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Abstract: In this paper, we address strongly convex programming for principal component analysis,
which recovers a target matrix that is a superposition of low-complexity structures from a small set of
linear measurements. In this paper, we firstly provide sufficient conditions under which the strongly
convex models lead to the exact low-rank matrix recovery. Secondly, we also give suggestions that
will guide us how to choose suitable parameters in practical algorithms. Finally, the proposed result
is extended to the principal component pursuit with reduced linear measurements and we provide
numerical experiments.
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1. Introduction

Recently, much attention has been focussed on the problem of recovering a target matrix with
low-complexity structure from a small set of linear measurements. This problem has regained great
concern since the publication of the pioneering works of E.J. Candés et al. [1–4]. It can be found in
many different fields, such as medical imaging [5–7], seismology [8], information retrieval [9] and
machine learning [10], especially the detection of moving objects [11]. In the case of detection of
moving objects, the columns of matrix M are the video frames, and the low-rank matrix L0 and the
sparse matrix S0 are the stationary background and the moving objects in the foreground respectively.
According to [12], the main problem of detection of moving objects is how to recover the low-rank
matrix L0 and the sparse matrix S0 from the given data matrix M = L0 + S0, where L0 ∈ Rn×n has
low-rank, and S0 is a sparse matrix. In the paper [12], E.J. Candés et al. have proved that that most
low-rank matrices and the sparse components can be recovered, provided that the rank of the low-rank
component is not too large, and that the sparse component is reasonably sparse; and more importantly
they proved that this can be done by solving a simple convex optimization problem, i.e., provided that
the rank of the matrix L and the cardinality of the sparse matrix S obey some suitable conditions,
most matrices L0 of rank r and the sparse component S0 can be perfectly recovered by solving the
simple optimization problem as follows:

minimize ‖L‖∗ + λ‖S‖1

subject to L + S = M (1)

wherein ‖L‖∗ is the nuclear norm of matrix L, and ‖S‖1 is the sum of absolute values of all
matrix entries.

Strongly convex optimizations have many advantages, e.g., unique optimal solution. Many
scholars suggest solving their strongly convex approximations (see, e.g., [13–16]), instead of directly
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solving the original convex optimizations. J.F. Cai et al. addressed the strongly convex optimization
τ‖X‖∗+ 1

2‖X‖2
F(‖X‖F denoting the Frobenius norm) instead of the original convex optimization ‖X‖∗,

and the authors introduced an important algorithm (singular value thresholding algorithm) to solve
matrix completion based on this strongly convex optimization [15]; J. Wright et al. also addressed
the strongly convex optimization ‖L‖∗ + λ‖S‖1 +

1
2τ ‖L‖2

F + 1
2τ ‖S‖2

F instead of the original convex
optimization ‖L‖∗ + λ‖S‖1, and the authors proposed the iterative thresholding(IT) algorithm to
solve robust principal component analysis [14]. J. Wright et al. only confirm performance of iterative
thresholding by numerical experiments; however, the authors do not provide the sufficient conditions
which can guarantee strongly convex optimization ‖L‖∗ + λ‖S‖1 +

1
2τ ‖L‖2

F + 1
2τ ‖S‖2

F and original
convex optimization ‖L‖∗ + λ‖S‖1 have the same optimal solution. In this article, the authors have
given many suitable sufficient conditions that would lead the strongly convex models to the exact
low-rank and sparse matrix recovery. Some suggestions have been given in [16] on how to choose
suitable parameters in practical algorithms. However, the results shown in [16] are limited to a special
condition, i.e., Q = Rn×n. In this paper, we extend this result to the principal component pursuit with
reduced linear measurements, that is Q⊥ is a p-dimensional random subspace instead of Q = Rn×n.
It is easy to prove that the results in [16] are only a special case of those that we proposed.

1.1. Basic Problem Formulations

In this subsection, we will interpret an important strongly convex programming to be addressed
in this paper, and list its existence and uniqueness theorems, which will be proved in the next sections.
In [17], the authors have studied principal component pursuit with reduced linear measurements and
given sufficient conditions under which L0 and S0 can be perfectly recovered.

In this paper, we address a strongly convex programming, and prove that it has the capability to
guarantee exact low-rank matrix recovery. The proposed optimization is realized in the following way:

minimize ‖L‖∗ + λ‖S‖1 +
1

2τ
‖L‖2

F +
1

2τ
‖S‖2

F

subject to PQ M = PQ(L + S) (2)

wherein, τ ≥ 0 refers to some positive penalty parameter and PQ the orthogonal projection onto the
linear subspace Q. We also assume that Q⊥ is a random subspace. The existence and uniqueness
theorems when τ = ∞ in (2)are provided in [17], and listed below. In the end, how to choose suitable
parameters in the optimization model (2) is discussed.

Theorem 1 ([17]). If we fix any Cp > 0, and let Q⊥ be a p-dimensional random subspace of Rn×n; L0 obeys
incoherence condition with parameter µ, and supp(S0) ∼ Ber(ρ). With high probability, the solution of problem
(2) with λ = 1√

n is exact, i.e., L̂ = L0 and Ŝ = S0, provided that

Rank(L0) < Crnµ−1(log n)−2 p < Cpn and ρ < ρ0 (3)

wherein, Cr, Cp and ρ are positive numerical constants and ρ0 < 1.

1.2. Contents and Notations

We provide a brief summary of the notations which are used throughout the paper. ‖X‖ denotes
the operator norm of matrix X, ‖X‖F denotes the Frobenius norm, ‖X‖∗ the nuclear norm, and the
dual norm of ‖X‖(i) by ‖X‖∗(i). The Euclidean inner product between two matrices X, Y is defined

by the formula 〈X, Y〉 = trace(X∗Y). It’s easy to note that ‖X‖2
F = 〈X, X〉. The Cauchy-Schwarz

inequality which will often be used in next sections gives 〈X, Y〉 ≤ ‖X‖F‖Y‖F, and it is well
known that 〈X, Y〉 ≤ ‖X‖(i)‖Y‖∗(i), (see e.g., [2,18]). Linear transformations which act on the space
of matrices are denoted by PX. It can be easily seen that the operator of P is high dimension
matrix in substance. The operator norm of this operator is signified by ‖P‖. It should also be noted
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that ‖P‖ = sup{‖X‖F=1}‖PX‖F. We say an event E occurs with high probability if P[E] = Cm−α.
We denote the reduced singular value decomposition (SVD) of the low-rank matrix L0 as L0 = UΣV∗,
and define a linear subspace T as follows:

T = {UX∗ + YV∗ : X ∈ Rn×r, Y ∈ Rm×r}

We denote the support of the sparse matrix S0 as Ω, by a slight abuse of notation, we also denote Ω as
the subspace of matrices whose support is contained in the support of S0.

The rest of this paper is organized as follows. In Section 2, we firstly list many important lemmas,
at the same time we prove a key lemma on which our main result is based. Secondly suggestions are
given in Section 3, these conditions will guide us to choose suitable parameters in practical algorithms.
Thirdly, the numerical result is given in Section 4. Finally, conclusions and results are discussed in
Section 5.

2. Important Lemmas

In this section, we first list some useful lemmas which will be used throughout this paper and
then prove a main lemma. Although the main lemma is similar to the corresponding one in [17],
they have significant difference, in which the construction of WQ is very different. That leads to our
necessary additional work.

Lemma 1 ([17]). Let Γ = Q ∩ T⊥,then we have Γ⊥ = Q⊥ ⊕ T,and dim(Q⊥ ⊕ T ⊕ Ω) = dim(Q⊥) +
dim(T) + dim(Ω). At the same time we assume that ‖PΩPΓ⊥‖ < 1/2 and λ < 1. Then (L0, S0) is the unique
optimal solution to (2) if there is a pair (W, F) ∈ Rn×n ×Rn×n satisfying the following conditions

UV∗ + W = λ(sgn(S0) + F + PΩD) ∈ Q

In which PT = 0, ‖W‖ < 1/2, PΩF = 0, ‖F‖∞ < 1/2, and ‖PΩD‖F ≤ 1/4.

Lemma 2 ([17]). If Ω ∼ Ber(ρ) for some small ρ ∈ (0, 1) and the other conditions of Theorem 1 are true.
Then, the matrix WL obeys the below inequalities with high probability.

(a). ‖WL‖ < 1/4
(b). ‖PΩ(UV∗ + WL)‖F < λ/4
(c). ‖PΩ⊥(UV∗ + WL)‖∞ < λ/4

Lemma 3 ([17]). In addition to the assumptions in the previous lemma, suppose that the signs of the non-zero
entries of S0 are i.i.d. random. Then the matrix WS obeys the below inequalities with high probability.

(a). ‖WS‖ < 1/8
(b). ‖PΩ⊥WS‖∞ < λ/8

The construction of WL and WS can be found in the paper [17]. However, the matrix WQ

constructed in the paper [17] does not satisfy the requirement of our problem, so we have to modify
this construction in order to satisfy the problem (2). Firstly we will give explicit construction of WQ,
and then prove that the modification of WQ satisfies the proper property.

Construction of WQ with least modification. We define WQ by the following least squares problem:

WQ = arg minX ‖X‖F

subject to PQ⊥X = −PQ⊥(UV∗ +
1
τ

L0)

PΠX = 0
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wherein Π = T ⊕Ω. This construction of WQ satisfies Lemma 5 in the paper [17], also has the below
proper property.

Lemma 4. If τ ≥ ‖M‖F, Ω ∼ Ber(ρ) for some small ρ ∈ (0, 1) and the assumptions of Theorem 1 are true.
Then the matrix WQ obeys the below inequalities with high probability.

(a). ‖WQ‖ < 1/8
(b). ‖PΩ⊥WQ‖∞ < λ/8

Proof. A: Bounding the Frobenius norm of UV∗ + 1
τ L0. For convenience, let ξ := ‖UV∗ + 1

τ L0‖F.
According to triangle inequality, we have

‖L0‖F = ‖M− S0‖F ≤ ‖M‖F + ‖S0‖F = ‖M‖F + ‖PΩS0‖F

In the last equality, we have used S0 ∈ Ω. Note that

‖PΩS0‖F = ‖PΩ(M− L0)‖F ≤ ‖PΩ M‖F + ‖PΩL0‖F

According to the derivation in [16], the below inequality is true with high probability

‖PΩL0‖F ≤
√

3
3
‖PΩ⊥M‖F ≤

√
3

3
‖M‖F

Putting those all together, we can obtain

‖L0‖F ≤ (
√

3/3 + 2)‖M‖F

Combining with τ ≥ ‖M‖F, we can obtain

ξ ≤ ‖UV∗‖F +
‖L0‖F

τ
≤ r +

(
√

3/3 + 2)‖M‖F
τ

≤ r +
√

3/3 + 2

WQ is the optimum solution of least squares problem, due to this we can use the convergent
Neumann series expansion. It’s easy to note that

WQ = PΠ⊥ ∑
k>0

(PQ⊥PΠPQ⊥)
k(PQ⊥(−UV∗ − 1

τ
L0))

According to triangle inequality, we have

‖WQ‖F ≤ ‖ ∑
k>0

(PQ⊥PΠPQ⊥)
k‖‖PQ⊥(−UV∗ − 1

τ
L0)‖F (4)

B: Estimating the first inequality of Lemma 4. In order to bound ‖WQ‖F, we first have to bound
the norm of ∑k>0(PQ⊥PΠPQ⊥)

k and bound the Frobenius norm of PQ⊥(−UV∗ − 1
τ L0). The norm of

∑k>0(PQ⊥PΠPQ⊥)
k satisfies

‖ ∑
k>0

(PQ⊥PΠPQ⊥)
k‖ ≤ ∑

k>0
‖(PQ⊥PΠPQ⊥)

k‖

≤ ∑
k>0
‖PQ⊥PΠ‖2k
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According to Lemma 11 in the paper [17], the following inequality is true with high probability for any
ε > 0,

‖PQ⊥PΠ‖2 ≤ 64
1−√ρ + ε

(√ p
n2 +

√
5ρ

4

)2

+

(√
p

n2 +

√
2r
n

)2


According to the paper [17], the following inequality is true with high probability:

‖ ∑
k>0

(PQ⊥PΠPQ⊥)
k‖ ≤ 4

3

Secondly, we will bound the Frobenius norm ofPQ⊥(−UV∗− 1
τ L0). PQ⊥ has the same distribution

as H(H∗H)−1H∗, in which H ∈ Rn2×p is a random Gaussian matrix with i.i.d. entries satisfied
N (0, 1/n2). Therefore, we can obtain the below inequality

‖PQ⊥(UV∗ +
1
τ

L0)‖F

= ‖H(H∗H)−1H∗vec(UV∗ +
1
τ

L0)‖F

≤ ‖H(H∗H)−1‖‖H∗vec(UV∗ +
1
τ

L0)‖2

Together with Lemma 7 in the paper [17], we can obtain

P[‖H(H∗H)−1‖ ≥ 4] ≤ e−
n2
32

It is easy to note that any entries of H∗vec(UV∗ + 1
τ L0) have the same distribution as

< G, UV∗ + 1
τ L0 >, in which Gij ∼ N (0, 1/n2) are independent identically distributed. It is obvious

to see that

E{< G, UV∗ +
1
τ

L0 >} =< E{G}, UV∗ +
1
τ

L0 >= 0

and

Var{< G, UV∗ +
1
τ

L0 >} = ∑
ij
(UV∗ +

1
τ

L0)
2
ijVar{Gij}

= ξ2/n4

Therefore < G, UV∗ + 1
τ L0 > is distributed with N (0, ξ/n2), where ξ: = ‖UV∗ + 1

τ L0‖F.
For simplicity, we define Z: = H∗vec(UV∗ + 1

τ L0). Using the Jesen inequality, we can obtain

E[‖Z‖2] ≤ (E[‖Z‖2
2])

1/2 =

√
pξ

n2

According to the Proposition 2.18 in [18], we can obtain

P
[
‖Z‖2 ≥ E[‖Z‖2] + t

√
ξ

n2

]
≤ e−t2/2

Setting t =
√

6logn, after a simple inference, we can obtain the below inequality with high probability.

‖WQ‖ ≤ ‖WQ‖F ≤
16
3

(√
pξ

n
+

√
6ξlogn

n

)
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For sufficiently large n, the first inequality of Lemma 4 is established. We will estimate the second
inequality of Lemma 4 further.
C: Estimating the second inequality of Lemma 4, Note that

WQ = PΠ⊥PQ⊥ ∑
k>0

(PQ⊥PΠPQ⊥)
k(PQ⊥(−UV∗ − 1

τ
L0))

After a simple inference, we can obtain the below inequality.

‖PΩ⊥WQ‖∞ ≤
C
√

ξ

n2 (
√

p +
√

6 log n)2

wherein C is some constant. Note that the second inequality of Lemma 4 is established for sufficiently
large n.

3. Estimating Parameter τ

In this section, we shall provide sufficient conditions under which (L0; S0) is the unique and exact
solution of the strongly convex programming (2) with high probability, i.e., the solution of problem
(2) is exact L̂ = L0 and Ŝ = S0. Afterwards, an explicit lower bound of τ will be provided, which will
further guide us to choose suitable parameters in practical algorithms.

Theorem 2. Let Γ = Q∩ T⊥, then we have Γ⊥ = Q⊥ ⊕ T, and dim(Q⊥ ⊕ T⊕Ω) = dim(Q⊥) + dim(T) +
dim(Ω). Assume that ‖PΩPΓ⊥‖ < 1/2 and λ < 1. If there is a pair (W, F) ∈ Rn×n ×Rn×n and a matrix
D satisfying

UV∗ +W +
1
τ

L0 = λ(sgn(S0) + F +PΩD) +
1
τ

S0 ∈ Q

with

PTW = 0, ‖W‖ ≤ β, PΩF = 0, ‖F‖∞ ≤ β, ‖PΩD‖F ≤ α (5)

where α, β are positive parameters satisfying

α + β ≤ 1 (6)

Then (L0, S0) is the unique solution of the strongly convex programming (2).

Proof. For any feasible perturbation (HL, HS), it’s easy to note that PQHL = PQHS. According to
the definition of Γ, we have Γ ⊂ Q. Therefore PΓHL = PΓHS. For simplicity, we define f (L, S):
= ‖L‖∗ + λ‖S‖1 +

1
2τ‖L‖2

F +
1

2τ‖S‖2
F, and we can obtain the below inequality

f (L0 + HL, S0− HS)

≥ f (L0, S0)+ < UV∗ +W0 +
1
τ

L0, HL > − < λsgn(S0) + λF0 +
1
τ

S0, HS >

≥ f (L0, S0)+ < W0, HL > − < W, HL > + < UV∗ +W +
1
τ

L0,PQHL >

− < λF0, HS > + < λF, HS > − < λsgn(S0) + λF +
1
τ

S0,PQHS >

≥ f (L0, S0)+ < W0,PT⊥HL > − < W,PT⊥HL >

− < λF0,PΩ⊥HS > + < λF,PΩ⊥HS > − < λPΩD,PQHS >

≥ f (L0, S0) + (1− β)‖PT⊥HL‖∗ + (1− β)λ‖PΩ⊥HS‖1− αλ‖PΩHS‖F
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In the second inequality above, we have used the facts

UV∗ +W +
1
τ

L0 = λ(sgn(S0) + F +PQD) +
1
τ

S0 ∈ Q

In the third inequality above, we have used the property PQHL = PQHS.
We have provided the bound of f (L0 + HL, S0−HS), and then we will give the bound of ‖PΩHS‖F.

According to the definition of Γ , we can obtain

‖PΩHS‖F ≤ ‖PΩPΓHS‖F + ‖PΩPΓ⊥HS‖F

≤ ‖PΩPΓHL‖F +
1
2
‖HS‖F

≤ ‖PΓHL‖F +
1
2
‖PΩHS‖F +

1
2
‖PΩ⊥HS‖F

≤ ‖PT⊥HL‖F +
1
2
‖PΩHS‖F +

1
2
‖PΩ⊥HS‖F

Therefore

‖PΩHS‖F ≤ 2‖PT⊥HL‖F + ‖PΩ⊥HS‖F ≤ 2‖PT⊥HL‖∗ + ‖PΩ⊥HS‖1

Putting those all together, we get

f (L0 + HL, S0− HS)

≥ f (L0, S0) + (1− β− 2αλ)‖PT⊥HL‖∗ + (1− β− α)λ‖PΩ⊥HS‖1

According to (6), the inequality above implies that (L0, S0) is a solution to (2), i.e., (L0; S0) is the
exact solution of the strongly convex programming (2) with high probability. The uniqueness follows
from the strong convexity of the objective in (2).

In the practice, the choose of parameter τ is very difficult, therefore we will provide the criterion
of the value of τ in the next section which will guide us to choose suitable parameters in practical
algorithms. Theorem 3 and 4 provide the criterion of the value of τ, and the bound of τ in Theorem 4
is more explicit and useful in practice.

Theorem 3. Let τ1 =
‖PΩ⊥L0‖∞

(β− 1
2 )λ

, τ2 = ‖PΩ(L0−S0)‖F
(α− 1

4 )λ
, and τ3 =

4(‖PΩ⊥L0‖∞+‖PΩ(L0−S0)‖F)

λ . Assume

τ ≥ max (τ1, τ2, τ3, ‖M‖F) (7)

Then, under the other assumptions of Theorem 1, (L0, S0) is the unique solution to the strongly convex
programming (2) with high probability.

Proof. In order to check the conditions in Theorem 2, we will prove the existence of a matrix W obeying

PTW = 0
‖W‖ ≤ β

PQ⊥W = −PQ⊥(UV∗ + 1
τ L0)

‖PΩ⊥(UV∗ +W + 1
τ L0− 1

τ S0)‖∞ ≤ βλ

‖PΩ(UV∗ +W − λsgn(S0) +
1
τ L0− 1

τ S0)‖F ≤ αλ

(8)

Note that W = WL + WS + WQ. We will check above conditions hold true one by one.
For simplicity, we define

γ := ‖PΩ⊥(L0− S0)‖∞, δ := ‖PΩ(L0− S0)‖F
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Without loss of generality, let β > 1/2. With the help of the construction of WL, WS and WQ, it is
easy to check the first and second conditions are true. According to the modification of WQ constructed
in Lemma 4, and PQ⊥WL = 0 and PQ⊥WS = 0, we have PQ⊥WQ = −PQ⊥(UV∗ + 1

τ L0). It is easy to
check that PQ⊥W = PQ⊥WL +PQ⊥WS +PQ⊥WQ = −PQ⊥(UV∗ + 1

τ L0), which implies that the third
condition holds true. Consequently, we will provide the last two conditions also hold true under some
suitable assumptions. Pertaining to the fourth inequality, we have

‖PΩ⊥(UV∗ +W +
1
τ

L0−
1
τ

S0)‖∞

≤ ‖PΩ⊥(UV∗ +WL)‖∞ + ‖PΩ⊥WS‖∞

+ ‖PΩ⊥WQ‖∞ +
1
τ
‖PΩ⊥(L0− S0)‖∞

≤ λ

4
+

λ

8
+

λ

8
+

1
τ
‖PΩ⊥(L0− S0)‖∞

≤ λ

2
+

γ

τ

For the last inequality, noting that PΩ(WS) = λsgn(S0) and PΩ(WQ) = 0, we can obtain

‖PΩ(UV∗ +W − λsgn(S0) +
1
τ

L0−
1
τ

S0)‖F

= ‖PΩ(UV∗ +WL +
1
τ

L0−
1
τ

S0)‖F

≤ ‖PΩ(UV∗ +WL)‖F +
1
τ
‖PΩ(L0− S0)‖F

≤ λ

4
+

δ

τ

In order to satisfy the condition (8), we choose a τ obeying

λ

2
+

γ

τ
≤ βλ, and

λ

4
+

δ

τ
≤ αλ (9)

Therefore

τ ≥ max

(
γ

(β− 1
2)λ

,
δ

(α− 1
4)λ

)
(10)

Combining (9) with (6), we can obtain

λ

2
+

γ

τ
+

λ

4
+

δ

τ
≤ βλ + αλ ≤ λ

Therefore

τ ≥ 4(γ + δ)

λ
(11)

Together with (10) and (11), the Theorem 3 is established.
In order to simplify the Formula (7), we suppose α = 3/8 and β = 5/8, which satisfy the

conditions above. Therefore

τ ≥ max
(

8‖PΩ⊥L0‖∞

λ
,

8‖PΩ(L0− S0)‖F
λ

)
(12)
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However, note that the exact lower bound is very hard to get, because we only have the
information about the given data matrix M in practical problem. Noting that

‖PΩ⊥M‖∞ ≤ ‖M‖∞

And according to the paper [16], we have

‖PΩ(L0− S0)‖F ≤
√

15
3
‖M‖F

Therefore, we can choose

τ ≥ max

(
8‖M‖∞

λ
,

8
√

15‖M‖F
3λ

)

It is obvious that ‖M‖∞ ≤ ‖M‖F. Therefore, we can obtain Theorem 3.3 as follows.

Theorem 4. Assuming

τ ≥ 8
√

15‖M‖F
3λ

and the other assumptions of Theorem 1, (L0, S0) is the unique solution to the strongly convex programming (2)
with high probability.

4. Numerical Results

In this section, we provide numerical experiments to certify the Theorem 4. Without loss of
generality, we assume that r = 2, M = L0 + S0, and a rank-r matrix L0 = XYT where X and Y are 15× 2
and 30× 2 matrices with entries independently sampled from aN (0; δ2) distribution, the sparse matrix
S0 = PΩE with the support set of size ks = ρsmn uniformly at random. Assume that (L1, S1) and (L2, S2)

are the optimal solutions of optimization problem (1) and strongly convex optimization problem
(2) respectively. Numerical experiments are given under ‖M‖F = 1. Figure 1 shows probability
of correct recovery (‖L1 − L2‖2

F + ‖S1 − S2‖2
F ≤ 10−3) with different values of τ. It’s noted that

when 1
τ < 3λ

8
√

15‖M‖F
= 0.03, the probability of correct recovery is nearly 100%; however when

1
τ > 0.03, the probability of correct recovery decreases fast. This phenomenon verifies the Theorem 4
by number experiments.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1/τ

Figure 1. probability of correct recovery with different values of τ.
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5. Results and Conclusions

In this paper, we have studied strongly convex programming for principal component pursuit
with reduced linear measurements.

We firstly provide sufficient conditions under which the strongly convex models lead to the exact
low rank and sparse components recovery, i.e.,

Assuming

τ ≥ 8
√

15‖M‖F
3λ

and the other assumptions of Theorem 1, (L0, S0) is the unique solution to the strongly convex programming (2)
with high probability.

Secondly, we give the criterion of the choice of the value of τ, which gives very useful advice on
how to set the suitable parameters in designing efficient algorithms. In particular, it is easy to note that
the main results of paper [16] are only the special case of our results. In some sense, we extend the
result of choosing suitable parameters to the general problem.
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