
 information

Article

Nearest Neighbor Search in the Metric Space of a
Complex Network for Community Detection

Suman Saha * and Satya P. Ghrera

Department of Computer Science and Engineering, Jaypee University of Information Technology, Waknaghat,
Solan 173215, India; sp.ghrera@juit.ac.in
* Correspondence: suman.saha@juit.ac.in; Tel.: +91-7-602728183

Academic Editors: Ana Paula Couto da Silva and Pedro O. S. Vaz de Melo
Received: 22 December 2015; Accepted: 11 March 2016; Published: 16 March 2016

Abstract: The objective of this article is to bridge the gap between two important research directions:
(1) nearest neighbor search, which is a fundamental computational tool for large data analysis;
and (2) complex network analysis, which deals with large real graphs but is generally studied
via graph theoretic analysis or spectral analysis. In this article, we have studied the nearest
neighbor search problem in a complex network by the development of a suitable notion of nearness.
The computation of efficient nearest neighbor search among the nodes of a complex network
using the metric tree and locality sensitive hashing (LSH) are also studied and experimented.
For evaluation of the proposed nearest neighbor search in a complex network, we applied it to
a network community detection problem. Experiments are performed to verify the usefulness of
nearness measures for the complex networks, the role of metric tree and LSH to compute fast and
approximate node nearness and the the efficiency of community detection using nearest neighbor
search. We observed that nearest neighbor between network nodes is a very efficient tool to explore
better the community structure of the real networks. Several efficient approximation schemes are
very useful for large networks, which hardly made any degradation of results, whereas they save
lot of computational times, and nearest neighbor based community detection approach is very
competitive in terms of efficiency and time.

Keywords: complex network; nearest neighbor; metric tree; locality sensitive hashing;
community detection

1. Introduction

The nearest neighbor (NN) search is an important computational primitive for structural analysis
of data and other query retrieval purposes. NN search is very useful for dealing with massive data
sets, but it suffers from the curse of dimension [1,2]. Though nearest neighbor search is a extensively
studied research problem for low dimensional data, a recent surge of results shows that it is the most
useful tool for analyzing very large quantities of data, provided a suitable space partitioning the data
structure is used, like, kd-tree, quad-tree, R-tree, metric-tree and locality sensitive hashing [3–6]. One
more advantage of using nearest neighbor search for large data analysis is the availability of efficient
approximation scheme, which provides almost same results in very less time [7,8].

Though nearest neighbor search is very successful and extensively used across the research
domains of computer science, it is not studied rigorously in complex network analysis. Complex
networks are generally studied with a graph theoretic framework or spectral analysis framework.
One basic reason for this limitation may be the nodes of the complex networks do not naturally lie
on a metric space, thus restricting the use of nearest neighbor analysis which is done using metric or
nearness measures.

Information 2016, 7, 17; doi:10.3390/info7010017 www.mdpi.com/journal/information

http://www.mdpi.com/journal/information
http://www.mdpi.com
http://www.mdpi.com/journal/information

Information 2016, 7, 17 2 of 16

Other than graphs, the complex networks are characterized by small “average path length” and a
high “clustering coefficient”. A network community (also known as a module or cluster) is typically
a group of nodes with more interconnections among its members than the remaining part of the
network [9–11]. To extract such group of nodes from a network one generally selects an objective
function that captures the possible communities as a set of nodes with better internal connectivity
than external [12,13]. However, very little research has been done for network community detection,
which tries to develop nearness between the nodes of a complex network and use the nearest neighbor
search for partitioning the network [14–20]. The way metric is defined among the nodes should be
able to capture the crucial properties of complex networks. Therefore, we need to create the metric
very carefully so that it can explore the underlying community structure of the real life networks [21].

Extracting network communities in large real graphs such as social networks, web, collaboration
networks and bio-networks is an important research direction of recent interest [11,22–25]. In this
work, we have developed the notion of nearness among the nodes of the network using some
new matrices derived from the modified adjacency matrix of the graph which is flexible over
the networks and can be tuned to enhance the structural properties of the network required for
community detection.

The main contributions of this work are, (1) development of the concept of nearness between the
nodes of a complex network; (2) comparing the proposed nearness with other notions of similarities;
(3) study and experiment on approximate nearest neighbor search for complex network using M-tree
and LSH; (4) design of efficient community detection algorithm using nearest neighbor search.
We observed that nearest neighbor between network nodes is a very efficient tool to explore better
community structure of the real networks. Further several efficient approximation scheme are very
useful for large networks, which hardly made any degradation of results, whereas saves lot of
computational times.

The rest of this paper is organized as follows. Section 2 describes the notion of nearness
in complex network and proposed method to compute distance between the nodes of a complex
network. Sections 3 and 4 describe the algorithm of the nearest neighbor search over complex network
using of metric tree and locality sensitive hashing methods respectively. In Section 5, the proposed
algorithm for network community detection using nearest neighbor search is discussed. The results
of the comparison between community detection algorithms are illustrated in Section 6.

2. Proposed Notion of Nearness in Complex Network

The notion of nearness between the nodes of a graph is used in several purposes in the history
of literature of graph theory. Most of the time the shortest path and edge connectivity are popular
choices to describe nearness of nodes. However, the edge count does not give the true measure of
network connectivity. A true measure of nearness in a complex network should able to determine
how much one node can affect the other node to provide a better measure of connectivity between
nodes of a real life complex network. Research in this direction need special attention in the
domain of complex network analysis, one such is proposed in this article and described in the
following subsections.

2.1. Definitions

Definition 1 (Metric space of network). Given, a graph G = (V, E) the metric is defined over the vertex set
V and d, a function to compute the distance between two vertices of V. Pair (V, d) distinguished metric space
if d satisfies reflexivity, non-negativity, symmetry and triangle inequality.

Definition 2 (Nearest neighbor search on network). The nearest-neighbor searching problem in complex
network is to find the nearest node in a graph G = (V, E) between a query vertex vq and any other vertex of
the graph V {vq}, with respect to a metric space M(V, d) associated with the graph G = (V, E).

Information 2016, 7, 17 3 of 16

Definition 3 (Approximate nearest neighbor search on network). For any vq ∈ V, An ε approximate
NN of vq ∈ V is to find a point vp ∈ V {vq} s.t. d(vp, vq) ≤ (1 + ε)d(v, vq) ∀ v ∈ V {vq}.

2.2. Nearness in Complex Network

Methods based on node neighborhoods. For a node x, let N(x) denote the set of neighbors of x
in a graph G(V, E). A number of approaches are based on the idea that two nodes x and y are more
likely to be affected by one another if their sets of neighbors N(x) and N(y) have large overlap.
Common neighbors: The most direct implementation of this idea for nearness computation is to
define d(x, y) := |N(x) ∩ N(y)|, the number of neighbors that x and y have in common.
Jaccard coefficient: The Jaccard coefficient, a commonly used similarity metric, measures the
probability that both x and y have a feature f , for a randomly selected feature f that either x or
y has. If we take features here to be neighbors in G(V, E), this leads to the measure d(x, y) :=
|N(x) ∩ N(y)|/|N(x) ∪ N(y)|.
Preferential attachment: The probability that a new edge involves node x is proportional to |N(x)|,
the current number of neighbors of x. The probability of co-authorship of x and y is correlated
with the product of the number of collaborators of x and y. This corresponds to the measure
d(x, y) := |N(x)| × |N(y)|.
Katz measure: This measure directly sums over the collection of paths, exponentially damped by
length to count short paths more heavily. This leads to the measure d(x, y) := β× |paths(x, y)|where,
paths(x, y) is the set of all length paths from x to y. (β determines the path size, since paths of length
three or more contribute very little to the summation.)
Commute time: A random walk on G starts at a node x, and iteratively moves to a neighbor of x
chosen uniformly at random. The hitting time H(x, y) from x to y is the expected number of steps
required for a random walk starting at x to reach y. Since the hitting time is not in general symmetric,
it is also natural to consider a commute time C(x, y) := H(x, y) + H(y, x).
PageRank: Random resets form the basis of the PageRank measure for Web pages, and we can adapt
it for link prediction as follows: Define d(x, y) to be the stationary probability of y in a random walk
that returns to x with probability α each step, moving to a random neighbor with probability 1− α.

Most of the methods are developed for different types of problems like information retrieval,
ranking, prediction e.t.c. and developed for general graphs. In the article [21], the authors studied a
measure specially designed for complex network.

2.3. Proposed Nearness in Complex Network

In this subsection, we developed the notion of nearness among the nodes of the network
using some linear combination of adjacency matrix A and identity matrix of same dimension for
the network G = (V, E). The similarities between the nodes are defined on matrix L = λI + A
as spherical similarity among the rows and determine by applying a concave function φ over the
standard notions of similarities like, Pearson coefficient(σPC), Spacerman coefficient(σSC) or Cosine
similarity(σCS). φ(σ)() must be chosen using the chord condition, i.e., metric-preserving (φ(d(xi, xj) =

dφ(xi, xj)), concave and monotonically-increasing, to obtain a metric. It works by picking a pair of
rows from L and computing the distance defined in the φ(σ)(). The function φ converts a similarity
function (Pearson coefficient (σPC), Spacerman coefficient (σSC) or cosine similarity (σCS)) into a
distance matrix. In general, the similarity function satisfies the positivity and similarity condition
of the metric, but not the triangle inequality. φ is a metric-preserving (φ(d(xi, xj) = dφ(xi, xj)),
concave and monotonically-increasing function. The three conditions above are referred to as the
chord condition. The φ function is chosen to have minimum internal area with the chord.

The choice of λ and φ(σ)() in the above sub-modules play a crucial role in the graph to metric
transformation algorithm to be used for community detection. The complex network is characterized
by a small average diameter and a high clustering coefficient. Several studies on network structure
analysis reveal that there are hub nodes and local nodes characterizing the interesting structure of

Information 2016, 7, 17 4 of 16

the complex network. Suppose we have taken φ = arccos, σCS and constant λ ≥ 0. λ = 0 penalizes
the effect of the direct edge in the metric and is suitable to extract communities from a highly dense
graph. λ = 1 places a similar weight of the direct edge, and the common neighbor reduces the effect
of the direct edge in the metric and is suitable to extract communities from a moderately dense graph.
λ = 2 sets more importance for the direct edge than the common neighbor (this is the common case
of available real networks). λ ≥ 2 penalizes the effect of the common neighbor in the metric and is
suitable for extracting communities from a very sparse graph.

3. Nearest Neighbor Search on Complex Network Using Metric Tree

There are numerous methods developed to compute the nearest neighbor search for points
of a metric space. However, finding the nearest neighbor search on some data where dimension
is high suffer from curse of dimension. Some recent research in this direction revealed that
dimension constrained can be tackled by using efficient data structures like metric tree and locality
sensitive hashing. In this section we have explored metric tree to perform the nearest neighbor
search on complex network with the help of metric mapping of complex network described in the
previous section.

3.1. Metric-Tree

A metric tree is a data structure specially designed to perform the nearest neighbor query for
the points residing on a metric space and perform well on high dimension particularly when some
approximation is permitted. A metric tree organizes a set of points in a spatial hierarchical manner.
It is a binary tree whose nodes represent a set of points. The root node represents all points, and
the points represented by an internal node v is partitioned into two subsets, represented by its two
children. Formally, if we use N(v) to denote the set of points represented by node v, and use v.lc and
v.rc to denote the left child and the right child of node v, then we have N(v) = N(v.lc) ∪ N(v.rc)
φ = N(v.lc) ∩ N(v.rc) for all the non-leaf nodes. At the lowest level, each leaf node contains very
few points.

An M-Tree [26] consists of leaf node, internal node and routing object. Leaf nodes are set of
objects Nv with pointer to parent object vp. Internal nodes are set of routing objects NRO with pointer
to its parent object vp. Routing object vr store covering radius r(vr) and pointer to covering tree
T(vr), Distance of vr from its parent object d(vr, P(vr)). Feature values stored in the object vj are
object identifier oid (vj) and distance of vj from its parent object d(vj, P(vj))

The key to building a metric-tree is how to partition a node v. A typical way is as follows:
We first choose two pivot points from N(v), denoted as v.lpv and v.rpv. Ideally, v.lpv and v.rpv are
chosen so that the distance between them is the largest of all distances within N(v). More specifically,
||v.lpv − v.rpv|| = maxp1,p2∈N(v)||p1 − p2||. A search on a metric-tree is performed using a stack.
The current radius r is used to decide which child node to search first. If the query q is on the left of
current point, then v.lc is searched first, otherwise, v.rc is searched first. At all times, the algorithm
maintains a candidate NN and there distance determines the current radius, which is the nearest
neighbor it finds so far while traversing the tree. The algorithm for nearest neighbor search using
metric tree is (Algorithm 1) given below.

3.2. Nearest Neighbor Search Algorithm Using M-Tree

The theoretical advantage of using metric tree as a data structure for nearest neighbor search
is: Let M = (V, d), be a bounded metric space. Then for any fixed data V ∈ Rn of size n, and for
constant c ≥ 1, ∃ε such that we may compute d(q, V)|ε with at most c · dlog(n) + 1e expected metric
evaluations [27].

Information 2016, 7, 17 5 of 16

Algorithm 1 NN search in M-Tree
Require: M = (V, d) & q
Ensure: d(q, vq)

1: Insert root object vr in stack
2: Set current radius as d(vr, q)
3: Successively traverse the tree in search of q
4: PUSH all the objects of traversal path into stack
5: Update the current radius
6: If leaf object reached
7: POP objects from stack
8: For all points lying inside the ball of current radius centering q, verify for possible nearest

neighbor and update the current radius.
9: return d(q, vq)

4. Nearest Neighbor Search on Complex Network Using Locality Sensitive Hashing

Metric trees, so far represent the practical state of the art for achieving efficiency in
the largest dimension possible. However, many real-world problems consist of very large
dimension and beyond the capability of such search structures to achieve sub-linear efficiency.
Thus, the high-dimensional case is the long-standing frontier of the nearest-neighbor problem.
The approximate nearest neighbor can be computed very efficiently using Locality sensitive hashing.

4.1. Approximate Nearest Neighbor

Given a metric space (S, d) and some finite subset SD of data points SD ⊂ S on which the nearest
neighbor queries are to be made, our aim to organize SD s.t. NN queries can be answered more
efficiently. For any q ∈ S, NN problem consists of finding single minimal located point p ∈ SD s.t.
d(p, q) is minimum over all p ∈ SD. We denote this by p = NN(q, SD).

An ε approximate NN of q ∈ S is to find a point p ∈ SD s.t. d(p, q) ≤ (1 + ε)d(x, d) ∀ x ∈ SD.

4.2. Locality Sensitive Hashing (LSH)

Several methods to compute first nearest neighbor query exists in the literature and
locality-sensitive hashing (LSH) is most popular because of its dimension independent run
time [28,29]. In a locality sensitive hashing, the hash function has the property that close points
are hash into same bucket with high probability and distance points are hash into same bucket with
low probability. Mathematically, a family H = {h : S→ U} is called (r1, r2, p1, p2)-sensitive if for any
p, q ∈ S

• if p ∈ B(q, r1) then PrH [h(q) = h(p)] ≥ p1
• if p /∈ B(q, r2) then PrH [h(q) = h(p)] ≤ p2

where B(q, r) denotes a hyper sphere of radius r centered at q. In order for a locality-sensitive family
to be useful, it has to satisfy inequalities p1 > p2 and r1 < r2 when D is a distance, or p1 > p2 and
r1 > r2 when D is a similarity measure [4,5]. The value of δ = log(1/P1)/log(1/P2) determines
search performance of LSH. Defining a LSH as a(r, r(1 + ε), p1, p2), the (1 + ε) NN problem can be
solved via series of hashing and searching within the buckets [5,30,31].

4.3. Locality Sensitive Hash Function for Complex Network

In this sub-section, we discuss the existence of locality sensitive hash function families for the
proposed metric for complex network. The LSH data structure stores all nodes in hash tables and
searches for nearest neighbor via retrieval. The hash table is contain many buckets and identified
by bucket id. Unlike conventional hashing, the LSH approach tries to maximize the probability of
collision of near items and put them into same bucket. For any given the query q the bucket h(q)

Information 2016, 7, 17 6 of 16

considered to search the nearest node. In general k hash functions are chosen independently and
uniformly at random from hash family H. The output of the nearest neighbor query is provided
from the union ok k buckets. The consensus of k functions reduces the error of approximation.
For metric defined in the previous Section 2 we considered k random points from the metric space.
Each random point ri define a hash function hi(x) = sign(d(x, ri)), where d is the metric and i ∈ [1, k].
These randomized hash functions are locality sensitive [32,33].

Algorithm 2 NN search in LSH
Require: M = (V, d) & q
Ensure: d(q, V)

1: Identify buckets of query point q corresponding to different hash functions.
2: Compute nearest neighbor of q only for the points inside the selected buckets.
3: return d(q, V)

The theoretical advantage of using locality sensitive hashing as a data structure for nearest
neighbor search is: Let M = (V, d), be a bounded metric space. Then for any fixed data V ∈ Rn

of size n, and for constant c ≥ 1, ∃ε such that we may compute d(q, V)|ε with at most mnO(1/ε)

expected metric evaluations, where m is the number of dimension of the metric space. In case of
complex network m = n so expected time is nO(2/ε) [27,34].

5. Proposed Community Detection Based on Nearest Neighbor

In this section we have described the algorithm proposed for network community detection
using nearest neighbor search. Our approach differs from the existing methods of community
detection. The broad categorization of the available algorithms is generally based on graph traversal,
semidefinite programming and spectral analysis. The basic approach and the complexity of very
popular algorithms are listed in the Table 1. There are more algorithms developed to solve network
community detection problem a complete list can be obtained in several survey articles [11,35,36].
Theoretical limitations and evaluation strategies of community detection algorithms are provided in
the articles [37–41]. Content based node similarity (discussed in [42,43]) methods uses additional
information of the network node and not available in general complex networks. A partial list
of algorithms developed for network community detection purpose is tabulated in Table 1. The
algorithms are categorized into three main group as spectral (SP), graph traversal based (GT) and
semi-definite programming based (SDP). The categories and complexities are also given in Table 1.

Table 1. Algorithms for network community detection and their complexities.

Author Reference Category Order

Van Dongen (Graph clustering, 2000 [44]) GT O(nk2), k < n parameter
Eckmann & Moses (Curvature, 2002 [45]) GT O(mk2)

Girvan & Newman (Modularity, 2002 [46]) SDP O(n2m)

Zhou & Lipowsky (Vertex Proximity, 2004 [47]) GT O(n3)

Reichardt & Bornholdt (spinglass, 2004 [48]) SDP parameter dependent
Clauset et al. (fast greedy, 2004 [49]) SDP O(nlog2n)
Newman & Girvan (eigenvector, 2004 [12]) SP O(nm2)

Wu & Huberman (linear time, 2004 [50]) GT O(n + m)

Fortunato et al. (infocentrality, 2004 [51]) SDP O(m3n)
Radicchi et al. (Radicchi et al. 2004 [25]) SP O(m4/n2)

Information 2016, 7, 17 7 of 16

Table 1. Cont.

Author Reference Category Order

Donetti & Munoz (Donetti and Munoz, 2004 [52]) SDP O(n3)

Guimera et al. (Simulated Annealing, 2004 [53]) SDP parameter dependent
Capocci et al. (Capocci et al. 2004 [54]) SP O(n2)

Latapy & Pons (walktrap, 2004 [14]) SP O(n3)

Duch & Arenas (Extremal Optimization, 2005 [15]) GT O(n2logn)
Bagrow & Bollt (Local method, 2005 [55]) SDP O(n3)

Palla et al. (overlapping community, 2005 [56]) GT O(exp(n))
Raghavan et al. (label propagation, 2007 [57]) GT O(n + m)

Rosvall & Bergstrom (Infomap, 2008 [58]) SP O(m)

Ronhovde & Nussinov (Multiresolution community, 2009 [59]) GT O(mβlogn), β ≈ 1.3
De Meo et al. (Mixing information, 2014 [41]) SDP O(n3)

Jin et al. (Geometric Brownian motion, 2014 [60]) SDP O(n3)

5.1. Distance Based Community Detection

There exist no algorithms in the literature of network community detection which compute direct
nearest neighbor between nodes to the best of our knowledge; however, concepts of nearness used in
some of the algorithms and they are described below.

Walktrap Algorithm (WT): This algorithm by Pons and Latapy [14] uses a hierarchical
agglomerative method. Here, the distance between two nodes is defined in terms of random walk
process. The basic idea is that if two nodes are in the same community, the probability to get to
a third node located in the same community through a random walk should not be very different.
The distance is constructed by summing these differences over all nodes, with a correction for degree.
The complexity of the algorithm is O(n3) as reported in Latapy & Pons (walktrap, 2004 [14]).

Label Propagation Algorithm (LP): This algorithm by Raghavan et al. [57] uses the concept of
node neighborhood and the diffusion of information in the network to identify communities. Initially,
each node is labeled with a unique value. Then an iterative process takes place, where each node takes
the label which is the most spread in its neighborhood. This process goes on until the conditions,
no label change, is met. The resulting communities are defined by the last label values with the
complexity O(n + m) for each iteration as reported in Raghavan et al. (label propagation, 2007 [57]).

Geometric Brownian motion (GBM): This concept was borrowed from statistical physics by
Zhou et al. [47] and extended by Jin et al. [60] with the inclusion of the concept of bispace. This
method develops the notion of Brownian motion on networks to compute the influences between the
nodes, which used to discover communities of social networks. The complexity of the algorithm is
O(n3) as reported in Jin et al. (GBM, 2014 [60]).

5.2. Proposed Algorithm for Network Community Detection Using Nearest Neighbor Search

In this subsection we have described k-central algorithm for the purpose of network community
detection by using the nearest neighbor search in a complex network. The community detection
methods based on partitioning of graph is possible using nearest neighbor search, because the nodes
of the graph are converted into the points of a metric space. This algorithm for network community
detection converges automatically and does not compute the value of objective function in iterations
therefore reduce the computation compared to standard methods. The k-central algorithm for
community detection is (Algorithm 3) given below.

Information 2016, 7, 17 8 of 16

Algorithm 3 k-central algorithm
Require: M = (V, d)
Ensure: T = {C1, C2, . . . , Ck} with minimum cost(T)

1: Initialize centers z1, . . . , zk ∈ Rn and clusters T = {C1, C2, . . . , Ck}
2: repeat
3: for i = 1 to k do
4: for j = 1 to k do
5: Ci ← {x ∈ V s.t. |zi − x| ≤ |zj − x|}
6: end for
7: end for
8: for j = 1 to k do
9: zi ← Central(Ci) ; where Central(Ci) ∈ Ci

10: end for
11: until |cost(Tt)− cost(Tt+1)| = 0
12: return T = {C1, C2, . . . , Ck}

5.3. Complexity And Convergence

Complexity of the network community detection algorithms are the least studied research topic
in network science. However, the rate of convergence is one of the important issues of algorithmic
complexity and low rate of convergence is the major pitfall of the most of the existing algorithms. Due
to the transformation into the metric space, our algorithm is equipped with the quick convergence
facility of the k-partitioning on metric space by providing a good set of initial points. Another crucial
pitfall suffer by majority of the existing algorithms is the validation of the objective function in each
iteration during convergence. Our algorithm converges automatically to the optimal partition thus
reduces the cost of validation during convergence.

Theorem 4. During the course of the k center partitioning algorithm, the cost (community-wise total distance
from the corresponding centers) monotonically decreases.

Proof. Let Zt = {zt
1, . . . , zt

k} , Tt = {Ct
1, . . . , Ct

k} denote the centers and clusters at the start of the tth

iteration of k partitioning algorithm. The first step of the iteration assigns each data point to its closest
center; therefore cost(Tt+1, Zt) ≤ cost(Tt, Zt)

On the second step, each cluster is re-centered at its mean; therefore cost(Tt+1, Zt+1) ≤
cost(Tt+1, Zt).

The main achievement of our algorithm is to use the rich literature of clustering using nearest
neighbor. Clustering is easy NP-Hard in metric space, whereas graph partitioning is NP-Hard.
Our algorithm converges automatically to optimal clustering. It does not require verifying the
value of objective function guide next iteration, like popular approaches, thus saving the time
of computation.

6. Experiments and Results

In this section we described in details several experiments to asses the, proposed nearness
measure for the nodes of the network, efficiency of several approximation scheme to compute node
nearness and performance of proposed algorithm for community detection. Several experiments
conducted in this regard are detailed below along with their parameter settings, results
and conclusions.

6.1. Experimental Designs

We performed three different experiments to asses the performance of the proposed network
nearest neighbor search for community detection. The first experiment is designed to evaluate the

Information 2016, 7, 17 9 of 16

nearness measure, the second experiment is designed to explore the effectiveness of approximate
nearest neighbor search for network community detection and the third experiment is designed
to verify behavior of the algorithm and the time required to compute the algorithm. One of the
major goals of the last experiment is to verify the behavior of the algorithm with respect to the
performance of other popular methods exists in the literature in terms of standard modularity
measures. Experiments are conducted over several real networks Table 2 to compare the results
(Tables 5 and 6) of our algorithm with the state-of-the-art algorithms (Table 1) available in the
literature in terms of modularity most preferred by the researchers of the domain of network
community detection. The details of the several experiments and the analysis of the results are given
in the following subsections.

6.2. Performance Indicator

Modularity: The notion of modularity is the most popular for the network community detection
purpose. The modularity index assigns high scores to communities whose internal edges are more
than that expected in a random-network model which preserves the degree distribution of the
given network.

6.3. Datasets

A list of real networks taken from several real life interactions are considered for our experiments
and they are shown in Table 2 below. We have also listed the number of nodes, number of edges,
average diameter, and the k value used in Subsection 5.2. The values of the last column can be used
to assess the quality of detected communities.

Table 2. Complex network datasets and values of their parameters.

Name Type # Nodes # Edges Diameter k

DBLP U 317,080 1,049,866 8 268
Arxiv-AstroPh U 18,772 396,160 5 23
web-Stanford D 281,903 2,312,497 9.7 69

Facebook U 4039 88,234 4.7 164
Gplus D 107,614 13,673,453 3 457
Twitter D 81,306 1,768,149 4.5 213

Epinions1 D 75,879 508,837 5 128
LiveJournal1 D 4,847,571 68,993,773 6.5 117

Orkut U 3,072,441 117,185,083 4.8 756
Youtube U 1,134,890 2,987,624 6.5 811

Pokec D 1,632,803 30,622,564 5.2 246
Slashdot0811 D 77,360 905,468 4.7 81
Slashdot0922 D 82,168 948,464 4.7 87

Friendster U 65,608,366 1,806,067,135 5.8 833
Amazon0601 D 403,394 3,387,388 7.6 92

P2P-Gnutella31 D 62,586 147,892 6.5 35
RoadNet-CA U 1,965,206 5,533,214 500 322

Wiki-Vote D 7115 103,689 3.8 21

6.4. Experiment 1: Experiment with Nearness Measure

In this experiment we tried to asses the usefulness of proposed nearness measure between the
nodes of complex network. For this purpose we have equiped our algorithm with different measures
of nearness along with our measure. Experimental steps are as follows:
Nearness measures: Six different measures are taken for construction the distance based community
detection. They are jaccard coefficient (JA), preferential attachment (PA), Katz measure (KM),

Information 2016, 7, 17 10 of 16

commute time (CT), page rank (PR) and proposed metric (PM). details of the measures are already
discussed in Subsection 2.2 and proposed metric is detailed in Subsection 2.3.
Algorithm: The community detection algorithm proposed in Section 5 is used and exact nearest
neighbor between nodes are considered and computed communities besed on those different
nearness measures.
Network data: Different types of real network data is taken, small, large, very sparse and relatively
dense and they are discussed in Table 2.
Results: Compared the community structure obtained by algorithms, equipped with different
measures of node nearness, in terms of modularity and shown in Table 3.
Observation: It can be observed from Table 3 that algorithm based on proposed metric (shown in
column PA) provides better modularity than other for community detection.

Table 3. Experiment 1: Experiment with nearness measure.

Name JC PA KM CT PR PM

Facebook 0.4806 0.4937 0.5037 0.4973 0.5206 0.5434
Gplus 0.3061 0.3253 0.3411 0.3309 0.3671 0.3998
Twitter 0.3404 0.3465 0.3508 0.3481 0.3582 0.3691

Epinions1 0.0667 0.0816 0.0943 0.0861 0.1150 0.1401
LiveJournal1 0.1010 0.1097 0.1167 0.1122 0.1284 0.1432

Pokec 0.0183 0.0205 0.0222 0.0211 0.0251 0.0288
Slashdot0811 0.0066 0.0080 0.0087 0.0082 0.0101 0.0127
Slashdot0922 0.0086 0.0105 0.0116 0.0109 0.0137 0.0171

Friendster 0.0360 0.0395 0.0422 0.0405 0.0467 0.0526
Orkut 0.0424 0.0476 0.0518 0.0491 0.0587 0.0675

Youtube 0.0375 0.0483 0.0574 0.0515 0.0724 0.0903
DBLP 0.4072 0.4103 0.4118 0.4110 0.4148 0.4207

Arxiv-AstroPh 0.4469 0.4590 0.4682 0.4624 0.4837 0.5045
web-Stanford 0.3693 0.3738 0.3765 0.3749 0.3815 0.3896
Amazon0601 0.2057 0.2174 0.2266 0.2207 0.2419 0.2615

P2P-Gnutella31 0.0180 0.0246 0.0302 0.0266 0.0394 0.0503
RoadNet-CA 0.0701 0.0893 0.1051 0.0949 0.1312 0.1633

Wiki-Vote 0.0874 0.1109 0.1308 0.1179 0.1633 0.2023

6.5. Experiment 2: Experiment on Approximation

In this experiment we explore the effectiveness of several approximation techniques of nearest
neighbor search on complex network designed via metric tree and locality sensitive hashing. For this
purpose we have equiped our algorithm with different data structures (metric tree and LSH) with
varying approximation ratio. Experimental steps are as follows:
Metric and algorithm: The algorithms considered in this experiment used proposed measures of
node nearness detailed in Subsection 2.3. The community detection algorithm proposed in Section 5
is used in this experiment.
Approximation: Computed communities using approximate nearest neighbor via metric tree and
locality sensitive hashing. Different precision of approximation is considered ranges from 0–0.5 and
computed five times each over both the scheme of approximation.
Network data: Different types of real network data is taken to verify the acceptablity of degradation
over the networks and is shown in Table 4.
Results: Compared the community structure obtained by algorithms, equipped with approximate
nearest neighbor instead of exact measures of node nearness, in terms of modularity and shown in
Table 4.
Observations: Observed that both the approximation schemes are very good for community
detection and slightly degrade the results under ranges of Approximations Table 4.

Information 2016, 7, 17 11 of 16

Table 4. Experiment 2: Experiment on approximation.

Name Exact 0.1 Mtree 0.1 Lsh 0.2 Mtree 0.2 Lsh 0.3 Mtree 0.3 Lsh 0.4 Mtree 0.4 Lsh 0.5 Mtree 0.5 Lsh

Facebook 0.5472 0.5468 0.5462 0.5463 0.5452 0.5459 0.5441 0.5454 0.5431 0.5450 0.5421
Gplus 0.4056 0.4053 0.4049 0.4050 0.4042 0.4047 0.4035 0.4044 0.4028 0.4041 0.4021
Twitter 0.3709 0.3706 0.3701 0.3702 0.3693 0.3699 0.3685 0.3695 0.3677 0.3692 0.3669

Epinions1 0.1447 0.1446 0.1445 0.1445 0.1443 0.1445 0.1441 0.1444 0.1439 0.1443 0.1437
LiveJournal1 0.1458 0.1456 0.1454 0.1455 0.1450 0.1453 0.1447 0.1452 0.1443 0.1450 0.1439

Pokec 0.0295 0.0294 0.0293 0.0294 0.0292 0.0293 0.0290 0.0293 0.0289 0.0292 0.0287
Slashdot0811 0.0125 0.0124 0.0123 0.0123 0.0122 0.0121 0.0120 0.0120 0.0119 0.0119 0.0117
Slashdot0922 0.0168 0.0167 0.0167 0.0167 0.0166 0.0166 0.0164 0.0166 0.0163 0.0165 0.0162

Friendster 0.0536 0.0535 0.0534 0.0534 0.0532 0.0533 0.0529 0.0532 0.0527 0.0531 0.0525
Orkut 0.0690 0.0689 0.0688 0.0688 0.0685 0.0687 0.0683 0.0686 0.0680 0.0685 0.0678

Youtube 0.0936 0.0936 0.0935 0.0935 0.0934 0.0935 0.0932 0.0934 0.0931 0.0934 0.0930
DBLP 0.4215 0.4211 0.4206 0.4207 0.4197 0.4204 0.4189 0.4200 0.4180 0.4196 0.4171

Arxiv-AstroPh 0.5081 0.5077 0.5072 0.5073 0.5063 0.5069 0.5053 0.5065 0.5044 0.5061 0.5035
web-Stanford 0.3908 0.3904 0.3900 0.3901 0.3891 0.3897 0.3883 0.3894 0.3874 0.3890 0.3866
Amazon0601 0.2650 0.2647 0.2644 0.2645 0.2638 0.2642 0.2633 0.2640 0.2627 0.2637 0.2621

P2P-Gnutella31 0.0523 0.0523 0.0523 0.0523 0.0523 0.0523 0.0523 0.0523 0.0523 0.0523 0.0523
RoadNet-CA 0.1692 0.1690 0.1686 0.1687 0.1681 0.1685 0.1675 0.1682 0.1670 0.1680 0.1664

Wiki-Vote 0.2095 0.2094 0.2093 0.2093 0.2090 0.2092 0.2088 0.2091 0.2085 0.2090 0.2083

Information 2016, 7, 17 12 of 16

6.6. Experiment 3: Experiment to Evaluate Proposed Algorithm

In this experiment we have compared several algorithms for network community detection with
our proposed algorithm developed using the nearest neighbor search in complex network, which is
discussed in Section 5. The experiment is performed on a large list of network data sets Table 2. Two
versions of the experiment are developed for comparison purposea based on modularity and time
taken. The results are shown in the Tables 5 and 6 respectively.

Table 5. Comparison of our approaches with other best methods in terms of modularity.

Name Spectral SDP GT WT LP GBM NN-Search M-Tree LSH

Facebook 0.4487 0.5464 0.5434 0.5117 0.5042 0.4742 0.5472 0.5450 0.5421
Gplus 0.2573 0.4047 0.3998 0.3528 0.3412 0.2963 0.4056 0.4041 0.4021
Twitter 0.3261 0.3706 0.3691 0.3545 0.3513 0.3375 0.3709 0.3692 0.3669

e Epinions1 0.0280 0.1440 0.1401 0.1034 0.0940 0.0589 0.1447 0.1443 0.1437
LiveJournal1 0.0791 0.1455 0.1432 0.1220 0.1169 0.0966 0.1458 0.1450 0.1439

Pokec 0.0129 0.0294 0.0288 0.0235 0.0223 0.0172 0.0295 0.0292 0.0287
Slashdot0811 0.0038 0.0130 0.0127 0.0095 0.0090 0.0060 0.0125 0.0119 0.0117
Slashdot0922 0.0045 0.0176 0.0171 0.0127 0.0119 0.0078 0.0168 0.0165 0.0162

Friendster 0.0275 0.0536 0.0526 0.0443 0.0423 0.0343 0.0536 0.0531 0.0525
Orkut 0.0294 0.0689 0.0675 0.0549 0.0519 0.0398 0.0690 0.0685 0.0678

Youtube 0.0096 0.0934 0.0903 0.0640 0.0573 0.0319 0.0936 0.0934 0.0930
DBLP 0.4011 0.4214 0.4207 0.4136 0.4125 0.4060 0.4215 0.4196 0.4171

Arxiv-AstroPh 0.4174 0.5079 0.5045 0.4755 0.4688 0.4410 0.5081 0.5061 0.5035
web-Stanford 0.3595 0.3908 0.3896 0.3791 0.3772 0.3673 0.3908 0.3890 0.3866
Amazon0601 0.1768 0.2649 0.2615 0.2336 0.2269 0.1999 0.2650 0.2637 0.2621

P2P-Gnutella31 0.0009 0.0522 0.0503 0.0343 0.0301 0.0146 0.0523 0.0523 0.0523
RoadNet-CA 0.0212 0.1690 0.1633 0.1168 0.1053 0.0603 0.1692 0.1680 0.1664

Wiki-Vote 0.0266 0.2093 0.2023 0.1451 0.1306 0.0752 0.2095 0.2090 0.208

Table 6. Comparison of our approaches with other best methods in terms of time.

Name Spectral SDP GT WT LP GBM NN-Search M-Tree LSH

Facebook 6 7 11 13 7 8 6 4 1
Gplus 797 832 1342 1512 877 948 661 390 115
Twitter 462 485 786 886 509 554 398 235 68

Epinions1 411 419 667 749 452 475 292 174 56
LiveJournal1 1297 1332 2129 2394 1427 1514 969 576 179

Pokec 1281 1305 2075 2330 1410 1480 901 538 173
Slashdot0811 552 561 891 1000 608 636 382 228 74
Slashdot0922 561 570 906 1017 618 647 389 232 75

Friendster 2061 2105 3352 3766 2269 2390 1477 880 280
Orkut 1497 1529 2435 2736 1647 1735 1074 640 203

Youtube 829 844 1340 1505 913 957 578 345 111
DBLP 381 403 655 739 420 461 341 201 57

Arxiv-AstroPh 217 230 375 423 239 263 197 116 33
web-Stanford 498 525 852 960 549 600 437 258 74
Amazon0601 653 678 1089 1225 719 771 520 308 93

P2P-Gnutella31 182 184 293 328 200 209 124 74 24
RoadNet-CA 758 785 1261 1419 834 894 599 355 107

Wiki-Vote 54 55 88 99 59 63 39 23 7

Information 2016, 7, 17 13 of 16

Experimental steps are as follows:
Design of experiment: In this experiment we have compared three groups of algorithms for network
community detection with one based on nearest neighbor search, described above. Two versions
of the experiment are developed for comparison purposes based on modularity and time taken in
seconds.
Best of literature: Regarding the three groups of algorithms; the first group contain algorithms based
on semi-definite programming and the second group contain algorithms based on graph traversal
approaches. For each group, we have taken the best value of modularity in Table 5 among all the
algorithms in the groups. All the algorithms considered in this experiment are detailed in Section 5.
Other distance based methods: Three different methods of network community detection are
also considered for our comparison which indirectly use the influence between the nodes in their
algorithms. These methods are walktrap (WT), label propagation (LP) and geometric brownian
motion (GBM) and already discussed in Section 5 along with their references and complexities.
Proposed methods: Three versions of proposed algorithm are compared with other algorithms, the
proposed algorithm based on exact nearest neighbor, approximated nearest neighbor computed using
metric tree and approximate nearest neighbor computed using locality sensitive hashing.
Network data: A long list of real network data is taken for evaluation of modularity and
timedescribed in Table 4.
Efficiency and time: Compared the community structure obtained in terms of modularity and time
(seconds) taken by the algorithms, shown in the Tables 5 and 6, respectively.

The results obtained with our approach are very competitive with most of the well known
algorithms in the literature and this is justified over the large collection of datasets. On the other
hand, it can be observed that time (second) taken (Table 6) by our algorithm is quite less compared to
other methods and justify the theoretical findings.

6.7. Results Analysis and Achievements

In this subsection, we have described the analysis of the results obtained in our experiments
shown. The results obtained in the first experiment justify that the proposed distance is more useful
for complex network to extract the community structure compared to other measures of similarity.
The results obtained in the second experiment verify that the approximate distance is also useful for
network community detection especially for large data where time is a major concern. The results
obtained in the third experiment justify that the proposed algorithm for community detection is very
efficient compared to other existing methods in terms of modularity and time.

7. Conclusions

In this paper, we studied the interesting problem of the nearest neighbor within the nodes
of a complex networks and applied this for community detection. We have used a geometric
framework for network community detection instead of the traditional graph theoretic approach or
spectral methods. Processing the nearest neighbor search in complex networks cannot be achieved
straightforwardly; we presented the transformation of the graph to metric space and efficient
computation of the nearest neighbor therein using metric tree and locality sensitive hashing. To
validate the performance of proposed nearest neighbor search designed for complex networks, we
applied our approaches on a community detection problem. Through several experiments conducted
in this regard and we found community detection using nearest neighbor search is very efficient and
time saving for large networks due to good approximations. The results obtained on several network
data sets prove the usefulness of the proposed method and provide motivation for further application
of other structural analysis of complex network using the nearest neighbor search.

Acknowledgments: This work is supported by the Jaypee University of Information Technology.

Information 2016, 7, 17 14 of 16

Author Contributions: Suman Saha proposed the algorithm and prepared the manuscript. Satya P. Ghrera was
in charge of the overall research and critical revision of the paper. Both authors have read and approved the final
manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Uhlmann, J.K. Satisfying general proximity/similarity queries with metric trees. Inf. Proc. Lett. 1991, 40,
175–179.

2. Ruiz, E.V. An algorithm for finding nearest neighbours in (approximately) constant average time.
Pattern Recognit. Lett. 1986, 4, 145–157.

3. Panigrahy, R. Entropy based nearest neighbor search in high dimensions. In Proceedings of the Seventeenth
Annual ACM-SIAM Symposium on Discrete Algorithm (SODA ’06), Miami, FL, USA, 22–24 January 2006.

4. Indyk, P.; Motwani, R. Approximate nearest neighbors: Towards removing the curse of dimensionality.
In Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing (STOC ’98), Dallas, TX,
USA, 23–26 May 1998.

5. Gionis, A.; Indyk, P.; Motwani, R. Similarity search in high dimensions via hashing. In Proceedings of the
25th International Conference on Very Large Data Bases (VLDB ’99), Edinburgh, UK, 7–10 September 1999.

6. Dasgupta, S.; Freund, Y. Random projection trees and low dimensional manifolds. In Proceedings of the
Fortieth Annual ACM Symposium on Theory of Computing (STOC ’08), Victoria, BC, Canada, 17–20 May
2008.

7. Akoglu, L.; Khandekar, R.; Kumar, V.; Parthasarathy, S.; Rajan, D.; Wu, K.L. Fast nearest neighbor search
on large time-evolving graphs. In Proceedings of the European Conference on Machine Learning and
Knowledge Discovery in Databases, Nancy, France, 15–19 September 2014.

8. Liu, T.; Moore, A.W.; Gray, E.; Yang, K. An Investigation of Practical Approximate Nearest Neighbor Algorithms;
MIT Press: Cambridge, MA, USA, 2004; pp. 825–832.

9. Weiss, R.; Jacobson, E. A method for the analysis of complex organisations. Am. Sociol. Rev. 1955, 20,
661–668.

10. Schaeffer, S.E. Graph clustering. Comput. Sci. Rev. 2007, 1, 27–64.
11. Fortunato, S. Community detection in graphs. Phys. Rep. 2010, 486, 75–174.
12. Newman, M.E.J.; Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E 2004,

69, 026113.
13. Luxburg, U. A tutorial on spectral clustering. Stat. Comput. 2007, 17, 395–416.
14. Pons, P.; Latapy, M. Computing communities in large networks using random walks. J. Graph Algorithms

Appl. 2004, 10, 284–293.
15. Duch, J.; Arenas, A. Community detection in complex networks using Extremal Optimization. Phys. Rev.

E 2005, 72, 027104.
16. Chakrabarti, D. AutoPart: Parameter-Free Graph Partitioning and Outlier Detection. Knowledge Discovery

in Databases: PKDD 2004; Boulicaut, J.F., Esposito, F., Giannotti, F., Pedreschi, D., Eds.; Springer:
Berlin/Heidelberg, Germany, 2004; Volume 3202, pp. 112–124.

17. Macropol, K.; Singh, A.K. Scalable discovery of best clusters on large graphs. Proc. VLDB Endow. 2010, 3,
693–702.

18. Levorato, V.; Petermann, C. Detection of communities in directed networks based on strongly p-connected
components. In Proceedings of the 2011 International Conference on Computational Aspects of Social
Networks (CASoN), Salamanca, Spain, 19–21 October 2011; pp. 211–216.

19. Brandes, U.; Gaertler, M.; Wagner, D. Experiments on Graph Clustering Algorithms. Algorithms - ESA 2003;
Battista, G.D., Zwick, U., Eds.; Springer: Berlin/Heidelberg, Germany, 2003; Volume 2832, pp. 568–579.

20. Bullmore, E.; Sporns, O. Complex brain networks: Graph theoretical analysis of structural and functional
systems. Nat. Rev. Neurosci. 2009, 10, 186–198.

21. Saha, S.; Ghrera, S.P. Network community detection on metric space. Algorithms 2015, 8, 680–696.
22. Freeman, L.C. Centrality in social networks conceptual clarification. Soc. Netw. 1978, 1, 215–239.
23. Carrington, P.J.; Scott, J.; Wasserman, S. (Eds.) Models and Methods in Social Network Analysis; Cambridge

University Press: Cambridge, UK, 2005.

Information 2016, 7, 17 15 of 16

24. Newman, M. The structure and function of complex networks. SIAM Rev. 2003, 45, 167–256.
25. Radicchi, F.; Castellano, C.; Cecconi, F.; Loreto, V.; Parisi, D. Defining and identifying communities in

networks. Proc. Natl. Acad. Sci. USA 2004, 101, 2658–2663.
26. Ciaccia, P.; Patella, M.; Zezula, P. M-tree: An efficient access method for similarity search in metric spaces.

In Proceedings of the 23rd International Conference on Very Large Data Bases (VLDB’97), Athens, Greece,
25–29 August 1997.

27. Ciaccia, P.; Patella, M.; Zezula, P. A cost model for similarity queries in metric spaces. In Proceedings of the
16th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS ’97), Seattle,
WA, USA, 1–4 June 1998.

28. Motwani, R.; Naor, A.; Panigrahy, R. Lower Bounds on Locality Sensitive Hashing. SIAM J. Discret. Math.
2007, 21, 930–935.

29. Paulevé, L.; Jégou, H.; Amsaleg, L. Locality sensitive hashing: A comparison of hash function types and
querying mechanisms. Pattern Recognit. Lett. 2010, 31, 1348–1358.

30. Joly, A.; Buisson, O. A posteriori multi-probe locality sensitive hashing. In Proceedings of the 16th ACM
International Conference on Multimedia, Vancouver, BC, Canada, 27–31 October 2008; pp. 209–218.

31. Datar, M.; Immorlica, N.; Indyk, P.; Mirrokni, V.S. Locality-sensitive hashing scheme based on p-stable
distributions. In Proceedings of the Twentieth Annual Symposium on Computational Geometry (SCG ’04),
Brooklyn, NY, USA, 9–11 June 2004.

32. Andoni, A.; Indyk, P. Near-optimal Hashing Algorithms for Approximate Nearest Neighbor in High
Dimensions. Commun. ACM 2008, 51, 117–122.

33. Charikar, M.S. Similarity Estimation Techniques from Rounding Algorithms. In Proceedings of the
Thiry-fourth Annual ACM Symposium on Theory of Computing (STOC ’02), Montreal, QC, Canada, 19–21
May 2002.

34. Indyk, P. A Sublinear Time Approximation Scheme for Clustering in Metric Spaces. In Proceedings of the
40th Annual Symposium on Foundations of Computer Science, New York, NY, USA, 17–19 October 1999;
pp. 154–159.

35. Leskovec, J.; Lang, K.J.; Mahoney, M.W. Empirical comparison of algorithms for network community
detection. In Proceedings of the 19th International Conference on World Wide Web, Raleigh, NC, USA,
26–30 April 2010.

36. Yang, J.; Leskovec, J. Defining and Evaluating Network Communities Based on Ground-Truth.
In Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics, Beijing, China, 12–16 August
2012.

37. Zarei, M.; Samani, K.A.; Omidi, G.R. Complex eigenvectors of network matrices give better insight into the
community structure. J. Stat. Mech. Theory Exp. 2009, 2009, P10018.

38. Pan, G.; Zhang, W.; Wu, Z.; Li, S. Online community detection for large complex networks. PLoS ONE
2014, 9, e102799.

39. Lee, C.; Cunningham, P. Community detection: Effective evaluation on large social networks. J. Complex
Netw. 2014, 2, 19–37.

40. Aldecoa, R.; Marin, I. Exploring the limits of community detection strategies in complex networks. Sci. Rep.
2013, 3, doi:10.1038/srep02216.

41. De Meo, P.; Ferrara, E.; Fiumara, G.; Provetti, A. Mixing local and global information for community
detection in large networks. J. Comput. Syst. Sci. 2014, 80, 72–87.

42. De Meo, P.; Nocera, A.; Terracina, G.; Ursino, D. Recommendation of similar users, resources and social
networks in a social internetworking scenario. Inf. Sci. 2011, 181, 1285–1305.

43. Becker, H.; Naaman, M.; Gravano, L. Learning similarity metrics for event identification in social media.
In Proceedings of the Third ACM International Conference on Web Search and Data Mining (WSDM ’10),
New York, NY, USA, 3–6 February 2010.

44. Van Dongen, S. A Cluster Algorithm For Graphs; Technical Report INS-R 0010; CWI: Amsterdam,
The Netherlands, 2000.

45. Eckmann, J.P.; Moses, E. Curvature of co-links uncovers hidden thematic layers in the World Wide Web.
Proc. Natl. Acad. Sci. USA 2002, 99, 5825–5829.

46. Girvan, M.; Newman, M.E.J. Community structure in social and biological networks. Proc. Natl. Acad. Sci.
USA 2002, 99, 7821–7826.

Information 2016, 7, 17 16 of 16

47. Zhou, H.; Lipowsky, R. Network brownian motion: A new method to measure vertex-vertex proximity
and to identify communities and subcommunities. Computational Science - ICCS 2004; Springer:
Berlin/Heidelberg, Germany, 2004; Volume 3038, pp. 1062–1069.

48. Reichardt, J.; Bornholdt, S. Detecting fuzzy community structures in complex networks with a Potts model.
Phys. Rev. Lett. 2004, 93, 218701.

49. Clauset, A.; Newman, M.E.J.; Moore, C. Finding community structure in very large networks. Phys. Rev. E
2004, doi:10.1103/PhysRevE.70.066111.

50. Wu, F.; Huberman, B. Finding communities in linear time: A physics approach. Eur. Phys. J. B 2004, 38,
331–338.

51. Fortunato, S.; Latora, V.; Marchiori, M. Method to find community structures based on information
centrality. Phys. Rev. E 2004, 70, 056104.

52. Donetti, L.; Muñoz, M.A. Detecting network communities: A new systematic and efficient algorithm.
J. Stat. Mech. Theory Exp. 2004, 2004, P10012.

53. Guimera, R.; Amaral, L.A.N. Functional cartography of complex metabolic networks. Nature 2005, 433,
895–900.

54. Capocci, A.; Servedio, V.D.P.; Caldarelli, G.; Colaiori, F. Detecting communities in large networks. Physica
A 2004, 352, 669–676.

55. Bagrow, J.P.; Bollt, E.M. Local method for detecting communities. Phys. Rev. E 2005, 72, 046108.
56. Palla, G.; Derenyi, I.; Farkas, I.; Vicsek, T. Uncovering the overlapping community structure of complex

networks in nature and society. Nature 2005, 435, 814–818.
57. Raghavan, U.N.; Albert, R.; Kumara, S. Near linear time algorithm to detect community structures in

large-scale networks. Phys. Rev. E 2007, 76, 036106.
58. Rosvall, M.; Bergstrom, C.T. Maps of random walks on complex networks reveal community structure.

Proc. Natl. Acad. Sci. 2008, 105, 1118–1123.
59. Ronhovde, P.; Nussinov, Z. Multiresolution community detection for megascale networks by

information-based replica correlations. Phys. Rev. E 2009, 80, 016109.
60. Jin, F.; Khandpur, R.P.; Self, N.; Dougherty, E.; Guo, S.; Chen, F.; Prakash, B.A.; Ramakrishnan, N. Modeling

mass protest adoption in social network communities using geometric brownian motion. In Proceedings
of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’14),
New York, NY, USA, 24–27 August 2014.

c© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open
access article distributed under the terms and conditions of the Creative Commons by
Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Proposed Notion of Nearness in Complex Network
	Definitions
	Nearness in Complex Network
	Proposed Nearness in Complex Network

	Nearest Neighbor Search on Complex Network Using Metric Tree
	Metric-Tree
	Nearest Neighbor Search Algorithm Using M-Tree

	Nearest Neighbor Search on Complex Network Using Locality Sensitive Hashing
	Approximate Nearest Neighbor
	Locality Sensitive Hashing (LSH)
	Locality Sensitive Hash Function for Complex Network

	Proposed Community Detection Based on Nearest Neighbor
	Distance Based Community Detection
	Proposed Algorithm for Network Community Detection Using Nearest Neighbor Search
	Complexity And Convergence

	Experiments and Results
	Experimental Designs
	Performance Indicator
	Datasets
	Experiment 1: Experiment with Nearness Measure
	Experiment 2: Experiment on Approximation
	Experiment 3: Experiment to Evaluate Proposed Algorithm
	Results Analysis and Achievements

	Conclusions

