of mobile sensors, mWSN and a mobile sink, MS. 
We proposed a distributed energy-efficient scheme to detect environmental phenomena from the 
data collected by the mWSN. These mobile sensors self-organize themselves into groups and elect a 
GH for each group. Each GH collects data from sensors in its group to detect possible local 
phenomena. The MS passes by GHs’ locations to collect the group’s data and discover the global 
phenomena. To reduce the energy cost of the mWSN, the paper proposes an efficient data collection 
strategy, called HCS. In HCS, the order of data collection by MS is based on the Hilbert-order of all 
GHs’ locations. To further reduce the energy cost of mWSN, the paper proposes two data collection 
optimization techniques. 

The proposed solutions are validated using a comprehensive set of experiments. We 
implemented the mWSN using NS2 network simulator. Our simulation results show that HCS 
achieved a saving in the energy cost around 91.4% as compared to the base algorithm (Random). By 
combining HCS with PCT, the data loss decreased by 97.7% as compared with the HCS algorithm. 
Furthermore, LUT reduced the energy cost by about 50% if LUT is applied at n = 2 and 75% if it was 
applied at n = 4. 
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