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Abstract: Passive positioning systems with a small aperture array exhibit poor accuracy of target
estimation under strong interference in near-field environments. To improve this accuracy, we propose
a novel cross localization algorithm for direction-finding using the orientation angle. Improved
geometric and numerical target-positioning models are constructed after analyzing the mechanism
of the conventional positioning algorithm. The target prediction equation is then derived using the
constructed models, and the equation for nonlinear estimation is linearized using the Taylor series.
An unbiased estimation of the target is obtained by optimizing the control of the iteration process,
thus achieving an accurate positioning of the target. The performance of the proposed algorithm
was evaluated in terms of its effectiveness and positioning accuracy under varying signal-to-noise
conditions and orientation angle-measurement errors. Simulation results show that the proposed
algorithm is capable of positioning the target effectively, and offers better positioning accuracy
than traditional algorithms under the conditions of large orientation angle measurement errors or
high-level background noise.

Keywords: lateral cross localization; orientation angle; Gauss-Newton iteration; error characteristics

1. Introduction

The technology of signal location is widely used in radar, sonar, and navigation systems, and
can be classified as active or passive location, with different targets. Passive location technology
has a broad scope of development and application prospects in the military due to its concealed
nature [1]. The targets can be positioned by a single receiving node or a multi-node network [2].
In comparison with the single-node localization, the multi-node network has a higher signal gain and
target resolution. According to different implementation techniques, the positioning methods mainly
include combining the space and time cumulative positioning [3], fusion azimuth, and time difference
of arrival (TDOA) [4] positioning methods based on Doppler shift [5], multipath target motion analysis
(TMA), signal strength, and line spectral characteristics [6,7]. Different monitoring environments and
objectives require different positioning methods. For example, the methods that combine azimuth and
TDOA are applied in situations where the sensor array aperture is comparable to the target distance,
while the time-cumulative methods require a high-precision time reference. The methods based on
azimuth and Doppler shift have high accuracy on high-frequency fast-moving targets [8–10].

This paper mainly focuses on near-field targeting technology in a small aperture array.
By analyzing the characteristics of a near-field signal and a small aperture array, we propose a lateral
cross localization algorithm using the signal orientation angle. The algorithm uses multiple orientation
angles measured by different nodes to locate the target. To deal with the problem of nonlinear
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estimation, predictive equations are defined and linearized by Taylor series expansion. The parameters
are estimated through Gauss-Newton iteration using maximum likelihood estimation, and the targets’
position is then obtained through optimal estimation. The proposed algorithm can improve the
positioning accuracy of the orientation angle cross localization method effectively, especially under
significant orientation error and complex background noise.

2. Problem Formulation

The optimal passive targeting method involves centralized global information processing.
Each array sends the observed data to the fusion center, which estimates the target using the global
information. Typical location algorithms based on complete information include the least squares
algorithm [11], maximum likelihood algorithm [12], and the algorithm based on space-time subspace
optimization [13]. Weiss [11] has reported the use of the L-base sensor array to receive radio frequency
signals transmitted by a single transmitter, and using the least squares method to position the
transmitter directly. Through maximizing the eigenvalues of an L ˆ L matrix, the transmitter location
can be obtained with a simple 2-D search algorithm. Another extended single-objective targeting for
multiple transmitter positioning has been reported by Weiss et al. [11]. Another approach [13] uses
the method of maximum likelihood and subspace optimization. The objective functions for the direct
position of multiple transmitters include attenuation coefficient, signal source, target position, and
other unknown parameters. The maximum likelihood method requires a multi-dimensional search,
but the subspace optimization method is able to locate all targets with only a two-dimensional search.
Methods reported in [11] and [13] have also considered situations where the signal waveform is known
so that the optimization cost can be simplified to varying degrees.

Although the centralized global information processing method is theoretically optimal,
its implementation process needs large communication bandwidth, computation, and energy
consumption [14]. In practical applications, the positioning system for different scenarios is restricted
by energy resources. For example, the positioning nodes deployed in harsh environments are powered
by ordinary batteries and are often left unattended; thus, the energy of each node is extremely limited.
Additionally, to achieve global information by directly targeting the algorithm, each array requires strict
time synchronization [15]. For example, the approach in [13] assumes that the time synchronization
level of each base station before positioning is 50 ns. Such high synchronization accuracy necessitates
high demands of hardware and synchronization algorithms.

Under the premise of limited communication bandwidth and energy, researchers have proposed
many resource-constrained wireless passive-targeting algorithms. Among these, the most common
algorithm is based on azimuth [16,17]. These algorithms based on azimuth and their corresponding
systems have been widely used due to their low resource consumption, and lower hardware and
software requirement. Some examples include the Acoustic ENSBox at the California Institute of
Technology [18–20], VoxNet [21], and an array system based on sound propagation delay compensation
developed by Kaplan et al. [22,23].

Pure azimuth targeting is a simple and practical closed linear algorithm. The representative linear
algorithms mainly include the Stansfield estimator [24] and the orthogonal vector (OV) algorithm [25].
If the weight matrix of the Stansfield estimator is replaced by a unit matrix, the Stansfield estimator
becomes equivalent to the OV algorithm. The linear estimator offer advantages of being simple
to compute and easy to implement. However, they suffer from limitations of low accuracy and
estimator bias. With the increase in observed data, estimation deviation continues to exist and
does not reduce. Therefore, several modifications to address this problem have been reported in
the literature, such as instrumental variable (IV) [26–28], constrained least squares (CLS) [29], and
total least squares (TLS) [30,31]. The IV estimator is consistent, progressive, and unbiased. Its root
mean-square error (RMSE) is progressive and tends towards the Cramer–Rao lower bound (CRLB).
Le Cadre and Jauffret proved that the convergence of the IV algorithm is very sensitive to the initial
value and the selection of step [32]. Ho et al. proposed the CLS algorithm and conducted target motion
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analysis. The CLS algorithm has been proved to be progressive and unbiased. Gu [33] proved that the
CLS algorithm is actually a progressive maximum-likelihood estimator. Similarly, the TLS algorithm is
also a progressive maximum-likelihood estimator. CLS is simpler than TLS but it can only be used for
a class of pseudo-linear models. By contrast, TLS can be applied to more universal models, such as
angle observers. It should be noted that at low SNR, the position estimates of both CLS and TLS have
a large RMSE. Additionally, with less measurement data, CLS serves as the approximation of the
OV estimator.

The deviation of closed loop linear estimator can be eliminated by traditional bearing
maximum-likelihood (TBML) estimator or nonlinear least squares. Gavish et al. [34] pointed out
that the RMSE of a closed loop linear estimator may be smaller than the TBML estimator for limited
observation data. When the amount of observation data is large enough, the TBML estimator has better
performance than the closed-loop linear estimator. Assume that the angle observation noise obeys a
Gaussian distribution with zero mean; the cost function of the TBML is nonlinear and non-convex.
Therefore, the TBML problem is always solved by a gradient search, such as the Newton–Raphson
iterative method.

In particular, the IV and numerical TBML iterative algorithms may be divergent under conditions
such as poor initial value, fewer observations, or worse geometric positional relationship between the
target and angle observer. Bishop et al. [35] proposed a new algorithm based on geometry constrained
least squares (GCLS), which minimizes the angle observation error under the constraint of geometric
positional relationship between the target and angle observer. This method is equivalent to TBML
under Gaussian observation noise because the geometric constraints do not provide any additional
information to the position estimate. However, the geometric constraints can aid the convergence of
the nonlinear least-square algorithm on the basis of angle observation. In comparison with TBML, the
GCLS could converge under poor geometric positional relationship between the target and the angle
observer; moreover, CLS and TLS are simpler, and more effective with the increase in measurement
data and in achieving maximum-likelihood estimation progressively. In the case of large observation
error, the estimation accuracy of numerical TBML is higher than CLS and TLS, but the TBML diverges
easily or converges only to a local minima in the cases mentioned above.

3. Lateral Cross Positioning System Model

3.1. Description of Lateral Cross Positioning Method

The lateral cross positioning methods estimate targets with the signal orientation angle obtained
by nodes. The positioning accuracy is determined by the direction-finding (DF) accuracy of the sensors.
Assume that if multiple nodes detect the same target almost at the same time, we can obtain pluralities
of the bearing lines [36]. Without loss of generality, we investigate the two-dimensional case first, and
then extend the method to three-dimensional space. The measuring principle is shown in Figure 1.Information 2016, 7, 40 4 of 14 
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Figure 1. Schematic of lateral cross positioning. 
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Figure 1. Schematic of lateral cross positioning.
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Here S1, S2 are probe nodes, T is the target, and the distance between probe nodes is d. Then:

sinφ1 “
d1

d
, sinpφ2 ´ φ1q “

d1

r
(1)

Thus:
r “

dsinφ1

sinpφ2 ´ φ1q
(2)

Following (1) and (2), and the relationship shown in Figure 1, we obtain:
$

&

%

x “ dsinφ1cosφ2
sinpφ2´φ1q

y “ dsinφ1sinφ2
sinpφ2´φ1q

(3)

The position coordinates of the target can be calculated using Equation (3), and the method is
suitable for multiple targets. In practical applications, there are measurement errors and noise in
the target orientation angle that may produce a large deviation between the obtained and the actual
position. By increasing the number of nodes, we can obtain more orientation lines and improve the
positioning accuracy. With the presence of noise and error, these orientation lines do not always
intersect at one point but stagger into an irregular polygon.

We first study three sensor nodes in a two-dimensional plane, where the three orientation lines
intersect into a triangle. The position of the target is assumed to be the centroid of the triangle. The
number of orientation lines is more than three in a three-dimensional space with a multiple-node
array. In order to obtain more accurate results, we can first select three orientation lines to obtain a
centroid, and then take the centroid (or mean) of different centroids. This paper mainly focuses on the
single-target location problem in a three-dimensional space.

3.2. Targeting Model

Assume the coordinates of target to be estimated is xT = [xT, yT, zT]T, the angles measured once
by N nodes are {ui, i = 1, 2, ..., N}, where ui P {φi, ϕi}, φi is the pitch angle, and ϕi is the azimuth
angle. The schematic diagram is shown in Figure 2. For multiple nodes, set the coordinate vector as
si = [xi, yi, zi], the angle ui can be obtained by the node coordinate values.
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Figure 2. Schematic of orientation cross positioning. 
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Figure 2. Schematic of orientation cross positioning.

Since the measurement system contains additive random error, the system numerical model is
always referred to as:

ui “ fipxTq ` ni, pi “ 1, 2, ¨ ¨ ¨ , Nq (4)
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where N is the number of detection nodes. Expressed in matrix form:

u “ f pxTq ` n (5)

If the measurement results do not contain errors, then ui “ fipxTq “ αi and the relationship
between the orientation angle and target coordinates in fipxTq is nonlinear. Assuming that
measurement error, ni, follows the relation:

E tniu “ 0, E
 

ninj
(

“ σij (6)

σij “

#

σ2
i , i “ j

ρijσiσj, i ‰ j
(7)

where σi and σj are standard deviations in ith and jth monitoring experiments, ρij is the correlation
coefficient between position values. To solve the above nonlinear problem, first we need to linearize
the prediction equations. We expand the equations according to Taylor series at reference point xT0,
where xT0 “ rxT0, yT0, zT0s

T is the initial estimate. We take the second (or first few-order terms) of the
expanded series and obtain the fixed initial equation:

woi “ ui ` gT
oixT , pi “ 1, 2, ¨ ¨ ¨ , Nq (8)

where woi is the fixed measurement. The calculation formula, as follows:

woi “ ui ` gT
oixT0 ´ foi, pi “ 1, 2, ¨ ¨ ¨ , Nq (9)

where goi
T is the gradient of fi(xT) at point xT0. It is defined as:

gT
oi “

B fipxTq

BxT

ˇ

ˇ

ˇ

ˇ

xT“xT0

“

„

B fipxTq

BxT

B fipxTq

ByT

B fipxTq

BzT



xT“xT0

(10)

where foi is the value of foi (xT) at xT0 and foi = fi (xT0).
The N monitoring nodes have N initial relationships as obtained fromEquation (8); combining

them into a matrix:
wo“G0xT`n (11)

where wo is obtained by the following formula:

wo“ u`G0xT ´ f0 (12)

Here, wo, u, n, f0 are N ˆ 1 dimensional column vectors:

wo“rw01, w02, ¨ ¨ ¨ , w0i, ¨ ¨ ¨ , woNs
T (13)

uo“ru01, u02, ¨ ¨ ¨ , u0i, ¨ ¨ ¨ , uoNs
T (14)

no“rn01, n02, ¨ ¨ ¨ , n0i, ¨ ¨ ¨ , noNs
T (15)

fo“r f01, f02, ¨ ¨ ¨ , f0i, ¨ ¨ ¨ , foNs
T (16)

G0 is an N ˆ 3 dimensional gradient matrix, whose ith row is a 1 ˆ 3 dimensional gradient vector
gT

oi, or ith column of GT
0 is a 1 ˆ 3 dimensional gradient vector goi Therefore:

Go “ rg01, g02, ¨ ¨ ¨ , goi, ¨ ¨ ¨ , goNs
T (17)
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where the error vector n meets the criterion:

E tnu “ 0, E
!

nnT
)

“ R (18)

in which R P V (N ˆ N) is measurement error covariance matrix, n is Gaussian random variable. The
maximum likelihood estimation x̂T of the target position vector xT can be solved by Gauss-Newton
iterative. The procedure is:

x̂T,m`1“pGT
mR´1Gmq

´1
GT

mR´1wm, m “ 0, 1, 2, ¨ ¨ ¨ (19)

where m is the iterations count. wm, Gm are:

wm “ u`Gmx̂T,m ´ fm (20)

wm “ u`Gm “
B f pxTq

BxT

ˇ

ˇ

ˇ

ˇ

xT“x̂T,m

, fm “ f px̂T,mq (21)

Take x̂T,m obtained at each iteration as the initial value xT0 for the next iteration. Note that xT
obtained in initial iteration is x̂T,1. According to Equation (19):

x̂T,1“pGT
0 R´1G0q

´1
GT

0 R´1w0 (22)

where m = 0. Thus, the target values are a series of revised estimation sequence:

xT0, x̂T,1, x̂T,2, ¨ ¨ ¨ , x̂T,m, x̂T,m`1 ¨ ¨ ¨ (23)

If the initial point xT0 of the iterative process is near the global minimum point of the squared
weighted cost function as following:

SpxTq “ nTR´1n “ ru´ f pxTqs
T R´1 ru´ f pxTqs (24)

and satisfies the iteration convergence conditions, then the final estimates are given as:

x̂T “ lim
mÑ8

x̂T,m (25)

In practical applications, the commencement and termination of the iterative process are controlled
by a threshold, and we study these guidelines in the following algorithm.

4. Proposed Lateral Cross Localization Algorithm Using Orientation Angle

4.1. Description of the Proposed Algorithm

For the targeting-related issues in a three-dimensional space, we study the orientation angle α on
the basis of azimuth and pitch angle, as shown in Figure 2. The relationship between α and φ, ϕ is:

α “ arctan
b

tan2 ϕ` tan2φ (26)

or
α “ arccos

a

cosϕcosφ (27)

Then for the ith node si “ rxi, yi, zis, i = 1, 2, . . . , N, the relationship with target xT “ rxT , yT , zTs
T is:

fipxTq “ αi “ arctan

b

pxT ´ xiq
2
` pzT ´ ziq

2

yT ´ yi
(28)
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When the number of iteration is m, the gradient vector is:

gmi “

«

x̂m ´ xi

r2
mismi

´
ŷm ´ yi

r2
mismi

ẑm ´ zi

r2
mismi

ffT

(29)

where
r2

mi “ px̂m ´ xiq
2
` pŷm ´ yiq

2
` pẑm ´ ziq

2 (30)

smi “

d

p
rmi

ŷm ´ yi
q

2
´ 1 (31)

The N gradient vectors constitute a gradient matrix:

Gm“rgm1, gm2, ¨ ¨ ¨ , gmNs
T (32)

The covariance matrix of orientation angle error in the mth iteration is an N ˆ N dimensional
diagonal matrix. Diagonal elements of the matrix vary with the iterative equation, which is:

Rm“diag
”

σ2
m1, σ2

m2, ¨ ¨ ¨ , σ2
mN

ıT
(33)

where σ2
mi is error variance of orientation angle in mth iteration. The solution is:

σ2
mi“amiσ

2
φi ` bmiσ

2
ϕi ` cmiρiσφiσϕi (34)

where

ami “ p
1

smi

x̂m ´ xi
ŷm ´ yi

q

2
(35)

bmi “

#

smi

„

p
rmi

ẑm ´ zi
q ´ 1

1{2
+´2

(36)

cmi “
a

amibmi (37)

Assuming that the ambient noise is additive Gaussian white noise, the iterative equation can be
expressed as:

x̂T,m`1“pGT
mR´1

m Gmq
´1

GT
mR´1

m wm (38)

where
wm “ u`Gmx̂T,m ´ f px̂T,mq (39)

in which f px̂T,mq is the value of f pxTq at xT “ xT,m.

4.2. Iterative Process Control

For the iterative process, we need to first analyze the value of initialization estimate xT0 of position
vector xT . The value methods of xT0 mainly include experience speculation and rough calculation on
measurements. Here, the initialization estimate is received through solving the intersection of a group
of orientation angle in observation surface.

Assume that the orientation angles of a set of known measurements
 

ϕi, ϕj, φk
(

intersect at point
xijk, such that i ‰ j and k = i, j or k ‰ i, j. The intersection point can be determined by the equation
set below:

$

’

’

’

&

’

’

’

%

ϕi “ arctan x´xi
y´yi

ϕj “ arctan
x´xj
y´yj

φj “ arctan
z´zj

b

px´xjq
2
`py´yjq

2

(40)
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The solution of the equation can be expressed as:

xijk “
”

xij yij zijk

ıT
(41)

where
$

’

’

’

&

’

’

’

%

xij “
pyi´yjqaij`xjaij`xidij

sinpϕi´ϕjq

yij “
pxi´xjqbij`yjcij`yidij

sinpϕi´ϕjq

zijk “ zk `

b

pxij ´ xkq
2
` pyij ´ ykq

2tanφk

(42)

By analysis of the target space, we obtain:
$

’

’

’

&

’

’

’

%

aij “ sinϕisinϕj
bij “ cosϕicosϕj
cij “ sinϕicosϕj
dij “ cosϕisinϕj

(43)

Here, xijk is initialization priori information, that is:

xT0 “ xijk (44)

For iterative process control, the threshold should satisfy some criterion of positioning accuracy:

Dp∆x̂T,mq “

#

A, p∆x̂T,mq
T∆x̂T,m ď ζ2

B, p∆x̂T,mq
T∆x̂T,m ą ζ2 (45)

where D is the control instruction, A and B are the termination and continuation of the iterative process,
respectively, ζ is the estimation accuracy, and ∆x̂T,m is the difference between two estimated values:

∆x̂T,m “ x̂T,m`1 ´ x̂T,m (46)

4.3. Analysis of Estimation Error

An error in location refers to the deviation between the estimated value x̂T and actual value xT
of the target position. After the (m + 1)th iteration, the error vector covariance matrix of the position
vector xT is:

Rx̂T,m`1 “ pG
T
mR´1

m Gmq
´1

(47)

where Rm is the covariance matrix of the pre-observation estimation error for describing the error in
the position estimation.

This algorithm locates the target based on orientation angles obtained by sensor nodes. The
influence on positioning is due to various factors such as measurement error and noise, and
concentrated expression in orientation angle error. For the positioning system shown in Figure 2,
assume Gaussian white noise nk exists with zero mean and variance σ2

n , deviation ϕ with zero mean,
and variance σ2

φ. We obtain:

E tninku “ σ2
nδjk (48)

The observations of orientation angles are:

φk “ arctanp
∆yk
∆xk

q ` φ` nk, k “ 1, 2, ¨ ¨ ¨ , N (49)
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where ∆yk “ yT ´ yk, ∆xk “ xT ´ xk. Define θ “ rxT , yT , φsT as the estimate vector. Here, θ obeys the
multidimensional normal distribution with mean vector, m, and positive definite covariance matrix Σ.
Define h(m, θ) = 0 as constraint vector, and:

hm “
Bh
Bm

, hθ “
Bh
Bθ

(50)

For vector θ with predict prior information, its CRLB is:

Sθ “

”

hT
θ phm

ÿ

hT
mq
´1

hθ ` J
ı´1

(51)

Assume variance σ2
φ of deviation is known and is non-zero, then:

J “

»

—

–

0 0 0
0 0 0
0 0 1{σ2

φ

fi

ffi

fl

(52)

Differentiate formula (49) on the estimator θ, then:

hθ “

”

G IN

ı

(53)

where

G “

»

–

´
∆y1
r2

1
´

∆y2
r2

2
¨ ¨ ¨ ´

∆yN
r2

N

´
∆x1
r2

1
´

∆x2
r2

2
¨ ¨ ¨ ´

∆xN
r2

N

fi

fl

T

(54)

r2
k “ ∆2

xk ` ∆2
yk, k “ 1, 2, ¨ ¨ ¨ , N (55)

IN is a vector consisting of N – 1 elements; hm and σ´2 Σ are N ˆ N dimensional unit matrix as
the noise covariance matrix satisfies the diagonal structure.

Sθ “

”

rG INs
T
pσ2

nINq
´1
rG INs ` diagp0, 0, σ´2

φ q

ı´1

“σ2
φ

«

V´1 f
fT pσn{σφq

2
`N

ff´1 (56)

where f “ GTIN , V “ pGTGq´1. The upper left corner 2 ˆ 2 subarray of Sθ is the target estimation
CRLB. Inversing the partitioned matrix:

Sθ “ σ2
npV`

VffTV
pσn{σφq

2
`N´ fTVf

q (57)

Since the priori bias may be infinite, we get:

Smax “ lim
σφÑ8

Sθ “ σ2
npV`

VffTV
N´ fTVf

q (58)

Here, Sθ ď Smax shows the influence of deviation with prior information. The error range is
defined as:

Sθ “ σ2
n , σφ Ñ 0 (59)
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5. Performance Analysis

We analyze the performance of the proposed algorithm through simulations. Positioning methods
using a lateral cross mainly includes direct measurement, least squares, and their extensions. We
compare the performance of the direct lateral cross localization algorithm (Algorithm 1), linear
least-squares localization algorithm (Algorithm 2), and the proposed lateral cross localization algorithm
based on orientation angle (Algorithm 3).

The number of Monte Carlo simulation run time is N = 5000. The localization precision is
expressed in terms of RMSE as:

RMSEpuq “
N
ÿ

i“1

||pupiq ´ uq||{N m (60)

where u(i) is the ith target estimation, and the environmental noise is assumed to have a Gaussian
distribution. We investigate how the localization precision changes with orientation angle
measurement error and SNR. The nodes position (in m) are set as s1(0, 0, 0), s2(20, 0, 0), s3(26, 15, 0),
s4(37, ´10, 8), and s5(60, 20, ´20), and the target position is set as T(800, 800, 400).

5.1. Algorithm Effectiveness

We locate the target once with different algorithms to test the effectiveness of the single-positioning
experiment. Here SNR = 10 dB and the positional deviation results are shown in Table 1.

Table 1. Comparison of targeting results from different algorithms.

Algorithm Absolute Deviation of Estimated Position (m)

x y z

Algorithm 1 1.9 2.1 0.8
Algorithm 2 1.4 1.5 0.7
Algorithm 3 0.6 0.8 0.2

As displayed the Table 1, under the same simulation environment, all three algorithms are
able to locate the target. The positional deviations of different algorithms on the three axes have a
significant proportional relationship with the distance of the observation node from the target in that
axis. Comparing with Algorithm 1 and Algorithm 2, Algorithm 3 has a smaller deviation, which shows
Algorithm 3 has better positioning accuracy.

5.2. Algorithm Performance in Different Orientation Angle Measurement Error

We analyze how the positioning accuracy changes with the gain of orientation angle-measurement
error. The number of nodes is five, and the SNR is fixed at 0 dB and 10 dB.

Experiment 1: When SNR = 10 dB, the RMSE changes with the orientation angle-measurement
error through 5000 Monte Carlo simulations, as shown in Figure 3.

The single solid curve in Figure 3 is CRLB. The positioning accuracy of three algorithms is close
to CRLB when the orientation angle-measurement error is small, and Algorithm 3 performs slightly
better than Algorithm 1 and Algorithm 2. With the gain of the orientation angle-measurement error,
the RMSE of Algorithm 1 and Algorithm 2 increase significantly, while Algorithm 3 continues to have
a smaller RMSE. This shows that Algorithm 3 still possesses a high positioning accuracy with large
errors, and the greater the error, the more obvious is the advantage.

Experiment 2: When SNR = 0 dB, the change in RMSE with the orientation angle-measurement
error under the same conditions is shown in Figure 4.
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Comparing Figure 4 with Figure 3, when the SNR is reduced, the three algorithms are still able to
locate the target but with a declining accuracy. The comparison between algorithms shows that the
positioning accuracy of Algorithm 3 is obviously better than Algorithms 1 and 2 when the orientation
angle-measurement error increases, and the greater the error, the more obvious is the advantage.
Simulations show that the proposed Algorithm 3 can still accurately estimate the target despite the
large orientation angle-measurement error.

5.3. Performance for Varying SNR

To analyze the effect of gain in SNR on positioning accuracy when the orientation
angle-measurement error is fixed, we change the SNR from ´25 dB to 35 dB, the results of which are
shown in Figure 5.

As is shown in Figure 5, when the SNR is low, the positioning results of all the three algorithms
display a larger deviation, and even worse for Algorithms 1 and 2. With the increase in SNR, the
positioning accuracy of all of the algorithms improves. Algorithm 3 approaches CRLB when the SNR
reaches 10 dB, while Algorithms 1 and 2 do not approach CRLB until the SNR reach 25 dB. When the
SNR is greater than 30 dB, all three algorithms exhibit similar targeting results. Simulations show that
the proposed algorithm is more accurate than the traditional methods under low SNR conditions.
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6. Conclusions

In this paper, we proposed a lateral cross localization algorithm using orientation angle.
The algorithm can address targeting problems, such as poor resolution, low accuracy under large
orientation-angle error, and background noise in near-field environments of traditional algorithms.
We constructed the estimation prediction equations with the lateral cross positioning system geometry
model and the numerical model. A progressive, unbiased estimate of the target was obtained via an
iterative process control of the prediction equations. A large number of simulations verified that the
proposed algorithm has a smaller location RMSE under different orientation-angle error values and
SNR, and the proposed approach displays remarkable potential for engineering applications.
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