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Abstract: Quantum-behaved particle swarm optimization (QPSO), a global optimization 

method, is a combination of particle swarm optimization (PSO) and quantum mechanics.  

It has a great performance in the aspects of search ability, convergence speed, solution 

accuracy and solving robustness. However, the traditional QPSO still cannot guarantee the 

finding of global optimum with probability 1 when the number of iterations is limited.  

A novel way of computing the local attractor for QPSO is proposed to improve QPSO’s 

performance in global searching, and this novel QPSO is denoted as EQPSO during which 

we can guarantee the particles are diversiform at the early stage of iterations, and have a 

good performance in local searching ability at the later stage of iteration. We also discuss 

this way of computing the local attractor in mathematics. The results of test functions are 

compared between EQPSO and other optimization techniques (including six different PSO 

and seven different optimization algorithms), and the results found by the EQPSO are 

better than other considered methods. 
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1. Introduction 

QPSO (Quantum-behaved Particle Swarm Optimization) is a novel optimization method, which is 

proposed based on the PSO (Particle Swarm Optimization) algorithm and quantum mechanics. The 

QPSO algorithm has been greatly improved in the aspects of search ability, convergence speed, 
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solution accuracy and solving robustness, and it can also overcome the shortcoming that the standard 

PSO (SPSO) cannot guarantee the global convergence [1,2]. For this reason, QPSO has been widely 

used in bio-medicine, antenna design, combinatorial optimization, signal processing, neural networks 

and other fields [3–11]. 

Besides QPSO, some other algorithms such as genetic algorithm (GA), evolution strategy with 

covariance matrix adaptation (CMA-ES) [12], krill herd (KH) [13–15], monarch butterfly optimization 

(MBO) [16], harmony search (HS) [17,18] and artificial plant optimization algorithm (APOA) [19] are 

also proposed by researchers to solve optimization problems. 

The disadvantage of a QPSO algorithm is that it cannot find the global optimum with probability 1 

when the number of iterations is limited. The number of total iterations is usually a real number and 

cannot be set as infinity during the practical application. Therefore, we propose a novel way to 

compute the local attractor of QPSO to improve the global searching ability of QPSO when the 

number of iterations is limited. In the rest of this paper, we will firstly introduce the basic theory of 

SPSO and QPSO, then the proposed way of computing the local attractor is expressed and analyzed. 

Finally, the enhanced QPSO will be tested by the test functions, and its results are compared with six 

other PSO algorithms and seven optimization algorithms. 

2. QPSO-Based Optimization Algorithm 

2.1. Standard Particle Swarm Optimization 

PSO is an evolutionary computation algorithm based on swarm intelligence theory. The algorithm 

comes from the simulation of the bird predation behavior, and its emphases lie in the cooperation and 

competition between individuals. Because of its rapidity of calculation and ease of implementation, 

PSO algorithms have been successfully applied in system identification, neural network training, fuzzy 

system control and other application fields. 

In PSO [20], each candidate solution is called a particle and all of the particles are seen to have no 

quality and volume. Each particle knows its best position, which is called the local optimum. The best 

position of all the particles is called the global optimum. Suppose a population including M particles 

moves in a D dimensional space with a certain velocity, then PSO will update the speed and position 

according to Equations (1) and (2). 
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where Mi  ,2 ,1 , 1c  and 2c  are the learning factors, and generally, 121  cc , 1r  and 2r  are the 

random numbers uniformly distributed between 0 and 1. 

To improve the optimization ability, Shi [21,22] put forward a PSO algorithm with an inertial 

weight ω  which can be decreased linearly from 1 to 0.1. Then Equation (1) can be changed to 

Equation (3). 
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The algorithm expressed by Equations (2) and (3) is commonly referred to as the standard PSO 

(SPSO). Compared to PSO, the SPSO has a larger search space in the initial period and can obtain 

more precise results in the final period. It is worth mentioning here that although PSO has a relatively 

simple structure and runs very fast, this algorithm cannot guarantee the global convergence. 

2.2. Quantum-Behaved Particle Swarm Optimization 

QPSO is a new PSO algorithm and is inspired by the consideration of quantum mechanics with the 

PSO algorithms. It is superior to the traditional PSO algorithm not only in search ability but also in its 

accuracy. Particles of this model based on delta potential well can appear in any point of search space 

with a certain probability, and the QPSO algorithm can overcome the defect of the SPSO algorithm, 

that it cannot guarantee the global convergence with probability 1. 

In the quantum space, a particle’s velocity and position cannot be determined at the same time. 
Therefore, the state of a particle must be depicted by wave function ψ( , )X t . The physical meaning of 

ψ( , )X t  is that the probability density of a particle’s appearance in a certain position can be 

determined using the formula 
2

ψ( , )X t , and then the probability distribution function can be obtained. 

As for the probability distribution function, through a Monte Carlo stochastic simulation method [23], 

the particle’s position can be updated according to Equation (4). 

)1,0(~  )1ln(2 Uuu
LpX idid    (4)

where )1,0(U  means a random number uniformly distributed between 0 and 1. idp  is the local attractor 

and it can be defined as 

β (1 β)   β ~ (0,1)id id gdp P P U    (5)

where ),,( 21 idiii PPPP   is the best location of the i-th particle, 1 2( , , )g g g gdP P P P   is the best 

location of all the particles; and the parameter L can be evaluated by Equation (6). 

2α d idL mbest X    (6)

where mbest  is the average optimal position of all the particles [24], and it can be computed by 

Equation (7). 
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( , ,..., )

M M M M

i i i i d
i i i i

mbest pbest pbest pbest pbest
M M M M   

      (7)

Therefore, 

1
α ln( )   ~ (0,1)id id id idX p mbest X u U

u
     (8)
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where α is a parameter of the QPSO algorithm called the contraction-expansion coefficient. In this 
paper, α 0.5 0.5 ( ) /c c cL C L    , where Lc is the total number of iterations, and Cc is the current 

number of iterations. 

2.3. Novel Computing Way of Local Attractor 

It has been proved that QPSO can find the global optimum when the number of total iterations tends 

towards infinity [25]. The number of total iterations is usually a real number, such as one thousand or 

one million, and this number cannot be set as infinity during the practical application. So the global 

searching ability of QPSO is limited when the number of iterations is limited. To give QPSO better 

performance in global searching ability in this case, we must guarantee that the particles are 

diversiform at the early stage of iterations, and have good performance in local searching ability at the 

later stage of iterations. A novel way of computing the local attractor is proposed to achieve the above 

scheme, and its equation is shown as Equation (9). 

β (1 β)   β ~ (0,1)c c c
id id gd

c c

L C C
p P P U

L L


    (9)

We find that the coefficients of Pid and Pgd are different from Equation (5). In this way, we can let 

the experience of each particle (Pid) have more influence on particles when they update their next 

position at the beginning of iterations, and the experience of other particles (Pgd) has more influence on 

particles when they update their next position at the later stage of iterations. For simplicity, we define 

1β
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L
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Then we will discuss the probability of 1 2β β . 
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. The range of 1 2β ,β  is shown in Figure 1 below. 

 

Figure 1. Range of 1 2β ,β  when 
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There are two kinds of situations which can let 1 2β β : (a) 1 2β ,β  both fall into area (1), at which 

point the probability of 1 2β β  is 
)(2 cc

c
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; (b) 1β  falls into area (2), at which point the probability 

of 1 2β β  is 
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 . The range of 1 2β ,β  is shown in Figure 2. 
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Figure 2. Range of 1 2β ,β  when 
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If 1 2β β , then 2β  must fall into area (3), and the probability of 1 2β β  is 
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when cc LC 5.0 . 

Above all, the probability of 1 2β β  is 
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Let 
c

c

L

C
R   and Equation (10) can be rewritten as 
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The probability of 1 2β β  with two different ways of computing the local attractor is shown in Figure 3, 

where the computing ways of method 1 and 2 are Equations (5) and (9), respectively. 
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Figure 3. Probability of 1 2β β  with different computing ways of local attractor. 

It can be found that Pid has more influence on particles when they update their next position at the 

beginning of iterations and Pgd has more influence on particles when they update their next position at 

the later stage of iterations in the proposed QPSO. Meanwhile, this influence of Pid and Pgd on particles 
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of the traditional QPSO is random, and the random probability value is 0.5 during all iterations. For 

simplicity, we define the novel QPSO proposed in this paper as the enhanced QPSO (EQPSO), and the 

traditional QPSO as the standard QPSO (SQPSO). 

Finally, the EQPSO algorithm can be described as the following procedure: 

Step 1: Initialize the particles X and let idid PX  ; 

Step 2: Update idP  according to the fitness function and gdP  among each particles’ best positions; 

Step 3: Compute mbest  according to Equation (7); 
Step 4: Compute idp  according to Equation (9); 

Step 5: Compute the new position idX  according to Equation (8); 

Step 6: Repeat steps 2–5 until the algorithm satisfies the end condition. 

3. Results and Discussion 

3.1. Comparison of Different PSO Algorithms  

In this section, we compare results of test functions found by EQPSO with six different PSO 

methods. Sphere Model, Generalized Rastrigin, Griewank, Ackley, Alpine, Schwefel’s Problem and 

Generalized Rosenbrock were used as the test functions. The detailed information of these seven 

functions is shown in Table 1. Sphere Model is a nonlinear symmetric unimodal function, and its 

different dimensions are separable. Most algorithms can easily find the global optimum of Sphere 

Model, and it can be used for testing the optimization precision of EQPSO. Generalized Rastrigin, 

Griewank, Ackley, Alpine, Schwefel’s Problem and Generalized Rosenbrock are complex and have 

many local minimums, so they are employed to test the global searching ability of EQPSO in this paper. 

Table 1. Standard test functions. 

Functions Mathematical Expression Global Minimum 
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1
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Besides EQPSO, PSO, SPSO, and SQPSO, the enhanced QPSO proposed in paper [6,7,11] (for 

simplicity, these three methods are denoted as M1, M2 and M3) are also used to optimize the seven 

test functions. 

PSO uses Equation (1) to update particles’ speed, while SPSO uses Equation (3). SQPSO employs 

Equation (5) to compute the local attractor, while EQPSO employs Equation (9). PSO, SPSO, SQPSO 

and EQPSO all initialize their particle swarm by random numbers uniformly distributed, and other sets 

of these four methods are as introduced in Section 2. The set of M1, M2 and M3 was the same as [6,7,11]. 

The dimension of the all seven test functions was 30, and each program was repeated 10 times. All 

programs were run on MATLAB R2009a which was installed at a computer with a Windows 7 

operating system and 4 Intel (R) Core (TM) i5-3470 CPUs @ 3.2GHz. The minimum value and its 

mean value found by each optimization algorithm during the 10 running times were used to evaluate its 

performance. All results are shown in Tables 2–8. 

Table 2. Optimized results of the Sphere Model function found by different PSO algorithms. 

Particles 20 40 80 

Iterations 1000 2000 3000 1000 2000 3000 1000 2000 3000 

PSO 
1.6441  

0.8564 

0.8441  

0.4999 

0.4893  

0.2937 

0.9618  

0.5715 

0.2800  

0.1682 

0.1398  

0.0759 

0.2838  

0.2083 

0.0988  

0.0531 

0.0363  

0.0184 

SPSO 
0.7261  

0.4624 

0.3672  

0.1436 

0.2391  

0.1009 

0.1312  

0.0561 

0.0628  

0.0258 

0.0220  

0.0092 

0.0109  

0.0039 

0.0014  

6.3394×10−4 

3.9598×10−4 

4.1215×10−5 

SQPSO 
2.5633  

1.7973 

1.0165  

0.5651 

0.3628  

0.1783 

1.3290  

0.6007 

0.3267  

0.1829 

0.0691  

0.0308 

0.6697  

0.4505 

0.0688  

0.0271 

0.0066  

0.0023 

M1 
1.2343×10−7  

1.3762×10−8 

6.4803×10−9 

1.7252×10−10 

4.5401×10−11  

2.5644×10−12 

6.1377×10−8 

5.9569×10−9 

1.6919×10−9  

5.6898×10−11 

3.0023×10−11 

5.1446×10−12 

1.3427×10−7  

9.7467×10−9 

7.0411×10−9 

1.5518×10−10 

2.1708×10−11 

2.8007×10−12 

M2 
1.5605×10−7  

2.7035×10−8 

2.5670×10−9 

4.1998×10−10 

9.4584×10−11  

4.0927×10−12 

4.9876×10−8 

1.6057×10−8 

1.4890×10−9 

8.3158×10−11 

5.5934×10−11 

1.0805×10−11 

8.7657×10−8  

2.8367×10−8 

1.4832×10−9 

3.5118×10−10 

2.6456×10−11 

2.9924×10−12 

M3 
1.1710×10−3  

2.7035×10−5 

2.7697×10−4 

6.1339×10−7 

9.6107×10−8  

1.2988×10−8 

6.2409×10−4 

3.0888×10−5 

1.7757×10−6 

1.7354×10−7 

7.3520×10−8 

1.1750×10−8 

9.9449×10−5  

1.9037×10−5 

2.4029×10−5 

2.5322×10−7 

2.2679×10−7 

5.7069×10−9 

EQPSO 
0  

0 

0  

0 

0  

0 

0  

0 

0  

0 

0  

0 

0  

0 

0  

0 

0  

0 

Note: there are two numbers in each cell. The second number is the minimum value found by each 

optimization method during the 10 running times, and the first number is the mean value of the 10 minimum value. 

Table 3. Optimized results of the Generalized Rastrigin function found by different  

PSO algorithms. 

Particles 20 40 80 

Iterations 1000 2000 3000 1000 2000 3000 1000 2000 3000 

PSO 
12.6982  

4.3357 

7.5865  

3.7038 

5.5879  

3.5364 

6.0211  

2.2309 

5.5924  

1.9919 

5.4869  

1.9899 

7.9318  

4.1269 

6.9536  

3.0257 

6.7100  

3.0257 

SPSO 
8.0665  

3.9084 

5.8705  

3.2631 

4.9350  

1.2684 

4.7761  

1.9899 

4.3778  

1.9899 

4.3315  

1.9899 

6.8265  

2.4574 

5.5614  

2.3509 

5.3427  

0.0199 

SQPSO 
5.5515  

3.5126 

4.0321  

2.102 

3.1779  

1.0388 

4.3447  

0.9950 

3.2834  

0.9950 

3.2834  

0.9950 

5.7808  

2.1503 

5.0256  

1.9929 

4.3040  

2.0035 
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Table 3. Cont. 

Particles 20 40 80 

Iterations 1000 2000 3000 1000 2000 3000 1000 2000 3000 

M1 
0.0609  

2.0564×10−8 

2.7337×10−4 

4.7390×10−11 

9.0049×10−5  

8.0593×10−12 

5.4290×10−6 

1.5582×10−8 

2.6125×10−5 

2.9045×10−10 

5.4374×10−8 

3.4266×10−12 

3.2645×10−5  

2.8414×10−8 

1.4798×10−7 

2.0407×10−10 

1.0201×10−7 

2.7871×10−12 

M2 
0.1494  

3.9666×10−7 

6.7643×10−4 

1.4207×10−10 

8.1401×10−5  

4.3480×10−11 

1.6174×10−4 

5.2413×10−8 

4.4490×10−6 

1.4959×10−9 

5.3705×10−8 

5.5120×10−12 

4.8611×10−5  

8.0935×10−8 

4.3624×10−7 

1.4349×10−9 

1.6225×10−7 

5.8833×10−12 

M3 
0.5327  

8.9381×10−4 

8.0681×10−1 

1.6325×10−6 

1.1260×10−1  

9.2113×10−8 

3.8695×10−2 

1.9217×10−4 

4.9710×10−2 

8.5606×10−7 

7.2574×10−2 

1.3543×10−8 

1.0967×10−2  

8.8096×10−5 

2.0896×10−2 

3.2663×10−7 

5.7961×10−2 

7.5069×10−9 

EQPSO 
0  

0 

0  

0 

0  

0 

0  

0 

0  

0 

0  

0 

0  

0 

0  

0 

0  

0 

Table 4. Optimized results of the Griewank function found by different PSO algorithms. 

Particles 20 40 80 

Iterations 1000 2000 3000 1000 2000 3000 1000 2000 3000 

PSO 
0.1002  

0.0732 

0.0511  

0.0272 

0.0332  

0.0206 

0.0583  

0.0400 

0.0237  

0.0133 

0.0137  

0.0112 

0.0249  

0.0148 

0.0093  

0.0061 

0.0042  

0.0024 

SPSO 
0.0458  

0.0215 

0.0272  

0.0128 

0.0158  

0.0072 

0.0107  

0.0054 

0.0038  

0.0013 

0.0029  

0.0012 

0.0016  

4.4367×10−4 

3.4054×10−4  

1.2080×10−4 

8.3607×10−5 

3.1961×10−5 

SQPSO 
0.1317  

0.0850 

0.0433  

0.0275 

0.0205  

0.0081 

0.0667  

0.0367 

0.0151  

0.0087 

0.0052  

0.0018 

0.0306  

0.0188 

0.0062  

0.0012 

8.7017×10−4 

1.3873×10−4 

M1 
4.3802×10−9  

8.1498×10−10 

1.3854×10−10 

6.5957×10−12 

2.4538×10−12  

9.5704×10−14 

3.9419×10−9 

1.6868×10−10 

1.4175×10−9 

1.1181×10−11 

4.8735×10−11 

3.2141×10−13 

8.4938×10−8  

5.2482×10−10 

2.7257×10−10 

1.5978×10−11 

2.0276×10−12 

3.4417×10−13 

M2 
6.8394×10−9  

4.3524×10−10 

1.8461×10−10 

1.4072×10−11 

1.2017×10−11  

1.5965×10−13 

1.1083×10−8 

4.8845×10−10 

2.2452×10−8 

2.0792×10−11 

1.0303×10−11 

4.9039×10−13 

1.1995×10−7  

5.4717×10−10 

3.1639×10−10 

1.7831×10−11 

6.6436×10−12 

7.6550×10−13 

M3 
1.4325×10−7  

1.1876×10−9 

2.1973×10−10 

2.0809×10−11 

5.9936×10−11  

9.8377×10−13 

1.9127×10−7 

8.1657×10−10 

5.8875×10−10 

6.5016×10−11 

7.6208×10−11 

1.8130×10−13 

6.6305×10−8  

2.7275×10−9 

6.9551×10−9 

5.3252×10−11 

1.0071×10−10 

3.2663×10−12 

EQPSO 
0  

0 

0  

0 

0  

0 

0  

0 

0  

0 

0  

0 

0  

0 

0  

0 

0  

0 

Table 5. Optimized results of the Ackley function found by different PSO algorithms. 

Particles 20 40 80 

Iterations 1000 2000 3000 1000 2000 3000 1000 2000 3000 

PSO 
2.5623  

2.1335 

2.6098  

1.7159 

1.9049  

1.5390 

2.0805  

1.5095 

1.6090  

1.0413 

1.3993  

0.8074 

1.6511  

0.9987 

0.9438  

0.2065 

1.0636  

0.3235 

SPSO 
2.1057  

1.4326 

1.9863  

1.324 

1.6675  

1.0799 

1.6441  

0.7471 

1.3633  

0.2686 

1.3631  

0.6554 

1.1669  

0.0826 

1.4441  

0.0426 

0.7958  

0.0212 

SQPSO 
2.8525  

2.2745 

2.0558  

1.5366 

1.4556  

0.9074 

2.3059  

1.6426 

1.6019  

0.5011 

0.4848  

1.1067 

1.9968  

1.1180 

0.4809  

0.2082 

0.1158  

0.0244 

M1 
2.0271×10−4  

7.3464×10−5 

4.2164×10−5 

1.0555×10−5 

5.8044×10−6  

9.4110×10−7 

1.4847×10−4 

7.7522×10−5 

3.5473×10−5 

7.9518×10−6 

2.9210×10−6 

1.5560×10−6 

1.4986×10−4  

6.3927×10−5 

2.1964×10−5 

8.4422×10−6 

1.0458×10−8 

4.0880×10−9 

M2 
2.3179×10−4  

9.3839×10−5 

3.8744×10−5 

2.0169×10−5 

8.6453×10−6  

1.0569×10−6 

1.8161×10−4 

9.1389×10−5 

3.2453×10−5 

1.3333×10−5 

4.3471×10−6 

1.5869×10−6 

1.4951×10−4  

7.6068×10−5 

2.8008×10−5 

9.6436×10−6 

1.4904×10−8 

4.8599×10−9 
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Table 5. Cont. 

Particles 20 40 80 

Iterations 1000 2000 3000 1000 2000 3000 1000 2000 3000 

M3 
1.8620×10−1  

1.0703×10−1 

4.7290×10−2 

2.0169×10−2 

4.3239×10−4  

1.5221×10−4 

1.8255×10−1 

1.0083×10−1 

3.1622×10−2 

1.1978×10−2 

4.7492×10−3 

1.1828×10−3 

1.6163×10−1  

1.0100×10−1 

2.6017×10−2 

9.3215×10−3 

5.5176×10−5 

6.1040×10−5 

EQPSO 
3.5527×10−15  

3.5527×10−15 

3.5527×10−15 

3.5527×10−15 

3.5527×10−15  

3.5527×10−15 

3.5527×10−15 

3.5527×10−15 

3.5527×10−15 

3.5527×10−15 

3.5527×10−15 

3.5527×10−15 

3.5527×10−15  

3.5527×10−15 

3.5527×10−15 

3.5527×10−15 

3.5527×10−15 

3.5527×10−15 

Table 6. Optimized results of the Alpine function found by different PSO algorithms. 

Particles 20 40 80 

Iterations 1000 2000 3000 1000 2000 3000 1000 2000 3000 

PSO 
0.0013  

1.4526×10−4 

7.0809×10−4 

3.6689×10−5 

6.7859×10−4  

4.1992×10−5 

5.4561×10−4 

1.7372×10−4 

2.1766×10−4 

5.5540×10−5 

2.9181×10−4 

3.8497×10−5 

2.9190×10−4  

2.6377×10−5 

2.2766×10−4 

5.1664×10−5 

1.1943×10−4 

4.5208×10−5 

SPSO 
0.0022  

9.8492×10−5 

7.3980×10−4 

5.4569×10−5 

8.9023×10−4  

1.1949×10−5 

9.6133×10−4 

5.3114×10−6 

5.4579×10−4 

3.3547×10−5 

4.8548×10−4 

7.9522×10−6 

5.6289×10−4  

6.4584×10−5 

2.1799×10−4 

1.0359×10−5 

1.7122×10−4 

3.8545×10−6 

SQPSO 
0.0143  

1.6962×10−4 

0.0063  

3.3031×10−5 

0.0061  

2.3869×10−4 

0.0036  

1.1016×10−4 

0.0031  

6.2983×10−5 

0.0019  

2.6630×10−4 

0.0031  

1.4311×10−4 

0.0017  

2.7915×10−5 

0.0010  

2.5984×10−5 

M1 
1.8608×10−7  

2.8334×10−11 

1.3972×10−8 

2.2204×10−16 

2.6450×10−11  

5.5511×10−17 

7.1641×10−8 

2.3989×10−13 

6.6746×10−10 

1.0230×10−14 

3.5401×10−8 

1.7764×10−14 

7.7803×10−9  

1.0359×10−12 

2.3994×10−10 

1.990×10−14 

1.0419×10−11 

4.4409×10−16 

M2 
1.2585×10−6  

2.3168×10−10 

1.0236×10−7 

1.1102×10−15 

4.5142×10−13  

2.2206×10−16 

4.8673×10−5 

3.0183×10−10 

3.8113×10−8  

1.3156×10−13 

2.0704×10−7  

3.8825×10−16 

2.1529×10−7  

5.4900×10−10 

1.9118×10−7  

6.2728×10−14 

3.2466×10−8  

9.8810×10−15 

M3 
3.0681×10−2  

1.2865×10−8 

8.3576×10−5 

4.0240×10−10 

4.2667×10−9  

1.1102×10−13 

7.5882×10−5  

4.1666×10−6 

6.2528×10−6  

6.0830×10−8 

4.3311×10−7 

1.7875×10−11 

7.0333×10−3  

6.7802×10−8 

1.7644×10−6 

2.4242×10−10 

3.2466×10−7 

6.0830×10−8 

EQPSO 
0  

0 

0  

0 

0  

0 

0  

0 

0  

0 

0  

0 

0  

0 

0  

0 

0  

0 

Table 7. Optimized results of the Schwefel’s Problem function found by different PSO algorithms. 

Particles 20 40 80 

Iterations 1000 2000 3000 1000 2000 3000 1000 2000 3000 

PSO 
5.6638×10−4  

6.8503×10−5 

1.5892×10−4 

1.1801×10−5 

2.2988×10−5  

2.5200×10−8 

4.0478×10−4 

6.9970×10−6 

4.9989×10−6 

7.8797×10−9 

4.3501×10−5 

5.9474×10−7 

3.8480×10−5  

5.7091×10−7 

2.0497×10−7 

1.5086×10−8 

1.1667×10−6 

1.8273×10−7 

SPSO 
1.9251×10−5  

1.4706×10−6 

2.0635×10−5 

5.0909×10−6 

1.3080×10−5  

2.1169×10−6 

1.5901×10−5 

1.9596×10−6 

2.9800×10−6 

1.2431×10−7 

3.8669×10−6 

2.111×10−7 

2.4663×10−6  

1.6972×10−8 

2.1393×10−6 

2.7569×10−8 

1.6282×10−6 

4.8958×10−9 

SQPSO 
4.0874×10−4  

4.7434×10−5 

2.1921×10−4 

5.4540×10−6 

1.2638×10−4  

2.5055×10−6 

2.0573×10−4 

4.3894×10−5 

6.1381×10−5 

6.4015×10−6 

4.1455×10−5 

2.1093×10−6 

6.9722×10−5  

1.2494×10−5 

6.2645×10−5 

9.2323×10−6 

3.4666×10−5 

2.8307×10−6 

M1 
5.6981×10−12  

1.9443×10−15 

2.5339×10−18 

4.4085×10−30 

9.3601×10−22  

1.3082×10−43 

8.8922×10−14 

1.0195×10−15 

3.0140×10−19 

9.0262×10−33 

9.8431×10−21 

1.5374×10−48 

9.1446×10−16  

8.5965×10−18 

6.6840×10−20 

1.3921×10−34 

7.3108×10−34 

6.6827×10−45 

M2 
8.4145×10−11  

9.4579×10−15 

2.6179×10−18 

5.2842×10−29 

3.4991×10−20  

3.4261×10−40 

2.0636×10−13 

1.7643×10−15 

8.7243×10−19 

1.2441×10−30 

5.1265×10−20 

8.1405×10−47 

2.6896×10−15  

3.9470×10−17 

1.4726×10−20 

4.1385×10−32 

3.6702×10−20 

1.1838×10−44 

M3 
9.9860×10−9  

6.5071×10−11 

7.4953×10−16 

9.0021×10−24 

3.5571×10−16  

3.4261×10−37 

9.3567×10−10 

4.2655×10−13 

2.6529×10−16 

3.6111×10−27 

7.2096×10−17 

7.2354×10−41 

3.0135×10−12  

2.4677×10−13 

1.3079×10−15 

7.5319×10−29 

3.9001×10−17 

4.0303×10−41 

EQPSO 
2.5546×10−19  

3.5873×10−31 

3.2685×10−19 

2.3113×10−56 

3.9020×10−20  

4.5433×10−92 

5.3782×10−19 

4.7913×10−19 

2.5603×10−20 

2.4727×10−60 

1.2063×10−20 

6.4142×10−90 

8.3867×10−34  

2.1460×10−34 

4.3086×10−49 

1.4186×10−63 

2.1549×10−51 

2.1766×10−94 
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Table 8. Optimized results of the Generalized Rosenbrock function found by different  

PSO algorithms. 

Particles 20 40 80 

Iterations 1000 2000 3000 1000 2000 3000 1000 2000 3000 

PSO 
14.0820  

7.7815 

6.9217  

4.8018 

5.9551  

1.7819 

6.0812  

1.3719 

5.1278  

3.5548 

4.2665  

0.7336 

5.1579  

3.3651 

5.0835  

1.6381 

3.0416  

0.0486 

SPSO 
7.4839  

7.1661 

7.3913  

7.0657 

7.3204  

6.9552 

7.4344  

6.6722 

7.4063  

7.1152 

7.3672  

6.9455 

7.6472  

6.7529 

7.3979  

6.4032 

7.5233  

6.4121 

SQPSO 
4.1649  

1.1123 

5.7284  

0.9931 

4.5535  

0.3690 

5.7841  

0.5311 

7.8350  

0.8699 

2.3123  

0.0745 

3.1037  

0.0491 

2.1716  

0.1512 

1.7536  

0.0467 

M1 
3.7539  

0.1306 

3.5003  

0.1975 

2.6244  

0.3908 

2.1098  

1.5283×10−4 

0.4345  

4.0287×10−8 

0.0150  

1.8431×10−12 

1.9711×10−5  

7.9672×10−25 

7.3442×10−8 

3.1923×10−27 

1.1838×10−8 

3.1702×10−29 

M2 
3.9761  

0.4548 

4.0357  

0.5157 

3.4834  

1.3480 

1.0713  

0.0027 

0.5714  

1.3731×10−7 

0.2179  

2.1565×10−11 

9.3065×10−8  

1.1516×10−24 

4.0549×10−10 

2.3693×10−28 

1.5138×10−11 

2.3247×10−29 

M3 
5.1747  

0.3702 

4.1321  

0.6407 

5.3282  

0.5069 

1.3111  

0.0089 

0.6469  

3.6672×10−3 

0.0266  

1.8315×10−7 

1.0219×10−7  

2.4738×10−20 

9.7145×10−6 

2.5591×10−25 

1.3633×10−11 

1.9752×10−23 

EQPSO 
3.6340  

0.0199 

3.2169  

0.0088 

2.9860  

0.5001 

0.7790  

3.8339×10−5 

0.1639  

2.1950×10−8 

0.0150  

1.8431×10−12 

1.9013×10−8  

7.1663×10−29 

9.1212×10−31 

0 

0  

0 

It can be found from Tables 2–8 that the best results are acquired by EQPSO, which proves the 

global searching ability of EQPSO has been greatly improved with the help of the novel way of 

computing the local attractor. EQPSO can find the global minimum of Sphere Model, Generalized 

Rastrigin, Griewank, Alpine and Generalized Rosenbrock, and the result found by EQPSO is better 

than other six algorithms although they all do not find the global optimum of Ackley and Schwefel’s 

Problem. We can also find that the EQPSO of either 20 or 40 particles obtains the best result, which 

illustrates that the EQPSO can acquire a good result under the condition that the population is small. 

The convergence speeds of different optimization algorithms are shown in Figures 4–7 (the swarm 

size was 80 and the number of iterations was 3000) when used to optimize the Sphere Model, 

Generalized Rastrigin, Griewank and Ackley functions. It can be found that the convergence speed of 

EQPSO is faster than other considered PSO methods. 
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Figure 4. Convergence speed of different PSO algorithms when used to optimize the 

Sphere Model function. 
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Figure 5. Convergence speed of different PSO algorithms when used to optimize the 

Generalized Rastrigin function. 

0 500 1000 1500 2000 2500 3000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Iterations

V
al

ue
 o

f 
fit

ne
ss

 f
un

ct
io

n

 

 

PSO
SPSO

SQPSO

M1

M2

M3
EQPSO

 

Figure 6. Convergence speed of different PSO algorithms when used to optimize the 

Griewank function. 
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Figure 7. Convergence speed of different PSO algorithms when used to optimize  

the Ackley function. 
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EQPSO and the other considered PSO methods were also used to optimize the problems with 

constraints, and three functions with constraints of paper [26] (g07, g09 and g10, which are shown in 

Table 9) are used as the test functions. 

Table 9. Test functions with constraints. 

Functio Mathematical Expression Global Minimum 

g07 
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The mechanism proposed in paper [26] was adopted to help the considered PSO methods of this 

paper to solve the functions with constraints. This mechanism is used to select the leaders, and it is 

based both on the feasible solutions and on the fitness value of a particle. In this mechanism, when two 

feasible particles are compared, the particle which has the highest fitness value wins. If one particle is 

not feasible and the other one is feasible, then the feasible particle wins. If both particles are infeasible, 

the particle that has the lowest fitness value wins. The idea is to choose as a leader the particle that, 

even when infeasible, lies closer to the feasible region. More detailed information about this 

mechanism can be found in paper [18]. When the seven considered methods were used to optimize 

these three functions, the size of their particle swarm was 80, and the maximum number of iterations 

was 3000. The results are shown in Table 10. 

Table 10. Optimized results of g07, g09 and g10 found by different PSO algorithms. 

 g07 g09 g10 

PSO 
26.8630  
25.4369 

685.2511  
684.5264 

7512.6585  
7058.5644 

SPSO 
26.3571  
25.3321 

685.2355  
682.8701 

7489.2385  
7056.6452 

SQPSO 
26.9852  
25.8752 

685.7819  
684.2511 

7498.3160  
7053.8519 

M1 
25.0162  
24.6835 

684.6238  
681.0064 

7369.3470  
7056.0559 

M2 
25.1302  
24.6973 

685.6650  
681.4274 

7396.5825  
7057.8687 

M3 
25.5647  
25.1960 

686.6652  
682.2697 

7450.6183  
7059.7984 

EQPSO 
24.4080  
24.3090 

681.5307  
680.6331 

7145.6589  
7051.0049 

We can find from Table 10 that the results found by EQPSO are better than other PSO methods for 

functions g07, g09 and g10. 

3.2. Comparison of Different Optimization Algorithms 

In this section, we compare EQPSO with CMA-ES, GA, KH, an enhanced KH of paper [21], MBO, 

HS and APOA. All these methods were used to optimize the test functions of Table 1. For GA, KH, an 

enhanced KH of paper [21] (denoted as KH-E), MBO, HS, APOA and EQPSO, the population size is 

20 and the maximal value of iterations is 1000. Other parameters of each algorithm were as follows: 

CMA-ES: SIGMA is a parameter which can determine the initial coordinate wise standard deviations 

for the search, and we set SIGMA to one third of the initial search region. GA: the selecting function 

was stochastic uniform, the crossover function was Intermediate, and the mutation function was 

Gaussian. The crossover fraction was 0.8. KH-E: The setting of KH-E was the same as paper [21]. 

MBO: The BAR value was equal to the percentage of population for MBO, and we randomly divided 

the whole population into population1 and population2. HS: Harmony memory considering rate was 

0.95 and pitch adjustment rate was 0.3. APOA: the value of phototropism operator was 0.1. All 
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programs were run ten times, the best result and mean result were used to evaluate the eight methods, 

and the results are shown in Table 11. 

Table 11. Optimization results of different optimization methods. 

 f1 f2 f3 f4 f5 f6 f7 

CMA-ES 
1.3485×10−15  

7.4881×10−16 

9.8501  

3.9798 

0.0017  

1.8874×10−15 

0.1155  

3.2028×10−11 

2.6214  

2.1760×10−14 

3.3525×10−10  

3.4148×10−14 

2.5101×10−15 

1.0652×10−15 

GA 
4.3537  

2.1249 

12.2978  

7.6093 

0.1908  

0.1368 

3.2453  

2.9185 

4.5903  

3.3934 

0.1696  

3.2352×10−5 

4.3999  

0.5610 

KH 
2.5923  

0.0652 

1.5810  

0.0242 

20.5440  

20.4087 

2.9902  

1.1703 

1.9149  

8.7010×10−5 

2.4876  

1.6511 

3.6905  

1.6508 

KH-E 
0.0041  

8.5871×10−6 

0.1829  

4.5122×10−4 

2.4236  

2.2548 

0.0027  

1.1790×10−4 

1.2341×10−2 

0.0410×10−10 

0.0027  

1.5855×10−4 

0.1204  

8.6122×10−4 

MBO 
1.5505×102  

0.4331 

197.2550  

1.1103 

1.7072×102  

12.4189 

12.9117  

0.0013 

0.0441  

5.5036×10−5 

8.2794×105  

0.0034 

4.7425×104  

46.3762 

APOA 
1.8645×101  

1.4024×101 

8.3188  

7.8942 

6.6463×10−1 

4.6362×10−1 

3.5394  

3.5140 

4.5291×10−2 

3.3480×10−3 

2.7639×10−1  

4.2181×10−3 

1.1939×101  

1.0967×101 

HS 
4.7139×10−2  

4.4334×10−2 

3.7631  

1.8259 

1.1711×101  

1.0330×101 

2.1087×101  

2.0906×101 

1.3010×10−1 

1.7142×10−2 

2.3984×102  

2.0715 

5.4177×101  

5.0345×101 

EQPSO 
0  

0 

0  

0 

0  

0 

3.5527×10−15 

3.5527×10−15 

0  

0 

2.5546×10−19  

3.5873×10−31 

3.6340  

0.0199 

As we can see from Table 11, for function f7, the results found by CMA-ES are better than EQPSO, 

and other than that the results of EQPSO are better than other methods. 

3.3. Statistical Test 

Finally, the sign test, which is known as a statistical test method, was adopted to verify the 

significance of the results found by EQPSO. In this method, the overall performance of algorithms is 

based on number of cases on which an algorithm is the overall winner. A detailed introduction to the 

sign test can be seen in paper [27]. Table 12 shows the critical number of wins needed to achieve both 

α 0.05  and α 0.1  levels of significance. An algorithm is significantly better than another if it 

performs better on at least the cases presented in each row of Table 12. 

Table 12. Critical values for sign test. 

Cases 5 6 7 8 9 10 11 12 

α 0.05  5 6 7 7 8 9 9 10 

α 0.1  5 6 6 7 7 8 9 9 

The minimum value of 10 test functions (including all functions of Tables 1 and 9) found by PSO, 

SPSO, SQPSO, M1, M2, M3 and EQPSO (the size of particle swarm was 80 and the maximum 

number of iterations was 3000) were analyzed by sign test, and the results are shown in Table 13. The 

minimum value of 7 test functions (all functions of Table 1) found by CMA-ES, GA, KH, KH-E, 

MBO, APOA, HS and EQPSO were also analyzed by sign test, and the results are shown in Table 14. 
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Table 13. Results of sign test performed on EQPSO (different PSO algorithms). 

EQPSO PSO SPSO SQPSO M1 M2 M3 

wins 10 10 10 10 10 10 

loses 0 0 0 0 0 0 

Detected differences α 0.05  

Table 14. Results of sign test performed on EQPSO (different optimization algorithms). 

EQPSO CMA-ES GA KH KH-E MBO APOA HS 

wins 6 7 7 7 7 7 7 

loses 1 0 0 0 0 0 0 

Detected differences α 0.1  α 0.05  α 0.05  α 0.05  α 0.05  α 0.05  α 0.05  

As we can see, in the α 0.05  level EQPSO shows a significant improvement over the other six 

PSO methods, GA, KH, KH-E, MBO, APOA and HS. For CMA-ES, EQPSO shows a significant 

improvement in the α 0.1  level. 

4. Conclusions 

The QPSO algorithm shows ideal performance in the aspects of search ability, convergence speed, 

solution accuracy and solving robustness. However, it cannot be guaranteed that the traditional QPSO 

can find the global optimum when the number of iterations is limited. 

We propose a novel way of computing the local attractor of QPSO to improve the global searching 

ability of QPSO in this case. With this proposed computing way, we can guarantee the particles are 

diversiform at the early stage of iterations, and ensure good performance in local searching ability at the 

later stage of iterations. Results of the test functions have proved that the proposed method has better 

performance in global searching ability. 

In this paper, we improve the optimization performance of EQPSO through controlling the iterative 

process, as one can find that the initial distribution of particles also influences the optimization ability of 

EQPSO. We will focus our research on finding an effective way to initialize the particles of EQPSO in 

our future studies, and we believe the optimization performance will be more ideal through this research. 
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