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Abstract: Data cannot be shared and leakage cannot be located simultaneously among multiple
pipeline leak detection systems. Based on cyber-physical system (CPS) architecture, the method for
locating leakage for pipelines with multibranch is proposed. The singular point of pressure signals
at the ends of pipeline with multibranch is analyzed by wavelet packet analysis, so that the time
feature samples could be established. Then, the Fischer-Burmeister function is introduced into the
learning process of the twin support vector machine (TWSVM) in order to avoid the matrix inversion
calculation, and the samples are input into the improved twin support vector machine (ITWSVM)
to distinguish the pipeline leak location. The simulation results show that the proposed method is
more effective than the back propagation (BP) neural networks, the radial basis function (RBF) neural
networks, and the Lagrange twin support vector machine.

Keywords: cyber-physical system; pipeline leakage; leak location; twin support vector machine;
signal singular point; wavelet packet analysis

1. Introduction

Pipeline transportation is widely used in oil and gas transportation because of its safety, reliability
and economy [1,2]. However, pipeline leakage can cause environment pollution and financial losses.
Therefore it is important to detect and locate the leakage under pipeline working conditions [3].

Currently, most of the reports about leak detection systems based on data-driven techniques
are directed at straight pipelines. According to data-driven methods, there are three main steps are
necessary for leak detection and location based on signals analysis: feature extraction; feature selection,
and; pattern recognition. Traditional feature extraction such as wavelet packet decomposition (WPD),
empirical mode decomposition (EMD), and local mean decomposition (LMD) have been widely used
in pipeline leak detection [4,5]. Moreover, the detection performance depends on the quality of the
selected features, and the feature selection depends largely on prior knowledge [6]. Several research
results have shown that pattern recognition such as support vector machine (SVM), least squares
support vector machine (LSSVM), and least squares twin support vector machine (LSTSVM) have
a powerful classification efficacy [7–10], and they are very suitable to effectively build the complex
relationships in leak detection and location. Therefore, it is meaningful to establish twin support vector
machine (TWSVM) for pipeline leak detection.

Pipelines with multibranch are quite common and leak detection for them is one of the most
popular areas of research in this field [11]. Recently, some studies have shown that leakage
from water-filled systems, such as the leakage of pipelines, can be well identified and localized
by acoustic waves [12]. Acoustic leak detection methods have been studied, and their pipeline
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networks experiment has been presented [13,14]. Conventional leak detection system needs to connect
instruments with the laying of cables. However, the geographical environment of pipeline laying,
sometimes, is extremely bad and it is difficult to install cables. Furthermore, factors such as aging
and material defects could affect the stability of signal transmission and increase maintenance costs.
Therefore, the combination with wire transmission and wireless transmission [15] is adopted in
long-distance pipeline leak detection systems.

If the leak detection system is used for branch pipeline is different from the one used for the main
pipeline, data cannot communicate among different leak detection systems. When adding new sensors,
the data structure of the main program needs to be amended and the extensibility is poor. In addition,
lacking real-time data structure and algorithm, the information delay is quite common and larger errors
could be produced in locating leakages. The network of cyber-physical system (CPS) is heterogeneous
network [16], in other words, the network can contain different attributes simultaneously, and the
information range and form of communication are unrestricted. In order to transfer the information
between layers smoothly to meet the real-time requirement and to make it possible to detect and locate
leaks of the pipeline with multibranch, the leakage location method based on CPS is proposed.

When utilizing CPS framework to detect the leakage of a pipeline with multibranch, first,
the wavelet packet analysis is used to extract the time of singular point of the measured pressure
signal, and then the time feature samples are input into the improved twin support vector machine
(ITWSVM) to locate the leakage position.

The rest of this paper is organized as follows. Section 2 introduces the cyber-physical system
design of pipelines with multibranch. The leak location method of pipelines with multibranch is
proposed in Section 3. In Section 4, the simulation results for pipelines with multibranch are analyzed
and discussed. Finally, Section 5 draws the main conclusions and puts forward the plan of future work.

2. Cyber-Physical Leak Location System Design

CPS is the integration of computation, communication, and a control loop, which improves
the stability and reliability of physical applications [17]. In order to solve the problems about
signal transmission between heterogeneous networks, the leak location method of the pipeline with
multibranch is proposed in this paper. Based on CPS, a schematic of the pipeline leak location system
is shown in Figure 1.

The measurement layer consists of a number of instruments, which can measure the values of
internal pressure, flow and temperature of the pipeline. It can communicate with other units through
the network.

The communication layer contains various networks according to actual conditions, such as
Wi-Fi, Zigbee, and 3G/4G, as well as communication between the base station and the network node.
Moreover, the communication between database and data processing unit server is included in this
layer as well. Furthermore, the layer is responsible for data storing and transmitting.

The signal processing layer aims to reprocess the measured signals, to extract and to select features.
Then feature vectors are input into the decision application layer through the communication layer.

The main purpose of the decision application is to remotely and visually monitor the work
conditions of multibranch pipelines. If a leak occurs, it will sound an alarm and locate the position.
Consequently, the decision application layer mainly consists of a decision monitoring unit and a
decision processing unit. The decision monitoring unit includes the feature vectors from the signal
processing layer. In the decision processing unit, the operators analyze and locate the leak position
with using the measured data, which is provided by the decision monitoring unit.

The control layer executes the instructions, which are produced from the decision application
layer and transmitted through the communication layer.
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Figure 1. Schematic of pipeline leak location system based on cyber-physical system. 
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Wavelet packet analysis [18] is an effective time-frequency analysis technique for 
non-stationary signals. Multi-resolution analysis of wavelet packet transform decomposes signals 
into low frequency and high frequency. After that, the process continues to decompose the following 
layers until the preset level, thus the wavelet packet analysis has a better ability to make accurate 
local analysis. Moreover, wavelet packet analysis has better characteristics for furthering 
segmentation and refinement of the frequency band broadened with the increase of scale. Therefore, 
it is a precise analysis method with the characteristics of high frequency band width and low 
frequency band narrow. When the signal is decomposed by wavelet packets, a variety of wavelet 
basis functions can be adopted. For instance, the signal S  is decomposed by wavelet packets in 
three layer decomposition, as shown in Figure 2. 

 
Figure 2. Wavelet packet decomposition of the signal S. 

The signal S  is decomposed by wavelet packet decomposition tree and can be represented as 

S = A1 + AAD3 + DAD3 + DD2  (1) 

Figure 1. Schematic of pipeline leak location system based on cyber-physical system.

3. Leak Location Method of Pipeline with Multibranch

3.1. Wavelet Packet Analysis

Wavelet packet analysis [18] is an effective time-frequency analysis technique for non-stationary
signals. Multi-resolution analysis of wavelet packet transform decomposes signals into low frequency
and high frequency. After that, the process continues to decompose the following layers until the preset
level, thus the wavelet packet analysis has a better ability to make accurate local analysis. Moreover,
wavelet packet analysis has better characteristics for furthering segmentation and refinement of the
frequency band broadened with the increase of scale. Therefore, it is a precise analysis method with
the characteristics of high frequency band width and low frequency band narrow. When the signal is
decomposed by wavelet packets, a variety of wavelet basis functions can be adopted. For instance,
the signal S is decomposed by wavelet packets in three layer decomposition, as shown in Figure 2.
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The signal S is decomposed by wavelet packet decomposition tree and can be represented as

S = A1 + AAD3 + DAD3 + DD2 (1)

3.2. Improved Twin Support Vector Machine

Considering the binary classification problem, this paper assumes the training set is T = {(xi, yi)},
i = 1, 2, · · · , l, and makes matrix A in Rm1×n represent the m1 inputs of class yi = +1, and matrix B in
Rm2×n represent the m2 inputs of class yi = −1. It aims to find a decision function f (x) as the objective
function, so that the new data x could be input into f (x) to get the output y, which could be regarded
as data categories.

Lagrangian twin support vector machine (LTSVM) constructs a pair of primal problems [19],
one primal problem corresponding to one non-parallel plane. It aims to make the same class data
samples have the nearest distance to the relevant plane and have adequate distances to the other plane.

The pair of nonparallel hyper-planes is illustrated as follows:

f+(x) = wT
+x + b+ = 0 and f−(x) = wT

−x + b− = 0 (2)

where w+ ∈ <n, w− ∈ <n and b+ ∈ <n, b− ∈ <n.
The pair of optimization problem for TWSVM can be formulated as

min(w+, b+, ξ−)
1
2

(
‖w+‖2 + b2

+

)
+ c1

2 (x+w+ + eb+)
T((x+w+ + eb+) + ξT

−D2ξ−
)

s.t. − (x−w+ + eb+) + ξ− ≥ e, ξ− ≥ 0
(3)

and
min(w−, b−, ξ+)

1
2

(
‖w−‖2 + b2

−

)
+ c2

2 (x−w− + eb−)
T((x−w− + eb−) + ηT

+D1η+
)

s.t. − (x+w− + eb−) + η+ ≥ e, η+ ≥ 0
(4)

where c1 > 0 and c2 > 0 are parameters, ξ+ = [ξ1, ξ2, · · · , ξm] and η+ = [η1, η2, · · · , ηm] are the slack
vectors, and e is the proper dimension vector.

In order to get the solutions of optimization problems (3) and (4), this paper derives the dual
problems as follows

max
a

eTα− 1
2 αT
(

G
(

HTH + c1 I
)−1GT + 1

c1
D−1

2

)
α

s.t. α ≥ 0
(5)

and
max

β
eTβ− 1

2 βT
(

H
(
GTG + c2 I

)−1HT + 1
c2

D−1
1

)
β

s.t. β ≥ 0
(6)

where α and β are the Lagrangian multipliers, H = [A, e] and G = [B, e], and e is the proper
dimension vector.

Let u = [w+, b+] and v = [w−, b−], with satisfying the conditions of Karush-Kuhn-Tucker (KKT).
Equations (5) and (6) are obtained as

u = −
(

HTH + c1 I
)−1

GTα (7)

v = −
(

GTG + c2 I
)−1

HTβ (8)

The new point x ∈ <n is assigned to class i (i = +1,−1), which depends on Equations (7) and
to which (8) is closer.
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The decision function is shown as follows:

f (x) = arg min
k=+,−

∣∣∣wT
k x + bk

∣∣∣ (9)

where |·| is the absolute value.
Equations (5) and (6) can be represented as follows:

min
τ

1
2 τTQτ − eTτ

s.t. τ > 0
s.t. Qτ − e ≥ 0
s.t. τT(Qτ − e) = 0

(10)

where Q is a positive definite matrix, when Q = G
(

HTH + c1 I
)−1GT + 1

c1
D−1

2 , Equation (10) is equal to

Equation (5). Similarly, when R = H
(
GTG + c2 I

)−1HT + 1
c2

D−1
1 , Equation (10) is equal to Equation (6).

There are many ways to deal with Equation (10). In this paper, the steepest descent algorithm is
used to solve Equation (10). Equation (10) is transformed into an unconstrained optimization problem
by using the complementary function [20].

Definition 1. For arbitrary (a, b) ∈ <2, mapping φ : <2 → < is a sort of complementary function,
and such that

φ(a, b) = 0⇔ 0 ≤ a⊥b ≥ 0 (11)

The Fischer-Burmeiste function is commonly used as a kind of complementary function and
defined as φFB : <2 → < :

φFB(a, b) = a + b−
√

a2 + b2 (12)

are true.
Let θ(u) = Qu− e, Equation (12) can be expressed as

Φ(u) =

 φ(u1, θ1(u))
...

φ(um, θm(u))

 = 0 (13)

As a consequence, Equation (13) equals to an unconstrained minimization problem:

min
u∈Rm

ϕ(u) =
1
2
‖Φ(u)‖2 (14)

The optimum solutions between complementary problem and the optimal problem are calculated
by Equations (7) and (8).

Thus, the proposed algorithm is as follows:
Step 1: Initialization. Select initial point u0 ∈ <m. Select parameters µ ∈ (0, 1), σ ∈ (0, 0.5),

and set k = 0, 1, · · · .
Step 2: Calculate the search direction: dk := −∇qφ(uk, θ(uk)).
Step 3: If pk := |dk| < epsilon (epsilon is the error requirement), the search will stop; otherwise,

go to Step 4.
Step 4: Let vk become the smallest nonnegative integer which satisfies the inequality as follows:

φ(uk + µvk dk) ≤ φ(uk)− σµvk pT
k dk.

Step 5: Let uk+1 := uk + µvk dk; go to step 2.
The theorem proves the proposed algorithm see Appendix A.
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4. Simulation and Analysis

All the methods are implemented in MATLAB R2014a and Flowmaster V7 environments on a PC
with an Intel Pentium processor (2.90 GHz) and 6 GB RAM.

Leakage of the pipeline with the branch is simulated by Flowmaster software [21], and the
establishment of the pipeline leak model is shown in Figure 3. According to the real pipeline
environment, the elastic pipeline is applied to establish the pipeline leak model. The length of
the main pipeline LA and the branch LB are 4000 m and 1000 m, respectively. The LA with outer
diameter of 200 mm is used as the main pipeline, LB with outer diameter of 200 mm is connected to
the larger one as the branch pipeline. The roughness of the inside pipeline wall is 0.025 mm. The oil
reservoir height of constant head upstream, downstream and the branch are 300 m, 0 m and 0 m,
respectively. The inlet volumetric flow rate is 0.1 m3/s. The pressure wave speed is 1000 m/s, and the
external temperature is 20 degrees Celsius. To emulate leaks, flow ball valves are positioned at every
100 m from upstream, the leaking flow rate is 0.01 m3/s. Three pressure measure nodes are placed
at node 1, node 2 and node 3. In addition, the pressure changes are calculated by the Flowmaster
software. The sampling rate is 50 Hz, and the simulation time is 80 s. Next, the CPS is applied for
locating leaks of the pipeline with the branch in a heterogeneous distribution environment.
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Figure 3. Leak model of the pipeline with the branch realized in Flowmaster.

Because the Flowmaster software generates noiseless pressure signals, in order to simulate the
real working conditions, the standard normal distribution random number d = 0.003 ∗ randn( ) is
added to the pressure data collected at the boundary of the pipeline with the branch in the MATLAB
experiment to approximate the actual conditions; thus, multiple simulation data is generated. There is
a leakage at 20 s, whose aperture is 20 mm at 100 m from the pressure measure node 1. The waveform
of the measured pressure is shown in Figure 4.
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Figure 4. Pressure original signal of 20-mm leakage aperture at 100 m from the measure node 1.

According to the measured pressure signal at the boundary of the pipeline with the branch, they
are decomposed by the WPD of the best tree structure with Daubechies 3 (db3) in three layers. Using
the best tree structure, the time of singular point of pressure signal is extracted. In order to verify
the validity of signal singular points which are extracted by wavelet packet, we chose four intrinsic
mode functions (IMFs) after decomposition derived from EMD, and we also acquired three production
functions (PFs) after the decomposition derived from LMD. The results of signal decomposition with
EMD and LMD are respectively shown in Figures 5–7.
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end effect still affects the extraction for accurately signal singular point. 
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leakage aperture.

From Figures 5–7, it can be shown that the wavelet packet analysis presents a powerful ability for
extracting the signal singular point from measured pressure signals, compared with other methods like
EMD and LMD. When the measured pressure signals are decomposed with EMD, due to the influence
of the end effect, it is very difficult to accurately identify signal singular point. The LMD method is
more relaxed than EMD in terms of decomposition conditions as the end effect is reduced and the over
envelope phenomenon is avoided in the decomposition process. However, the end effect still affects
the extraction for accurately signal singular point.

Thus, the wavelet packet analysis is used to extract pressure signal singular point at the boundary
of the pipeline with the branch. The time of signal singular points of pressure of the 20-mm leakage
aperture are collected at node 1, node 2, and node 3. Fifty cases are created, respectively. Sixty samples
from each case are chosen for training the ITWSVM. Thus, 3000 samples of pressure singular point are
selected. Moreover, 2500 samples are chosen as training samples and the others are using as testing
samples. Partial samples are calculated and shown in Table 1.

In this simulation, three nodes (the time of signal singular point of pressure measure node 1,
pressure measure node 2, and pressure measure node 3) are the inputs of the ITWSVM, and the output
are different leakage locations. Therefore, different leakage locations can be identified according to the
collected singular points of pressure signal via ITWSVM.

Table 1. Partial data for the ends of pipeline with the branch under pressure singular value.

Leakage Position Signal Singular Point of
Pressure Measure Node 1 (s)

Signal Singular Point of
Pressure Measure Node 2 (s)

Signal Singular Point of
Pressure Measure Node 3 (s)

100 m from upstream 21.06 24.1 23.3
500 m from upstream 21.38 23.78 22.98

1000 m from upstream 21.78 23.38 22.58
1500 m from upstream 22.18 22.98 22.18
2000 m from upstream 22.58 22.58 21.78
2500 m from upstream 22.98 22.18 22.18
3000 m from upstream 23.38 21.78 22.58
3500 m from upstream 23.78 21.38 22.98
4000 m from upstream 24.06 20.98 23.42

500 m from branch junction 22.98 22.98 21.38
1000 m from branch junction 23.62 23.42 20.98

In order to compare leak location accuracy, the input and output for back propagation neural
network (BP), radial basis function neural network (RBF), and LTSVM are the same as those for
ITWSVM. This paper chooses a three-layer BP neural network whose middle layer node number is
15, using 200 iterations, and for which the learning rate is 0.01, and the minimum error is 4× 10−5.
In reference [19], the parameters are set to c1 = c2 = 0.1, and the parameter of LTSVM of is set to
β = 0.2, error epsilon = 1× 10−5. It chooses ITWSVM of which parameters are also set to c1 = c2 = 0.1,
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and the steepest descent method parameters are set to µ = 0.01 and σ = 0.01, error epsilon = 1× 10−5.
This paper adopts the “One-versus-Rest” algorithm of multi-classification. Figure 8 shows the accuracy
of four methods in leak localization.
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From Figure 8, it can be seen that ITWSVM can achieve more accurate leak location, as the test
accuracy (96.06%) is higher than the BP neural network (83.2%) and RBF neural network (88.4%).
LTSVM and ITWSVM have the same objective function to achieve the same accuracy, but the computing
time is different. The calculation time of four methods are separately shown in Table 2.

Table 2. Computation time comparison of four methods for leakage location. Back propagation
neural network (BP); radial basis function neural network (RBF); Lagrangian twin support vector
machine (LTSVM).

Method Computation (s) Accuracy (%)

BP 5.43 83.2
RBF 1.82 88.4

LTSVM 5.262 96.06
The proposed method 0.267 96.06

It can be seen in Table 2 that the ITWSVM improves the solution speed over that of LTSVM, because
when solving the double objective function, the ITWSVM algorithm transforms the objective function
with upper and lower bound constraints to unconstrained solution. Each iteration requires no matrix
inversion computation, thus it reduces the amount of calculation and improves the solution speed.

5. Conclusions and Future Work

The leakage location of pipelines with multibranch under the framework of CPS can solve the
problem about no sharing of data and no locating leaks simultaneously among multiple pipeline
leak detection systems. Wavelet packet analysis is more suitable for extracting signal singular point
of non-stationary pressure signals than EMD and LMD, and the computing time of ITWSVM is
faster compared with other methods (BP, RBF and LTSVM). However, in real operation conditions,
there is some external low frequency signal interference in pressure signals, which can cause location
errors when using wavelet packet analysis. Future work will involve carrying out signal de-noising
effectively and to extract true signal singular point. In addition, when the leakage aperture is smaller,
the inflection point of the waveform is not easily distinguished. Thus, the small leaks will be studied
in the future.
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Appendix A

The following theorem proves the proposed algorithm can insure the convergence.

Lemma A1. If uk is not the solution of the complementary problems, the search direction
dk := −∇qφ(uk, θ(uk)) is a descent direction at point uk, which satisfies the descent condition∇φ(uk)

Tdk < 0.

Proof of Lemma A1. According to ∇φ(uk) = ∇uφ(uk , θ(uk)) + ∇θ(uk)∇θφ(uk , θ(uk)) =

∇uφ(uk , θ(uk)) + Q∇θφ(uk , θ(uk)) then ∇φ(uk)
Tdk = −∇uφ(uk , θ(uk)) · ∇θφ(uk , θ(uk)) −

(dk)
TQdk . �

According to the definition of complementary function, because of Q = G
(

HTH + c1 I
)−1GT +

1
c1

D−1
2 , Q can be considered as a positive definite matrix, so the formula (dk)

TQdk > 0 and

∇uφ(uk, θ(uk)) · ∇θφ(uk, θ(uk)) ≥ 0 are obtained. Therefore ∇φ(uk)
Tdk < 0. Similarly, when

R = H
(
GTG + c2 I

)−1HT + 1
c2

D−1
1 , ∇φ(uk)

Tdk < 0 can be also proved.

Theorem A1. If vk is the smallest non-negative integer that satisfies the inequality: φ(uk + µvk dk) ≤
φ(uk)− σµvk pT

k dk, the solutions of this equation exist.

Proof of Theorem A1. Assuming that this equation has no solution, φ(uk + µvk dk)− φ(uk) ≤ −σµvk pT
k dk

for arbitrary positive integer vk, and that both sides of the inequality are divided by at the same
time, letting k→ ∞ , if there is no solution, φ(uk + µvk dk) > φ(uk), then ∇φ(uk)

Tdk > 0.
However, it is contradictory to the lemma, and therefore there is a vk, which makes
φ(uk + µvk dk) ≤ φ(uk)− σµvk pT

k dk true. �

Theorem A2. Let {uk} be an infinite sequence generated by the algorithm, at least one point, and an arbitrary
point be the solution of complementary problems (Equation (10)).

Proof of Theorem A2. Because of Q = G
(

HTH + c1 I
)−1GT + 1

c1
D−1

2 , Q is the positive definite matrix.
According to Theorem 5.4 in [22], it can be proved that the theorem is established. Similarly, when
R = H

(
GTG + c2 I

)−1HT + 1
c2

D−1
1 , it can be also proved. �
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