
 information

Article

Improved FIFO Scheduling Algorithm Based on
Fuzzy Clustering in Cloud Computing

Jian Li 1, Tinghuai Ma 1,2,*, Meili Tang 1, Wenhai Shen 3 and Yuanfeng Jin 4,*
1 School of Computer Software, Nanjing University of Information Science & Technology, Nanjing 210044,

China; keng1585291@163.com (J.L.); meilitg@126.com (M.T.)
2 CICAEET, Jiangsu Engineering Center of Network Monitoring, Nanjing University of Information Science &

Technology, Nanjing 210044, China
3 National Meteorological Information Center, Beijing 100080, China; shenwh@cma.gov.cn
4 Department of Mathematics, YanBian University, Yanji 133002, China
* Correspondence: thma@nuist.edu.cn (T.M.); yfkim@ybu.edu.cn (Y.J.)

Academic Editor: Willy Susilo
Received: 31 December 2016; Accepted: 17 February 2017; Published: 24 February 2017

Abstract: In cloud computing, some large tasks may occupy too many resources and some small
tasks may wait for a long time based on First-In-First-Out (FIFO) scheduling algorithm. To reduce
tasks’ waiting time, we propose a task scheduling algorithm based on fuzzy clustering algorithms.
We construct a task model, resource model, and analyze tasks’ preference, then classify resources
with fuzzy clustering algorithms. Based on the parameters of cloud tasks, the algorithm will calculate
resource expectation and assign tasks to different resource clusters, so the complexity of resource
selection will be decreased. As a result, the algorithm will reduce tasks’ waiting time and improve the
resource utilization. The experiment results show that the proposed algorithm shortens the execution
time of tasks and increases the resource utilization.

Keywords: cloud computing; fuzzy clustering algorithms; FIFO; scheduling algorithm; resource
clustering

1. Introduction

With the explosive growth of information, the demand on computing is sharply increasing.
For example, users always hope that they can use computing resources and finish computing
rapidly—anytime, anywhere. Besides, there are many heterogeneous resources in the world. In
order to use more available resources, many researchers have proposed some computing models,
such as grid computing and parallel computing. Since 2006, cloud computing has gradually become
the most popular commercial computing model [1]. The target of cloud computing is on-demand
billing. Through virtualization technology, cloud computing makes heterogeneous physical resources
into virtual resource pools and then users could pay to use these resources. Cloud computing fully
considers reliability of resources and scalability of computing, and realizes sharing multiple resources
comprehensively. Moreover, cloud computing could handle massive amounts of data and satisfy
multiple computing needs. Due to a large number of computing tasks and heterogeneous resources,
scheduling algorithm is an important part of cloud computing and has a great influence on quality
of cloud service. When computing involves high complexity and mass computation, the resource
allocation strategy may affect the efficiency of scheduling heavily. Currently, task scheduling in cloud
environment gradually focuses on all computing resources. There are many resources and tasks
in cloud environment, so a scheduler could classify and analyze computing resources reasonably.
The clustering analysis of resources and the calculation of tasks’ resource expectation are beneficial for
reasonable choices about resources. In addition, they could reduce the execution time of tasks.

Information 2017, 8, 25; doi:10.3390/info8010025 www.mdpi.com/journal/information

http://www.mdpi.com/journal/information
http://www.mdpi.com
http://www.mdpi.com/journal/information

Information 2017, 8, 25 2 of 13

The survey on scheduling algorithms in cloud computing [2] and the survey on distributed job
scheduling based on Swarm Intelligence [3] are useful for us to characterize the various problems in
cloud computing. Besides, they give us some motivation. To reduce the decrease in execution time
of tasks and increase resource utilization of the system, we proposed an improved First-In-First-Out
(FIFO) scheduling algorithm based on kernel-based fuzzy c-means clustering algorithm. In the
algorithm, a kernel-based fuzzy c-means clustering algorithm has been used to classify resources and
FIFO algorithm has been improved by multi-queues. Inverse trigonometric function formula has been
used to calculate the similarity of tasks’ expectation and resources. Experimental results show that the
proposed algorithm could reduce the execution time of tasks and improve the utilization of resources
of the system. The main contribution of this paper is as follows:

(1) Combining kernel-based fuzzy c-means clustering algorithm and the improved FIFO algorithm
to design a new scheduling algorithm. In the kernel-based fuzzy c-means clustering algorithm,
we use radial basis function (RBF) as the kernel function.

(2) Using new methods to calculate the similarity of the task and resources to assign tasks.

The main contents of this paper are as follows. Section 2 introduces the related work. Section 3
describes the scheduling model. In Section 4, we introduce our task scheduling algorithm. Section 5
shows the experiment results and the results will be analyzed. Finally, the conclusion and future works
are put forward.

2. Related Work

Task scheduling is an important component of cloud computing and has a great impact on quality
of cloud service. The basic problem of task scheduling that needs to be solved is assigning tasks to
resources. Unfortunately, it is an NP (Non-deterministic Polynomial) complete problem. According
to different objectives, there are different scheduling systems. As a result, there will be different
scheduling algorithms in different cloud systems. Different tasks may have different computing
requirements and resources which are heterogeneous. Recently, to improve the efficiency of scheduling
and reduce the tasks’ execution time, the clustering methods have been introduced into task scheduling
to classify resources. After classification, tasks can be assigned to resources.

The development of cloud computing is based on grid computing and many researchers have
made a lot of contributions in grid computing. Klaus Krauter et al. [4] made a taxonomy and survey of
grid resource management systems. In their survey, they grouped design objectives into three themes:
improving application performance, data access, and enhanced services. As a result, the grid systems
are grouped into three categories: computational grid, data grid and service grid. Furthermore, they
divide the resource model into two categories: schema and object model. In addition, they classify the
scheduler organization into three categories: centralized, hierarchical and decentralized. In the end,
the paper introduces some grid resource management systems. Fatos Xhafa and Ajith Abraham [5]
made a survey on computational models and heuristic methods for grid scheduling problems. In their
article, they listed some scheduling problems in grid systems and introduced us to some computational
models for grid scheduling. In addition, they introduced some heuristic and meta-heuristic methods
for scheduling in grids and the integration of schedulers. They also listed some issues, such as security,
in the article.

2.1. Fuzzy c-Means Clustering Algorithm (FCM)

In grid computing, some researchers have utilized fuzzy c-means clustering algorithm to improve
scheduling. Tarek Helmy and Zeehasham Rasheed [6] proposed the independent job scheduling by
fuzzy c-means clustering and an ant optimization algorithm. They proposed a framework which
combines the fuzzy c-means clustering algorithm with an ant colony optimization (ACO) algorithm
to improve scheduling decisions. They used the FCM to classify the jobs into appropriate classes
and the ACO to map the jobs to the appropriate resources. Siriluck Lorpunmanee et al. [7] proposed

Information 2017, 8, 25 3 of 13

fuzzy c-means and genetic algorithms-based scheduling for independent jobs in computational grid.
They presented the method of job classification based on fuzzy c-means algorithm and mapped the
jobs to the appropriate resources based on genetic algorithm.

In cloud computing, FCM has been used to optimize scheduling. Mahesh S. Shinde and Anilkumar
Kadam [8] used fuzzy c-means and a linear programming approach to optimize cloud task scheduling.
They used FCM to classify the batch of images into three categories: small images, medium images
and large images. When processing the medium images, they used the linear programming to
find the value that satisfies objective function and constraints. Xiaojun Wang et al. [9] proposed a
scheduling algorithm based on a fuzzy clustering algorithm. They used CBFCM (Cost based Fuzzy
Clustering Algorithm) to classify the cloud computing resources and analyzed the jobs with different
scheduling algorithms.

2.2. Scheduling Algorithms

“Cloud computing” was first mentioned by Compaq in their business plan in 1996. Since Google
proposed their cloud computing in 2006, many famous technology companies have launched their own
cloud computing platform, such as AWS (Amazon Web Service), Microsoft Azure, aliyun, and cloud
computing has become the most popular business computing model. Hadoop is a project developed
by the Apache Software Foundation that is inspired by GFS (Google File System) and MapReduce. It is
a framework for the distributed processing of large data sets across clusters of computers using simple
programming models. Many companies have adopted Hadoop as the basis architecture of their cloud
computing platform, such as Yahoo! Facebook and Alibaba.

There are three common schedulers in cloud computing platforms, namely FIFO scheduler,
Capacity scheduler (Yahoo!) and Fair scheduler (Facebook).

FIFO scheduler is the default scheduler in Hadoop and it chooses the job to execute according to
job arrival time. By default, FIFO scheduler does not consider a job’s priority. When taking priority into
account, FIFO scheduler will first consider the priority but it does not support capture [10]. Based on
FIFO scheduler, Shujun Pei et al. [11] designed TLI (Task Locality Improvement) scheduler in Hadoop.
They put jobs into several queues according to the probability’s threshold of the task locality. The jobs
that have ideal data are put into queue 1 and others are put into queue 2. If queue 2 is not empty,
the job in queue 2 will be preferentially executed in the next scheduling.

Capacity scheduler was developed by Yahoo! and it supports multi-queues. It will allocate a
certain number of resources to each queue and adopt FIFO strategy in each queue. To prevent one user
from occupying all resources in one queue, capacity scheduler will limit the resource number that one
user occupies. During the scheduling, capacity scheduler first chooses a suitable queue based on the
strategy which will calculate the ratio between the number of tasks in each queue and their deserved
resources and choose the queue with the smallest ratio. In the selected queue, capacity scheduler will
choose the job according to priority and the submit time of jobs and take into account resource and
memory limitation that users could use. Shivani Thakur et al. [12] proposed a new dynamic capacity
scheduler to decrease tasks’ execution time. They add the properties in Hadoop to collect the running
container and then add it to the scheduler. The scheduler will distribute jobs in the queue with less
capacity than others and destroy the queue to make the queue come to capacity as resources area unit.

Fair scheduler always assigns jobs according to the resource pools and fairly distributes resources
to these pools. By default, every user has an independent resource pool to ensure that every user
will get a copy of the same cluster resources no matter how many jobs they have submitted. In each
resource pool, the running jobs share capacity with fair strategy. Users will also give the corresponding
weight to the resource pool to make jobs share the resource pool in a disproportionate manner. Besides,
fair scheduler allows for distributing minimal resources to the resource pool. Shanjiang Tang et al. [13]
proposed a new resource allocation strategy. They adopted different methods to solve memoryless
source allocation fashion. For single-level resource allocation, they take the fairness of the total amount
of allocated resources into account. The core idea lies in lending one user’s available resources to

Information 2017, 8, 25 4 of 13

others. For hierarchical resource allocation, they relax the constraint on the total amount of allocated
resources by giving starved users higher priority to get resource allocated. In addition, they also
provide a LTYARN (LONG-TERM YARN) fair scheduler, which designs a long-term max–min fairness
model and implements LTYARN, to implement the fair resource allocations.

To improve the efficiency of scheduling in shared MapReduce environment and decrease the
average response time under different workloads, Yi Yao et al. [14] proposed a new scheduler named
LsPS (Leverage the job size Patterns Scheduler). Their scheduler utilizes the workload patterns,
in which the scheduler always adjusts the resource user’s share and the scheduling algorithms for each
user, to reduce average job response times. The main consists of LsPS includes workload information
collection, scheduling among multiple users and scheduling for every user.

Based on Swarm Intelligence (SI) techniques, Elina Pacini et al. [15] designed two schedulers to
realize multi-objective optimization for online scientific clouds.

3. Scheduling Models

The cloud system abstracts heterogeneous physical resources into resource pools through
virtualization technology. When users submit tasks to the system by different clients, the scheduler in
the system will assign tasks to the suitable virtual machine that holds sufficient resources. The main
process of task scheduling is as shown in Figure 1.

Information 2017, 8, 25 4 of 13

idea lies in lending one user’s available resources to others. For hierarchical resource allocation,

they relax the constraint on the total amount of allocated resources by giving starved users higher

priority to get resource allocated. In addition, they also provide a LTYARN (LONG-TERM YARN)

fair scheduler, which designs a long-term max–min fairness model and implements LTYARN, to

implement the fair resource allocations.

To improve the efficiency of scheduling in shared MapReduce environment and decrease the

average response time under different workloads, Yi Yao et al. [14] proposed a new scheduler

named LsPS (Leverage the job size Patterns Scheduler). Their scheduler utilizes the workload

patterns, in which the scheduler always adjusts the resource user’s share and the scheduling

algorithms for each user, to reduce average job response times. The main consists of LsPS includes

workload information collection, scheduling among multiple users and scheduling for every user.

Based on Swarm Intelligence (SI) techniques, Elina Pacini et al. [15] designed two schedulers to

realize multi-objective optimization for online scientific clouds.

3. Scheduling Models

The cloud system abstracts heterogeneous physical resources into resource pools through

virtualization technology. When users submit tasks to the system by different clients, the scheduler

in the system will assign tasks to the suitable virtual machine that holds sufficient resources. The

main process of task scheduling is as shown in Figure 1.

Submit
tasks

Assign tasks

Resource
pool

Cloud System

Scheduler

Figure 1. The main process of task scheduling.

In cloud computing, the essence of task scheduling is allocating n tasks to m heterogeneous

physical resources, so that the total completion time of these tasks will be minimal and the

resources could be fully utilized to the greatest extent possible. In some other cases, cloud system

may also take other factors into consideration, such as economy, load balance, optimum makespan

and QoS (Quality of Service). Cloud computing usually designs models to utilize virtualization

technology to collect heterogeneous resources into resource pools and designs different algorithms

for different targets. In this paper, we build two models: a task model and a resource model.

3.1. Task Model

As we know, tasks in a cloud system can be divided into independent tasks that are

independent between each other and workflow tasks that have precedence constraints between

each other. In this paper, we only take independent tasks into consideration. We assume that cloud

systems have received m tasks within a period of time.

Figure 1. The main process of task scheduling.

In cloud computing, the essence of task scheduling is allocating n tasks to m heterogeneous
physical resources, so that the total completion time of these tasks will be minimal and the resources
could be fully utilized to the greatest extent possible. In some other cases, cloud system may also take
other factors into consideration, such as economy, load balance, optimum makespan and QoS (Quality
of Service). Cloud computing usually designs models to utilize virtualization technology to collect
heterogeneous resources into resource pools and designs different algorithms for different targets.
In this paper, we build two models: a task model and a resource model.

3.1. Task Model

As we know, tasks in a cloud system can be divided into independent tasks that are independent
between each other and workflow tasks that have precedence constraints between each other. In this
paper, we only take independent tasks into consideration. We assume that cloud systems have received
m tasks within a period of time.

Information 2017, 8, 25 5 of 13

These tasks have different sizes and are independent of each other. We use cloudleti to represent
the ith task and a vector to describe cloudleti, which is shown as follows:

cloudleti ≤ cloudletiid , cloudletiuserid , cloudletilength ,
cloudletiPEs , cloudletibandwidth , cloudletistorage , cloudletii f ile ,
cloudletio f ile > i = 1, . . . , m

where cloudletiid is the ID of the task, cloudletiuserid is the ID of the user who submits the task,
cloudletilength is MIPS (million instructions per second) of the task, cloudletiPEs is the quantity of
CPU (Central Processing Unit) users expect, cloudletibandwidth is the bandwidth (unit is MB) of current
network, cloudletistorage the needed space (unit is MB) to store the task, cloudletii f ile and cloudletio f ile are
respectively the size of input and output files.

The computing demand of cloudleti can be calculated by Formula (1)

cloudleticompute = cloudleti length/cloudletiPEs (1)

3.2. Resource Model

Cloud computing is a model for enabling convenient, on-demand network access to a shared
pool of configurable computing resources (e.g., networks, servers, storage, applications, and services)
that can be rapidly provisioned and released with minimal management effort or service provider
interaction. We assume that there are n virtual machines (VM) that have different performances in a
resource pool called datacenter. We use the VMj to represent the jth resource and another vector to
describe the characteristic of VMj.

VMj ≤ vmjid , vmjuserid , vmjpesNumber , vmjMIPS , vmjbandwidth , vmjsize > j = 1, . . . , n

In the vector, vmjid is the ID of the resource, vmjuserid is the ID of the service provider, vmjpesNumber is
the quantities of CPU on the VM, vmjMIPS is MIPS (million instructions per second) of a CPU on a VM,
vmjbandwidth is the bandwidth of VMj, vmjsize is the storage capacity of VMj.

The computing capacity of VMj can be calculated by the following Formula (2)

VMjcompute = vmjpesNumber ∗ vmjMIPS (2)

4. Proposed Algorithms

As mentioned above, resources are usually heterogeneous, so different resources tend to have
different capabilities, such as storage, transmission, etc. Many algorithms may choose inefficient
resources and it will have a certain influence on completion of the tasks. So, we have proposed a task
scheduling algorithm based on kernel-based fuzzy c-means clustering. In cloud computing, some
tasks may have a large amount of data, but the computation of these tasks is small, such as document
storage. However, some other tasks may require massive calculation. Besides, some tasks may not have
large data and computation but require high performance of real-time, such as real-time data display.
Furthermore, to reduce the complexity of resource classification, the proposed algorithm only divides
resources into three categories: computing resources, storage resources and transmission resources.
In every cluster, we use FIFO algorithm to schedule tasks. In addition, we have also improved FIFO
algorithm to shorten the completion time of tasks and increase the resource utilization of system.
The proposed algorithm contains two parts. The first part is to classify the resources into three clusters,
which means the type of tasks that the resource may do well in dealing with, with kernel-based fuzzy
c-means clustering algorithm based on the models. The second part is assigning tasks to resources with
improved FIFO algorithm. The procedure is as shown in Figure 2. The main process of the algorithm
is shown in Algorithm 1.

Information 2017, 8, 25 6 of 13Information 2017, 8, 25 6 of 13

Taskm

Computing

Queues

Storage

Queues

Transmission

Queues

Classification Schedule

Schedule

Schedule

VMi1 VMi2 ...

VMj1 VMj2 ...

VMk1 VMk2 ...

Computing
Resources

Storage
Resources

Transmission
Resources

Figure 2. Procedure of Algorithm 1. VM = virtual machine.

Algorithm 1. The main process of the proposed algorithm

Input: a set of tasks

Output: the result of tasks

Process:

Step 1: Classify resources into three clusters through kernel-based fuzzy c-means

clustering algorithm;

Step 2: Analyze the preference of the tasks and assign the tasks to three queues;

Step 3: Schedule the tasks in each queue by the improved FIFO algorithm;

Step 4: Output the result of the tasks.

4.1. Resource Classification Based on Kernel-Based Fuzzy c-Means Clustering

Fuzzy clustering algorithms analyze and model the important data based on the fuzzy theory.

They establish the uncertainty descriptions of the sample and reflect the real world objectively. The

most obvious difference between fuzzy clustering algorithm and some other clustering algorithms is

that the value of membership degree is between 0 and 1 in fuzzy clustering algorithm. It gets the

membership degree of every sample point to all cluster centers by optimization objective function.

Yi Ding and Xian Fu [16] proposed a kernel-based fuzzy c-means clustering algorithm based on

genetic algorithm and utilized the kernel-based fuzzy clustering algorithm (KFCM) to guide the

categorization. The algorithm defines a nonlinear map as  : Fxx )(, where Xx . X is the

data space and F is the transformed feature space with higher or even infinite dimension. KFCM

tries to minimize the following objective function:


 


c

j

n

i
ij

m
jiKFCM vxVUJ

1 1

2
)()(),( (3)

),(2),(),()()(
2

ijiijjij vxKvvKxxKvx  (4)

where)()(),(vxvxK T  .

In Formula (3) and (4), the parameters are as follows: c is the number of data, n is the number of

clustering centers, μ is the membership and m is a variable and set as 2 in our algorithm. The K(x,v) is

an inner product kernel function, If we adopt the Gaussian function as a kernel function, i.e.,

)/exp(),(22
vxvxK  , then k(x,x) = 1. According to Equation (4), Equation (3) can be rewritten as


 


c

j

n

i
ij

m
jiKFCM vxKVUJ

1 1

),(12),(）（ (5)

In the Formula (5), U is the membership matrix and V is the cluster centers set. Minimizing

Equation (5) under the constraint of U, we have

Figure 2. Procedure of Algorithm 1. VM = virtual machine.

Algorithm 1. The main process of the proposed algorithm

Input: a set of tasks
Output: the result of tasks
Process:

Step 1: Classify resources into three clusters through kernel-based fuzzy c-means clustering algorithm;
Step 2: Analyze the preference of the tasks and assign the tasks to three queues;
Step 3: Schedule the tasks in each queue by the improved FIFO algorithm;
Step 4: Output the result of the tasks.

4.1. Resource Classification Based on Kernel-Based Fuzzy c-Means Clustering

Fuzzy clustering algorithms analyze and model the important data based on the fuzzy theory.
They establish the uncertainty descriptions of the sample and reflect the real world objectively.
The most obvious difference between fuzzy clustering algorithm and some other clustering algorithms
is that the value of membership degree is between 0 and 1 in fuzzy clustering algorithm. It gets the
membership degree of every sample point to all cluster centers by optimization objective function.
Yi Ding and Xian Fu [16] proposed a kernel-based fuzzy c-means clustering algorithm based on genetic
algorithm and utilized the kernel-based fuzzy clustering algorithm (KFCM) to guide the categorization.
The algorithm defines a nonlinear map as Ψ: x → Ψ(x) ∈ F , where x ∈ X. X is the data space and F is
the transformed feature space with higher or even infinite dimension. KFCM tries to minimize the
following objective function:

JKFCM(U, V) =
c

∑
j=1

n

∑
i=1

µm
ji
∣∣Ψ(xj)−Ψ(vi)

∣∣2 (3)

∣∣Ψ(xj)−Ψ(vi)
∣∣2 = K(xj, xj) + K(vi, vi)− 2K(xj, vi) (4)

where K(x, v) = Ψ(x)TΨ(v).
In Formula (3) and (4), the parameters are as follows: c is the number of data, n is the number

of clustering centers, µ is the membership and m is a variable and set as 2 in our algorithm. The
K(x,v) is an inner product kernel function, If we adopt the Gaussian function as a kernel function,
i.e., K(x, v) = exp(−|x− v|2/τ2), then k(x,x) = 1. According to Equation (4), Equation (3) can be
rewritten as

JKFCM(U, V) = 2
c

∑
j=1

n

∑
i=1

µm
ji (1− K(xj, vi)) (5)

In the Formula (5), U is the membership matrix and V is the cluster centers set. Minimizing
Equation (5) under the constraint of U, we have

Information 2017, 8, 25 7 of 13

µki =
(1

1−K(xj ,vi)
)

1/(m−1)

∑c
j=1

1
1−K(xj ,vi)

)1/(m−1)
(6)

vi =
∑n

j=1 µm
ji K(xj, vi)xj

∑n
j=1 µm

ji K(xj, vi)
(7)

Although Equations (6) and (7) are derived by using the Gaussian kernel function, we can use
other functions to satisfy K(x,x) = 1 in Equations (6) and (7). In real applications, such as the following
RBF functions and hyper tangent functions:

(1) RBF function:

K(x, v) = exp(
−∑c

i=1
∣∣xa

i − va
i

∣∣b
τ2) (8)

(2) Hyper tangent function:

K(x, v) = 1− tanh(
−|x− v|2

τ2) (9)

In Formula (8), if set a = 1, b = 2, the RBF function will be reduced into Gaussian function. In
fact, Equation (4) can be viewed as kernel-included new metric in the data space, which is defined as
the following:

d(x, v) =
∣∣Ψ(xj)−Ψ(vi)

∣∣ = √2(1− K(x, v)) (10)

The algorithm endows the data points with an additional weight K(xk, vi), which measures the
similarity between xk and vi.

The full descriptions of kernel-based fuzzy c-means clustering algorithm are as the Algorithm 2:

Algorithm 2. Kernel-based fuzzy c-means clustering algorithm

Input: m one-dimensional vectors
Output: three clusters and their cluster centers
Process:

Step 1: Set c, tmax, m > 1, ε > 0;
Step 2: Initialize the memberships µ0

ji;

Step 3: For t = 1, 2, ..., tmax do:

Update all prototype vt
ji with Equation (7);

Update all memberships µt
ji with Equation (6);

Compute Et = maxji

∣∣∣µt
ji − µt−1

ji

∣∣∣;
If Et ≤ ε

stop;
Else
T = t + 1;

Step 4: End.

We use KFCM to get the better initial clustering centers because the performance of the algorithm
depends on the initial clustering centers.

Information 2017, 8, 25 8 of 13

4.2. Analysis and Preprocessing of Tasks

In our algorithm, we first get each kind of available resources, such as computing or storage and
so on. Then we will get the task’s expectation of each kind of resources by the task model vector VEC
and calculate expi (i = 1, . . . , n), which is the ratio of the expectation of the task named cloudleti and the
available resources. The formula is as shown in Formula (11) below

expi cata = cloudleticata/availablecata (11)

In the formula, “cata” is one of the resource types including computing, storage and bandwidth,
available; “cata” can be achieved from the vectors.

According to the expi of cloudleti, we put the task into the queue tending to the resource
corresponding to the task’s maximum expectation. By using the basic classification, some insufficient
scheduling will be avoided and the time to search appropriate resources will also be shortened because
of fewer targets. After that, we will adopt the improved FIFO algorithm in the next chapter to assign
tasks. The procedure of data preprocessing of tasks is as shown in Algorithm 3:

Algorithm 3. The procedure of data preprocessing of tasks

Input: n one-dimensional vector
Output: three task queues
Process:

Step 1: Get the total of available VMcompute, VMsize and VMbandwidth;
Step 2: Get cloudleticompute cloudletistorage cloudletibandwidth

;

calculate expicompute
expistorage

and expibandwidth
based on Step 1;

Step 3: Compare expicompute
expistorage

and expibandwidth
;

put cloudleti into the queue corresponding to the maximum;
Step 4: Call for the improved FIFO algorithm.

After this process, all of the tasks will be put into queues and wait for scheduling.

4.3. Improved FIFO Algorithm

Taking the utilization and the availability of resources into consideration, the proposed algorithm
sets a threshold named Th to limit the quantity of tasks in each queue and adjust the assignment of
tasks according to the current resources. This algorithm sets Th according to the quantities of VMs.
During the FIFO scheduling, if the VMs are not available, the algorithm will calculate the tasks’ waiting
time in other queues. If the waiting time of the task will decrease after reassignment, the task will be
reassigned to the queue having the least waiting time.

The waiting time wt can be calculated from the following Formula (12)

wti = ti−1exe + titrans (i < limit) (12)

tiexe = cloudletcompute/VMcompute (13)

titrans = cloudletlength/VMbandwidth (14)

In each queue, the algorithm chooses the resource based on the inverse trig function between the
cloudleti and the VMj. The formula is as shown below:

θij = arccos
cloudleticompute ×VMjcompute + cloudletistorage ×VMjsize + cloudletibandwidth

×VMjbw√
cloudlet2

icompute
+ cloudlet2

istorage
+ cloudlet2

ibandwidth
+
√

VM2
jcompute

+ VM2
jsize

+ VM2
jbw

(15)

Information 2017, 8, 25 9 of 13

The procedure of improved FIFO algorithm is as shown in Algorithm 4:

Algorithm 4. The procedure of improved FIFO algorithm

Input: three task queues
Output: the execution time of tasks and the utilization of VMs
Process: In each queue:

Step 1: Set the threshold of each queue according to the quantities of VMs;
Step 2: If there is no available VMj

If the number of tasks in the other queue < Th

Calculate wti in the current queue and wt′i in the other queue

If wt′i < wti

Reassign the task;

Else

Break;
Step 3: In each queue, we calculate θij of cloudleti in the queue and the available VMj, then choose the
VMj corresponding to the minimal θij;

Step 4: Execute tasks in the queue and output the results.

Our algorithm uses clustering algorithm and combines with the pruning idea to shorten the
finish time. The procedure of Algorithm 3 is as shown in Figure 3. The experiment is as shown in the
following Section 5.

Information 2017, 8, 25 9 of 13

The procedure of improved FIFO algorithm is as shown in Algorithm 4:

Algorithm 4. The procedure of improved FIFO algorithm

Input: three task queues

Output: the execution time of tasks and the utilization of VMs

Process: In each queue:

Step 1: Set the threshold of each queue according to the quantities of VMs;

Step 2: If there is no available VMj

If the number of tasks in the other queue < Th

Calculate iwt in the current queue and '
iwt in the other queue

If ii wtwt '

Reassign the task;

Else

Break;

Step 3: In each queue, we calculate ij of cloudleti in the queue and the available VMj,

then choose the VMj corresponding to the minimal ij ;

Step 4: Execute tasks in the queue and output the results.

Our algorithm uses clustering algorithm and combines with the pruning idea to shorten the

finish time. The procedure of Algorithm 3 is as shown in Figure 3. The experiment is as shown in

the following Section 5.

Figure 3. Procedure of Algorithm 3.

Set the threshhold of each
queue

Is there any
available VM

Execute the task

Has Th been meet
in other queues

Calculate wti

and wti

Wait

wti <wti
Reassign the

task

start

end

Figure 3. Procedure of Algorithm 3.

Information 2017, 8, 25 10 of 13

5. Experiment and Analysis

Our algorithm aims to decrease the execution time of tasks and increase resource utilization of the
system. The experiment has realized original FIFO algorithm and improved FIFO algorithm after using
clustering and not using clustering. Besides, based on the scheduling strategy [17], we implement the
ACO algorithm as contrast.

5.1. Experiment Configuration

Our experiment uses CloudSim to simulate the real environment. CloudSim [18] is a cloud
computing simulation software that was developed by Melbourne University and could model and
simulate cloud computing. Our experiment realizes the FIFO algorithm and the improved FIFO
algorithm based on classifying the resources with fuzzy c-means clustering algorithm. According to
the results of the experiment, we evaluate these algorithms from two aspects: execution time and the
average resource utilization.

In our experiment, the specific experimental configuration is as follows:

(1) The parameters of platform: there are 10 datacenters that have 4 hosts. The configuration of each
host includes 2000 MIPS compute speed, 4 GB memory, 1 TB storage, 10 GB/s bandwidth and
the quantity of PE (Processing Element) is 1, 2 or 4. The characteristic of each datacenter is that
the system architecture is x86 and the operating system is Linux.

(2) The parameters of tasks: task length is in [500, 4000], the range of bandwidth is between [1000,
2000] and the range of storage is between [512, 2048]

(3) The parameters of VMs: the quantity of CPU is between {1, 2, 4}, the range of CPU speed is
between [500, 1000], the range of bandwidth is between [500, 3000] and the range of storage is
between [512, 4096]

Taking an example, the main parameters of a system with 10 VMs is as shown in the following
Table 1:

Table 1. Parameters of system.

VM ID Computing (MIPS) Bandwidth (MB/S) Storage (GB)

0 10,000 4000 8192
1 8000 2000 10,240
2 4000 10,000 4096
3 16,000 4000 6144
4 3000 5000 5120
5 5000 7000 3072
6 12,000 6000 10,240
7 8000 4000 12,288
8 10,000 8000 8192
9 9000 9000 16,384

MIPS = million instructions per second.

5.2. Experiment Results

5.2.1. The Results of Resource Clustering

We use fuzzy quantification and min–max standardization to process data and the formula of
standardization is as shown in Formula (16) and (17) below:

vm′ij = 1/2 + 1/2 ∗ sin(π/(vmjmax − vmjmin)∗
(vmij − (vmjmax − vmjmin)/2))

(16)

vm′′ij = (vm′ij − vm′jmin
)/(vm′jmax

− vm′jmin
) (17)

Information 2017, 8, 25 11 of 13

Original resources data and the standardized VMs data when the VM number is 10 are shown in
Figure 4 below:

Information 2017, 8, 25 11 of 13

Original resources data and the standardized VMs data when the VM number is 10 are shown

in Figure 4 below:

Figure 4. Process of data.

After the fuzzy clustering, we will divide these resources into three clusters, which are Cluster0

= {vm0, vm3, vm6}, Cluster1 = {vm2, vm4, vm5, vm8, vm9} and Cluster2 = {vm1, vm7}. In these clusters,

Cluster0 is marked as computing resource, Cluster1 is marked as bandwidth resource and Cluster2 is

marked as storage resource.

5.2.2. The Results of Scheduling and Analysis

In our experiment, we set task number n = {100, 200, 300, 400, 500, 600, 800, 1000} and VM

number m = {10, 20, 30, 40, 50, 60, 80, 100}. We implement and compare FIFO, ACO and our

algorithm by means of execution time and the average resource utilization. The result is as follows.

Figure 5. Execution time of the four algorithms.

From Figure 5, we can find that the execution time of proposed algorithm is the minimal

among the four algorithms and the decrease is more obvious with the increase of task number, for

example, when n = 1000, the execution time of our algorithm is reduced by approximately 33.6% of

improved FIFO without clustering and approximately 27.9% of the original FIFO with KFCM. By

comparing the execution time of the other three algorithms related to FIFO and the proposed

algorithm, we can find that the proposed algorithm will finish tasks earlier, so we can guess that the

following Fig 4:







































1638490009000

8192800010000

1228840008000

10240600012000

307270005000

512050003000

6144400016000

4096100004000

1024020008000

8192400010000







































874.0962.0784.0

677.0000.1874.0

985.0500.0677.0

874.0854.0985.0

126.0962.0323.0

323.0691.0126.0

440.0500.0874.0

216.0854.0216.0

874.0146.0677.0

677.0500.0874.0







































871.0956.0766.0

641.0000.1871.0

000.1415.0641.0

871.0829.0000.1

000.0956.0229.0

229.0642.0000.0

366.0415.0871.0

105.0829.0105.0

871.0000.0641.0

641.0415.0871.0

Fig 4. Process of data

After the fuzzy clustering, we will divide these resources into 3 clusters, which are Cluster0=

{vm0, vm3, vm6}, Cluster1= {vm2, vm4, vm5, vm8, vm9} and Cluster2= {vm1, vm7}. In these

clusters, Cluster0 is marked as computing resource, Cluster1 is marked as bandwidth

resource and Cluster2 is marked as storage resource.

Figure 4. Process of data.

After the fuzzy clustering, we will divide these resources into three clusters, which are
Cluster0 = {vm0, vm3, vm6}, Cluster1 = {vm2, vm4, vm5, vm8, vm9} and Cluster2 = {vm1, vm7}. In these
clusters, Cluster0 is marked as computing resource, Cluster1 is marked as bandwidth resource and
Cluster2 is marked as storage resource.

5.2.2. The Results of Scheduling and Analysis

In our experiment, we set task number n = {100, 200, 300, 400, 500, 600, 800, 1000} and VM number
m = {10, 20, 30, 40, 50, 60, 80, 100}. We implement and compare FIFO, ACO and our algorithm by
means of execution time and the average resource utilization. The result is as follows.

Information 2017, 8, 25 11 of 13

Original resources data and the standardized VMs data when the VM number is 10 are shown

in Figure 4 below:

Figure 4. Process of data.

After the fuzzy clustering, we will divide these resources into three clusters, which are Cluster0

= {vm0, vm3, vm6}, Cluster1 = {vm2, vm4, vm5, vm8, vm9} and Cluster2 = {vm1, vm7}. In these clusters,

Cluster0 is marked as computing resource, Cluster1 is marked as bandwidth resource and Cluster2 is

marked as storage resource.

5.2.2. The Results of Scheduling and Analysis

In our experiment, we set task number n = {100, 200, 300, 400, 500, 600, 800, 1000} and VM

number m = {10, 20, 30, 40, 50, 60, 80, 100}. We implement and compare FIFO, ACO and our

algorithm by means of execution time and the average resource utilization. The result is as follows.

Figure 5. Execution time of the four algorithms.

From Figure 5, we can find that the execution time of proposed algorithm is the minimal

among the four algorithms and the decrease is more obvious with the increase of task number, for

example, when n = 1000, the execution time of our algorithm is reduced by approximately 33.6% of

improved FIFO without clustering and approximately 27.9% of the original FIFO with KFCM. By

comparing the execution time of the other three algorithms related to FIFO and the proposed

algorithm, we can find that the proposed algorithm will finish tasks earlier, so we can guess that the

following Fig 4:







































1638490009000

8192800010000

1228840008000

10240600012000

307270005000

512050003000

6144400016000

4096100004000

1024020008000

8192400010000







































874.0962.0784.0

677.0000.1874.0

985.0500.0677.0

874.0854.0985.0

126.0962.0323.0

323.0691.0126.0

440.0500.0874.0

216.0854.0216.0

874.0146.0677.0

677.0500.0874.0







































871.0956.0766.0

641.0000.1871.0

000.1415.0641.0

871.0829.0000.1

000.0956.0229.0

229.0642.0000.0

366.0415.0871.0

105.0829.0105.0

871.0000.0641.0

641.0415.0871.0

Fig 4. Process of data

After the fuzzy clustering, we will divide these resources into 3 clusters, which are Cluster0=

{vm0, vm3, vm6}, Cluster1= {vm2, vm4, vm5, vm8, vm9} and Cluster2= {vm1, vm7}. In these

clusters, Cluster0 is marked as computing resource, Cluster1 is marked as bandwidth

resource and Cluster2 is marked as storage resource.

Figure 5. Execution time of the four algorithms.

From Figure 5, we can find that the execution time of proposed algorithm is the minimal among
the four algorithms and the decrease is more obvious with the increase of task number, for example,
when n = 1000, the execution time of our algorithm is reduced by approximately 33.6% of improved
FIFO without clustering and approximately 27.9% of the original FIFO with KFCM. By comparing
the execution time of the other three algorithms related to FIFO and the proposed algorithm, we

Information 2017, 8, 25 12 of 13

can find that the proposed algorithm will finish tasks earlier, so we can guess that the multi-queues
could improve the FIFO algorithm in scheduling and clustering algorithms can make contributions to
reduce the scheduling time. By comparing the execution time of ACO and the proposed algorithm, we
can draw the conclusion that the proposed algorithm is effective in reducing execution time of tasks.
Besides, we believe that the difference between results of the proposal algorithm and others will be
more obvious if resource homogeneity is further increased.

From Figure 6, we can find that the resource utilization has ups and downs with an increase in
the number of tasks. At the beginning, with the increase of task number, the resource utilization will
increase, but when the task number is more than 600, the resource utilization will decrease because of
the increase of data. However, the resource utilization of the proposed algorithm is always more than
40% and is always the maximal among the five algorithms. We can believe that the resource utilization
will be improved by classifying the resources.

Information 2017, 8, 25 12 of 13

multi-queues could improve the FIFO algorithm in scheduling and clustering algorithms can make

contributions to reduce the scheduling time. By comparing the execution time of ACO and the

proposed algorithm, we can draw the conclusion that the proposed algorithm is effective in

reducing execution time of tasks. Besides, we believe that the difference between results of the

proposal algorithm and others will be more obvious if resource homogeneity is further increased.

Figure 6. Resource utilization of the four algorithms.

From Figure 6, we can find that the resource utilization has ups and downs with an increase in

the number of tasks. At the beginning, with the increase of task number, the resource utilization

will increase, but when the task number is more than 600, the resource utilization will decrease

because of the increase of data. However, the resource utilization of the proposed algorithm is

always more than 40% and is always the maximal among the five algorithms. We can believe that

the resource utilization will be improved by classifying the resources.

Based on the above analysis, we can assume that our algorithm can apparently shorten the

execution time and improve the resource utilization obviously.

6. Discussion

We study the scheduling problem of independent tasks in cloud computing, summarize other

scheduling algorithms, introduce the clustering algorithms and propose a new scheduling

algorithm. Our algorithm abstracts resources into a model and analyzes these characteristics of

resources with the fuzzy c-means clustering algorithm to narrow the range of resources and shorten

the execution time of tasks. From the experiment, we find that our algorithm could decrease the

execution time of tasks and increase resource utilization of the system.

Next, we will take the dynamic characteristic of tasks and the link between them and take further

research on scheduling algorithms. We will take the QoS into account, further optimize the algorithm

and use some open source tools to do experiments with new data sets. Moreover, we will take some

alternative approaches, such as ACO and PSO (Particle Swarm Optimization), into account.

Acknowledgments: This work was supported in part by the National Science Foundation of China (No.

61572259), Special Public Sector Research Program of China (No. GYHY201506080).

Author Contributions: Tinghuai Ma proposed the idea and provided the financial support; Jian Li designed

the experiments; Wenhai Shen provided the experiment data; Meili Tang and Yuanfeng Jin revised the

manuscript; Jian Li wrote the paper. All authors have read and approved the final manuscript.

Figure 6. Resource utilization of the four algorithms.

Based on the above analysis, we can assume that our algorithm can apparently shorten the
execution time and improve the resource utilization obviously.

6. Discussion

We study the scheduling problem of independent tasks in cloud computing, summarize other
scheduling algorithms, introduce the clustering algorithms and propose a new scheduling algorithm.
Our algorithm abstracts resources into a model and analyzes these characteristics of resources with the
fuzzy c-means clustering algorithm to narrow the range of resources and shorten the execution time of
tasks. From the experiment, we find that our algorithm could decrease the execution time of tasks and
increase resource utilization of the system.

Next, we will take the dynamic characteristic of tasks and the link between them and take further
research on scheduling algorithms. We will take the QoS into account, further optimize the algorithm
and use some open source tools to do experiments with new data sets. Moreover, we will take some
alternative approaches, such as ACO and PSO (Particle Swarm Optimization), into account.

Acknowledgments: This work was supported in part by the National Science Foundation of China (No. 61572259),
Special Public Sector Research Program of China (No. GYHY201506080).

Information 2017, 8, 25 13 of 13

Author Contributions: Tinghuai Ma proposed the idea and provided the financial support; Jian Li designed the
experiments; Wenhai Shen provided the experiment data; Meili Tang and Yuanfeng Jin revised the manuscript;
Jian Li wrote the paper. All authors have read and approved the final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bosoteanu, M.C. Cloud Accounting In Romania. A Literature Review. Risk Contemp. Econ. 2016, 400–405.
2. Vijindra, S.S. Survey on Scheduling Issues in Cloud Computing. Procedia Eng. 2012, 38, 2881–2888. [CrossRef]
3. Pacini, E.; Mateos, C.; Garcia, G.C. Software Survey: Distributed job scheduling based on Swarm Intelligence:

A survey. Comput. Electr. Eng. 2014, 40, 252–269. [CrossRef]
4. Krauter, K.; Buyya, R.; Maheswaran, M. A Taxonomy and Survey of Grid Resource Management Systems for

Distributed Computing. Softw. Pract. Exp. 2000, 32, 135–164. [CrossRef]
5. Xhafa, F.; Abraham, A. Computational models and heuristic methods for Grid scheduling problems.

Future Gener. Comput. Syst. 2010, 26, 608–621. [CrossRef]
6. Helmy, T.; Rasheed, Z. Independent Job Scheduling by Fuzzy C-Mean Clustering and an Ant Optimization

Algorithm in a Computation Grid. IAENG Int. J. Comput. Sci. 2010, 37, 136–145.
7. Siriluck, L.; Noor, M.S.M.; Hanan, A.A.; Surat, S. A static jobs scheduling for independent jobs in Grid

Environment by using Fuzzy C-Mean and Genetic algorithms. In Proceedings of the Postgraduate Annual
Research Seminar 2006, Johor Bahru, Malaysia, 24–25 May 2006; p. 20.

8. Mahesh, S.; Kadam, A. Cluster Oriented Optimized Cloud Task Scheduling Strategy using Linear
Programming. Int. J. Comput. Appl. 2015, 128, 26–31.

9. Wang, X.; Wang, Y.; Hao, Z.; Du, J. The Research on Resource Scheduling Based on Fuzzy Clustering in Cloud
Computing. In Proceedings of the 8th International Conference on Intelligent Computation Technology and
Automation, Nanchang, China, 14–15 June 2015; pp. 1025–1028.

10. White, T. Hadoop: The Definitive Guide; O’Reilly Media Inc. Gravenstein Highway North: Sebastopol, CA,
USA, 2010.

11. Pei, S.J.; Zheng, X.M.; Hu, D.M.; Lou, S.H.; Zhang, Y.X. Optimization and Research of Hadoop Platform
Based on FIFO Scheduler. In Proceedings of the 7th International Conference on Measuring Technology &
Mechatronics Automation, Nanchang, China, 13–14 June 2015; pp. 727–730.

12. Thakur, S.; Singh, R.; Sharma, S. Dynamic Capacity Scheduling in Hadoop. Int. J. Comput. Appl. 2015, 125.
[CrossRef]

13. Tang, S.; Lee, B.S.; He, B. Fair Resource Allocation for Data-Intensive Computing in the Cloud. IEEE Trans.
Serv. Comput. 2016. [CrossRef]

14. Yao, Y.; Tai, J.; Sheng, B.; Mi, N. LsPS: A Job Size-Based Scheduler for Efficient Task Assignments in Hadoop.
IEEE Trans. Cloud Comput. 2015, 3, 411–424. [CrossRef]

15. Pacini, E.; Mateos, C.; Garino, C.G. Multi-objective Swarm Intelligence schedulers for online scientific Clouds.
Computing 2016, 98, 495–522. [CrossRef]

16. Ding, Y.; Fu, X. Kernel-based fuzzy c-means clustering algorithm based on genetic algorithm. Neurocomputing
2015, 188, 233–238. [CrossRef]

17. Wen, W.T.; Wang, C.D.; Wu, D.S.; Xie, Y.Y. An ACO-based Scheduling Strategy on Load Balancing in Cloud
Computing Environment. In Proceedings of the Ninth International Conference on Frontier of Computer
Science and Technology, Dalian, China, 26–28 August 2015; pp. 364–369.

18. Calheiros, R.N.; Ranjan, R.; Beloglazov, A.; De Rose, C.A.; Buyya, R. CloudSim: A toolkit for modeling and
simulation of cloud computing environments and evaluation of resource provisioning algorithms, Software:
Practice and Experience. Softw. Pract. Exp. 2010, 41, 23–50. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.proeng.2012.06.337
http://dx.doi.org/10.1016/j.compeleceng.2013.11.023
http://dx.doi.org/10.1002/spe.432
http://dx.doi.org/10.1016/j.future.2009.11.005
http://dx.doi.org/10.5120/ijca2015906178
http://dx.doi.org/10.1109/TSC.2016.2531698
http://dx.doi.org/10.1109/TCC.2014.2338291
http://dx.doi.org/10.1007/s00607-014-0412-y
http://dx.doi.org/10.1016/j.neucom.2015.01.106
http://dx.doi.org/10.1002/spe.995
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Fuzzy c-Means Clustering Algorithm (FCM)
	Scheduling Algorithms

	Scheduling Models
	Task Model
	Resource Model

	Proposed Algorithms
	Resource Classification Based on Kernel-Based Fuzzy c-Means Clustering
	Analysis and Preprocessing of Tasks
	Improved FIFO Algorithm

	Experiment and Analysis
	Experiment Configuration
	Experiment Results
	The Results of Resource Clustering
	The Results of Scheduling and Analysis

	Discussion

