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Abstract: Object tracking is a challenging task in many computer vision applications due to occlusion,
scale variation and background clutter, etc. In this paper, we propose a tracking algorithm by
combining discriminative global and generative multi-scale local models. In the global model,
we teach a classifier with sparse discriminative features to separate the target object from the
background based on holistic templates. In the multi-scale local model, the object is represented by
multi-scale local sparse representation histograms, which exploit the complementary partial and
spatial information of an object across different scales. Finally, a collaborative similarity score of one
candidate target is input into a Bayesian inference framework to estimate the target state sequentially
during tracking. Experimental results on the various challenging video sequences show that the
proposed method performs favorably compared to several state-of-the-art trackers.

Keywords: object tracking; sparse representation; Bayesian inference; discriminative global model;
generative multi-scale local model

1. Introduction

Object tracking plays an important role in the field of computer vision [1–5] and serves as
a preprocessing step for a lot of applications in areas such as human-machine interaction [6],
robot navigation [7] and intelligent transportation [8], etc. Despite significant progress that has been
made in previous decades, object tracking is still a challenging task due to the changes of objects’
appearances influenced by scale variation, partial occlusion, illumination variation, and background
clutter. To address these problems, it is a key issue for the success of a tracker to design a robust
appearance model. Specifically, current tracking algorithms based on an object appearance model can
be roughly categorized into generative, discriminative or hybrid methods.

For generative methods, the tracking problem is formulated as searching for the image regions
most similar to the target model. Only the information of the target is used. In [9], an incremental
subspace learning method was proposed to construct an object appearance model online within the
particle filter framework. Kwon et al. [10] utilized multiple basic observation and motion models
to cope with appearance and motion changes of an object. Motivated by the robustness of sparse
representation in face recognition, Mei et al. [11] modeled tracking as a sparse approximation problem
and the occlusion problem was addressed through a set of trivial templates. In [12], a tracking
algorithm using the structural local sparse appearance model was proposed, which exploits both
partial information and spatial information of the target based on an alignment-pooling method.
The work in [13] presented a tracking algorithm based on the two-view sparse representation, where the
tracked objects are sparsely represented by both templates and candidate samples in the current frame.
To encode more information, Hu et al. [14] proposed a multi-feature joint sparse representation for
object tracking.
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In discriminative methods, the tracking is treated as a binary classification problem aiming to find
a decision boundary that can best separate the target from the background. Unlike generative methods,
the information of both the target and its background is used simultaneously. The work in [15] fused
together an optic-flow-based tracker and a support vector machine (SVM) classifier. Grabner and
Bischof [16] proposed an online AdaBoost algorithm to select the most discriminative features for
object tracking. In [17], a multiple instance learning (MIL) framework was proposed for tracking,
which learned a discriminative model by putting all ambiguous positive and negative samples into
bags. Zhang et al. [18] utilized sparse measurement matrix to extract low-dimensional features,
and then trained a naive Bayes classifier for tracking. Recently, Henriques et al. [19] exploited the
circulant structure of the kernel matrix in an SVM for tracking. In [20], a deep metric learning-based
tracker was proposed, which learns a non-linear distance metric to classify the target object and
background regions using a feed-forward neural network architecture.

Hybrid methods exploit the complementary advantages of the previous two approaches.
Yu et al. [21] utilized two different models for tracking, where the target appearance is described by
low-dimension linear subspaces and a discriminative classifier is trained to focus on recent appearance
changes. In [22], Zhong et al. developed a sparse collaborative tracking algorithm that exploits both
holistic templates and local patches. Zhou et al. [23] developed a hybrid model for object tracking,
where the target is represented by different appearance manifolds. The tracking method in [24]
integrated the structural local sparse appearance model and the discriminative classifier with a support
vector machine.

Inspired by the work in [22], a hybrid tracking method by the combination of discriminative global
and generative multi-scale local models is proposed in this paper. Different from [22], we represent
the object using multi-scale local sparse representation histogram in generative model, where the
patch-based sparse representation histogram under different patch scales is computed separately,
and exploit the collaborative strength of sparse representation histogram under different patch scales.
Therefore, our tracker exploits both partial and spatial information of an object across different scales.
The final similarity score of a candidate is obtained by the combination of the two models under the
Bayesian inference framework. The candidate with the maximum confidence is chosen as the tracking
target. Additionally, an online update strategy is adopted to adapt to the appearance changes of objects.
The main flow of our tracking algorithm is shown in Figure 1.
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Figure 1. The main flow of our tracking algorithm.

2. Discriminative Global Model

For the global model, as in [22], an object is represented through the sparse coefficients, which are
obtained by encoding the object appearance with gray features, using a holistic template set. In Section 2.1,
we describe the construction of the template set, where each template is represented as a vector of
gray features. Due to the redundancy of gray feature space, we present a sparse discriminative feature
selection method in Section 2.2, where we extract determinative gray features that best distinguish the
foreground object from the background by teaching a classifier. Finally, a confidence measure method
is given in Section 2.3.
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2.1. Construction of the Template Set

Given the initial target region in the first frame, we sample Np foreground templates around
the target location, as well as Nn background templates within an annular region some pixels away
from the target object. Then, the selected templates are normalized to the same size (32 × 32 in our
experiments). In this way, the normalized templates are stacked together to form a template matrix
A ∈ RK×(Np+Nn), where K is the dimension of gray features, and we denote A = A+ ∪ A−, i.e., A+ for
Np foreground templates and A− for Nn background templates.

2.2. Sparse Discriminative Feature Selection

Due to the redundancy of gray feature space, we extract determinative gray features that best
distinguish the foreground object from the background by teaching a classifier:

min
s
‖ATs− p‖2

2 + λ1‖s‖1 (1)

where each element of the vector p ∈ R(NP+Nn)×1 represents the property of each template in
the training template set A (+1 corresponds to a foreground template and −1 corresponds to
a background template), ‖ · ‖2 and ‖ · ‖1 denote `2 and `1 norms, respectively, and λ1 is a regularization
parameter. The solution of Equation (1) is the vector s , whose non-zero elements correspond to sparse
discriminative features selected from the K dimensional gray feature space.

During the tracking process, the gray features in original space are projected to a discriminative
subspace by a projection matrix S, which is obtained by removing all-zero rows from a diagonal
matrix S′. In addition, the elements of diagonal matrix S′ are obtained by:

S′ ii =

{
0, si = 0
1, otherwise.

(2)

thus, the training template set and candidates in the projected space are A′ = SA and x′ = Sx.

2.3. Confidence Measure

Given a candidate x, it can be represented as a linear combination of the training template set
by solving:

min
α
‖x′ − A′α‖2

2 + λ2‖α‖1 , s.t. α ≥ 0 (3)

where α is the sparse coefficients, x′ is the projected vector of x, and λ is a regularization parameter.
The candidate with smaller reconstruction error using the foreground templates indicates it is more
likely to be a target, and vice versa. Thus, the confidence value Hc of the candidate target x is
formulated by:

Hc = exp(−(ε f − εb)/σ) (4)

where ε f = ‖x′ −A′+α+‖2
2 is the reconstruction error of the candidate x using the foreground

templates A+ and α+ is the sparse coefficient vector corresponding to the foreground templates.
εb = ‖x′ −A′−α−‖2

2 is the reconstruction error of the candidate x using the background templates A−,
and α− is the sparse coefficient vector corresponding to the background templates. The variable σ is
a fixed constant.

3. Generative Multi-Scale Local Model

In [22], an object is represented by the patch-based sparse representation histogram with
only a fixed-patch scale in the generative model. In order to decrease the impact of the patch
size, a generative multi-scale local model is proposed in our work. We represent the object using
multi-scale sparse representation histogram, where the patch-based sparse representation histogram
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under different patch scales is computed separately, and exploit the collaborative strength of sparse
representation histogram under different patch scales. Moreover, we compute the similarity of
histograms between the candidate and the template for each patch scale separately, and then weigh
them as the final similarity measure between the candidate and the template. The illustration of the
proposed multi-scale local model is shown in Figure 2.
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Figure 2. An illustration of generative multi-scale local model. (a) A candidate; (b) sampling patches
under different patch scales; (c) sparse representation histograms of the candidate under different patch
scales; (d) modifying the histograms of the candidate excluding the outlier patches; (e) computing
the similarity of histograms between the candidate and the template for each patch scale separately;
(f) weighing the similarity of histograms of different patch scales as the final similarity measure between
the candidate and the template.

3.1. Multi-Scale Sparse Representation Histogram

Give a target object, we normalize it to 32 × 32 pixels. Then, the object is segmented hierarchically
into three layers, and each layer consists of local patches with different patch scales. Three scales with
patch sizes 4 × 4, 6 × 6, and 9 × 9 are used in our work. For simplicity, the gray features are used
to represent the patch information of a target object. The local patches of each scale are collected by
a sliding window with the corresponding scale and the step length in the sampling process being the
same as two pixels. Assume that Yk = [yk

1, yk
2, ..., yk

Mk
] ∈ Rdk×Mk is the vectorized local patches extracted

from a target candidate under different patch scales, where yk
i denotes the i-th local patch under

patch scale k, dk is the dimensionality of local patch, and Mk is the number of local patches for scale k.
The dictionary under different patch scales is Dk = [dk

1, dk
2, ..., dk

Jk
] ∈ Rdk×Jk , where Jk is the number of

dictionaries for scale k. The dictionary is generated by the k-means algorithm and only comes from
patches of the target region manually labeled in the first frame. With the dictionary Dk, each yk

i has
a corresponding sparse coefficient βk

i ∈ RJk×1, which can be obtained by solving an `1-regularized
least-squares problem:

min
βk

i

‖yk
i −Dkβ‖2

2 + λ3‖βk
i ‖1, s.t. βk

i ≥ 0 (5)

where λ3 is a regularization parameter.
When the sparse coefficients of all local patches of one candidate are computed under different

patch scales, they are normalized and concatenated to form a sparse representation histogram by:

Hk =

[(
βk

1

)T
,
(

βk
2

)T
, ...,

(
βk

Mk

)T
]T

(6)
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where Hk ∈ R(Jk×Mk)×1 is the spare representation histogram for one candidate under patch scale k.
Then, the candidate is represented with the combination of multiple scale histograms.

3.2. Histogram Modification

During the tracking process, the target’s appearance changes significantly due to outliers (such as
noise or occlusion). To address the issue, we modify the sparse representation histogram to exclude the
corrupted patch. The corrupted patch usually has a large reconstruction error and its sparse coefficient
vector is set to be zero. Thus, the modified histogram under different scales can be obtained by:

Pk = Hk �Ok (7)

where � denotes the element-wise multiplication. Each element of Ok is a descriptor for corrupted
patch and is defined by:

ok
i =

{
1 , εk

i ≥ ε0

0 , otherwise.
(8)

where εk
k = ‖yk

k −Dkβk
k‖

2
2 represents the reconstruction error of local patch yk

i , and ε0 is a threshold
indicating whether the patch is corrupted or not. We, thus, have constructed the sparse representation
histogram Pk under different scales, which exploits multi-scale information of the target and takes
outliers into account.

3.3. Similarity Measure

The key issue in object tracking is the determination of the similarity between the candidate and
the template. We use the histogram intersection function to compute the similarity of histograms
between the candidate and the template for each patch scale separately, and then weigh them as the
final similarity measure between the candidate and the template, which is computed by:

Lc = ∑
k

ϕk

(
Jk×Mk

∑
j=1

min
(

Tk(j), Pk
c (j)

))
(9)

where Tk and Pk
c are the histograms for the template and the c-th candidate under patch scale k, and ϕk

is a weight used to measure the outlier under patch scale k. Moreover, ϕk is defined by:

ϕk =
1

Jk ×Mk

Jk×Mk

∑
i=1

(
1− ok

i

)
(10)

The template histograms under different patch scales are generated by Equations (5)–(7) and
computed only once for each tracking sequence. When evaluating the similarity of histograms between
the candidate and the template, we modify the template histograms under the same condition as
modifying the histograms of the candidate.

4. Tracking by Bayesian Inference

Object tracking can be treated as a Bayesian inference task [25]. Given the observations of target
Zt = {z1, z2, ..., zt} up to time t, the current target state st can be obtained by the maximum a posteriori
estimation via:

ŝt = arg
si
t

max p
(

si
t

∣∣∣Zt

)
(11)

where si
t denotes the i-th sample of the state st. The posterior probability p

(
si

t
∣∣Zt
)

can be recursively
computed by the Bayesian theorem via:
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p(st|Zt) ∝ p(zt|st)
∫

p(st|st−1)p(st−1|Zt−1)dst−1 (12)

where p(st|st−1) and p(st−1|Zt−1) denote the dynamic model and observation model, respectively.
The dynamic model describes the temporal correlation of the target states in consecutive frames, and the
motion of the target between consecutive frames is modeled by an affine transformation. The state
transition is formulated by random walk, i.e., p(st|st−1) = N(st : st−1, ∑) , where st = {αt, βt, µt, νt}
denote the x, y translations, scale and aspect ratio at time t, respectively. ∑ = diag(σ2

α , σ2
β, σ2

µ, σ2
υ) is

a diagonal covariance matrix whose elements are the variances of the affine parameters.
The observation model p(zt|st) estimates the likelihood of observing zt at state st. In this paper,

the collaborative likelihood of the c-th candidate is defined as:

p(zt|sc
t ) = Hc × Lc (13)

and the candidate with the maximum likelihood value is regarded as the tracking result.

5. Online Update

In order to adapt the change of target appearance during tracking, the update scheme is essential.
The global model and multi-scale local model are updated independently. For the global model,
the negative templates are updated every five frames and the positive templates remain the same
during tracking. As the global model aims to select sparse discriminative feature to separate the target
object from the background, it is important to ensure that the positive and negative templates are all
correct and distinct.

For the multi-scale local model, the dictionary Dk for each scale is fixed to ensure that the
dictionary is not affected even if outliers occur during tracking. In order to capture the change of the
target’s appearance and balance between the old and new templates, the new template histogram
Hk

new under patch scales k is computed by:

Hk
new =

{
µ1Hk

1 + (1− µ1)Hk
t , ϕk < ϕ0

µ2Hk
1 + (1− µ2)Hk

t , otherwise.
(14)

where Hk
1 is the histogram at the first frame, Hk

t denotes the histogram last frame before update, µ1 and
µ2 are the weight, the variable ϕk defined by Equation (10) is the outlier measure for scale k in the
current frame, and ϕ0 is a predefined constant.

6. Experiments

We evaluate our tracking algorithm on 12 public video sequences from the benchmark dataset [26].
These sequences include different challenging situations like occlusion, scale variation, cluttered
background, and illumination changes. Our tracker is compared with several state-of-the-art trackers,
including tracking-learning-detection method (TLD) [27], structured output tracker (STRUCK) [28],
tracking via sparse collaborative appearance model (SCM) [22], tracker with multi-task sparse learning
(MTT) [29] and tracking with kernelized correlation filters (KCF) (with histogram of oriented gradient
features) [19]. We implement the proposed method in MATLAB 2013a (The MathWorks, Natick,
MA, USA) on a PC with Intel G1610 CPU (2.60 GHz) with 4 GB memory. For fair comparisons, we use
the source code provided by the benchmark [26] with the same parameters, except KCF. We run the
KCF with the default parameters reported in the corresponding paper.

The parameters of our tracker for all test sequences are fixed to demonstrate its robustness and
stability. We manually label the location of the target in the first frame for each sequence. The number
of particles is 300 and the variance matrix of affine parameters is set as Σ = diag (4, 4, 0.01, 0.005).
The numbers of positive templates, p, and negative templates, n, are 50 and 200, respectively.
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The regularization parameters of Equations (3) and (5) are set to be 0.01, and the variable λ2 in
Equation (1) is fixed to be 0.001. The dictionary size for each scale is 50. The threshold ε0 in Equation (8)
is 0.04. The parameters ϕ0, µ1 and µ2 in Equation (14) are set to 0.8, 0.85 and 0.95.

6.1. Quantitative Comparison

We quantitatively evaluate the performance of each tracker in terms of the center location
error (CLE) and the overlap rate, as well their average values. The CLE measures the Euclidean
distance between the center of the tracking result and the ground truth, and is defined as

CLE =
√
(x′ − x)2 + (y′ − y)2, where (x′, y′) and (x, y) denote the tracked central position and

ground truth central position, respectively. The lower CLE will result in the better performance.
The overlap rate reflects stability of each tracker as it takes the size and pose of the target object
into account. It is defined by PASCAL VOC criteria [30], score = area(ROIT∩ROIG)

area(ROIT∪ROIG)
, where ROIT is the

tracking bounding box and ROIG is the ground truth bounding box. More accurate trackers have
higher overlap rates. Figure 3 shows the frame-by-frame center location error comparison results.
Tables 1 and 2 report the comparison results of our tracker and five other trackers in terms of average
CLE and average overlap rate. In both tables, the first row gives all of the trackers and the first column
shows all the videos in our experiment. The last row is the average of the results for each tracker.
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Figure 3. Frame-by-frame comparison of six trackers in terms of center location error (CLE).
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Table 1. Comparison of results in terms of average CLE (pixels). Bold fonts indicate the best
performance while the italic fonts indicate the second best ones.

Sequence TLD STRUCK MTT KCF SCM Ours

Car4 12.84 8.69 22.34 9.88 4.27 2.09
CarDark 27.47 0.95 1.57 6.05 1.30 1.04
Coupon 38.41 4.14 4.24 1.57 2.37 2.12
Crossing 24.34 2.81 57.15 2.25 1.57 1.48
Crowds 3.44 7.19 235.75 3.05 5.25 5.06
David2 4.98 1.50 1.70 2.08 3.41 1.78
David3 208.00 106.50 341.33 4.30 73.09 19.09
Dog1 4.19 5.66 4.28 4.23 7.00 5.56
Fish 6.54 3.40 45.50 4.08 8.54 5.15

Human5 5.31 6.87 8.28 175.50 9.33 4.35
Jogging.2 13.56 107.69 157.12 144.47 4.15 2.46
Walking 10.23 4.62 3.47 3.97 2.49 2.26
Average 29.94 21.67 73.56 30.12 10.23 4.37

Table 2. Comparison results in terms of average overlap rate. Bold fonts indicate the best performance
while the italic fonts indicate the second best ones.

Sequence TLD STRUCK MTT KCF SCM Ours

Car4 0.63 0.49 0.45 0.48 0.76 0.77
CarDark 0.45 0.90 0.83 0.62 0.84 0.86
Coupon 0.57 0.88 0.87 0.94 0.90 0.91
Crossing 0.40 0.68 0.20 0.71 0.78 0.80
Crowds 0.77 0.61 0.09 0.79 0.63 0.66
David2 0.69 0.87 0.86 0.83 0.75 0.84
David3 0.10 0.29 0.10 0.77 0.40 0.59
Dog1 0.59 0.55 0.69 0.55 0.70 0.72
Fish 0.81 0.86 0.17 0.84 0.75 0.81

Human5 0.54 0.35 0.42 0.18 0.44 0.72
Jogging.2 0.66 0.20 0.13 0.12 0.73 0.77
Walking 0.45 0.57 0.67 0.53 0.71 0.71
Average 0.56 0.6 0.46 0.61 0.70 0.76

As shown in Figure 3, the CLE curves diverge for some trackers, such as the TLD tracker in
the CarDark, Coupon, Crossing and David3 video sequences, the STRUCK tracker in the David3
and Jogging.2 video sequences, the KCF tracker in the Human5 and Jogging.2 video sequences, etc.
These indicate that these trackers lose the tracking objects in the tracking process. From Tables 1 and 2,
we can see that our tracker achieves the best or second-best performances. Moreover, our tracker
obtains the best performance for 12 video sequences when compared with the SCM tracker, and this
suggests that the multi-scale local information adopted in our model is very effective and important
for tracking. Overall, our tracker performs favorably against the other five state-of-the-art algorithms
with lower center location errors and higher overlap rates.

6.2. Qualitative Comparison

To further evaluate the performance of our tracker against the other state-of-art trackers, several
screenshots of the tracking results on 12 video sequences [26] are shown in Figure 4. For these sequences,
several principal factors that have effects on the appearance of an object are considered. Some other
factors are also included in the discussion. Qualitative discussion is detailed below.

Illumination Variation: Figure 4a,i present tracking results of two challenging sequences with
illumination variation to verify the effectiveness of our tracker. In the Car4 sequence, the TLD tracker
severely deviates from the object location when the car goes below the bridge creating a dramatic
illumination change (e.g., frame 228). The MTT tracker shows a severe drift when the car becomes
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smaller. The SCM tracker and our tracker can track the target accurately. For the Fish sequence, illumination
changes and camera movement makes it challenging. All trackers, except MTT and SCM, work well.

Occlusion: Occlusion is one of the most general, yet crucial, problems in object tracking. In the
David3 sequence (Figure 4g), severe occlusion is introduced by tree and object appearance changes
drastically when the man turns around. Only the KCF and our tracker successfully locate the correct
object throughout the sequence. For the Jogging.2 sequence (Figure 4k), when the girl is occluded by the
pole (e.g., frame 58), all of the other trackers drift away from the target object, except for SCM and our track.

Background Clutter: The CarDark sequence in Figure 4b shows a moving vehicle at night with
dramatic illumination changes and low contrast in cluttered background. The TLD tracker starts to
drift around frame 200 and gradually losses the target. Other trackers can track the car accurately.

For the Coupon sequence (Figure 4c, the tracked object is the uppermost coupon and an imposter
coupon book similar to the target is introduced to distract the trackers. The KCF and our trackers
perform better. In the Crowds sequence (Figure 4e, the target is a man who walked from right to left.
All trackers, except STRUCK and MTT, are able to track the whole sequence successfully, and the
MTT tracker starts to drift around frame 42 when an object of similar color is in proximity to the
tracked target.

Scale Variation and Deformation: For the Crossing sequence, all trackers, except TLD and MTT,
can reliably track the object, as shown in Figure 4d. In the Human5 sequence (Figure 4j), our tracker
gives the best result. The KCF and MTT trackers lose the target. Figure 4l shows the tracking results in
the Walking sequence. Our tracker achieves the best performance, followed by the SCM tracker.

Rotation: The David2 sequence consists of both in-plane and out-of-plane rotations. We can see
from Figure 4f that the accuracy of our tracker is higher than the accuracy of the SCM trackers. As is
illustrated in Dog1 (Figure 4h), the target in this sequence undergoes both in-plane and out-of-plane
rotations, and scale variation. Our tracker gives the best result in terms of the overlap rate.
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Figure 4. Screenshots of some sampled tracking results. (a) Car4 with illumination and scale variation;
(b) CarDark with illumination variation and background clutter; (c) Coupon with occlusion and
background clutter; (d) Crossing with scale variation and deformation; (e) Crowds with illumination
variation and background clutter; (f) David2 with in-plane rotation and out-of-plane rotation;
(g) David3 with occlusion and deformation; (h) Dog1 with scale variation and rotation; (i) Fish with
illumination variation; (j) Human5 with scale variation and deformation; (k) Jogging.2 with occlusion
and deformation; (l) Walking with scale variation and deformation.

7. Conclusions

In this paper, we present a robust object tracking approach by combining discriminative
global and generative multi-scale local models. In the global appearance model, a classifier with
sparse discriminative features is taught to separate the target object from the background. In the
multi-scale local appearance model, the appearance of an object is modeled by multi-scale local sparse
representation histograms. Therefore, compared with SCM tracker, our tracker could utilize both
partial and spatial information of an object across different scales, which are mutually complementary.
The final similarity score of a candidate is obtained by the combination of the two models under
the Bayesian inference framework. Additionally, an online update strategy is adopted to adapt to
the appearance changes of object. Extensive experiments on several challenging video sequences
demonstrate the effectiveness and robustness of the proposed tracker.
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