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Abstract: With the rapid development of M2M (Machine-to-Machine) networks, the 

damages caused by malicious worms are getting more and more serious. By considering 

the influences of the network heterogeneity on worm spreading, we are the first to study 

the complex interaction dynamics between benign worms and malicious worms in 

heterogeneous M2M network. We analyze and compare three worm propagation models 

based on different immunization schemes. By investigating the local stability of the  
worm-free equilibrium, we obtain the basic reproduction number 0R . Besides, by using 

suitable Lyapunov functions, we prove that the worm-free equilibrium is globally 
asymptotically stable if 0 1R  , otherwise unstable. The dynamics of worm models is 

completely determined by 0R . In the absence of birth, death and users’ treatment, we 

obtain the final size formula of worms. This study shows that the nodes with higher node 

degree are more susceptible to be infected than those with lower node degree. In addition, 

the effects of various immunization schemes are studied. Numerical simulations verify our 

theoretical results. The research results are meaningful for us to further understand the 

spread of worms in heterogeneous M2M network, and enact effectual control tactics. 

Keywords: heterogeneous network; network topology; basic reproduction number; 

globally asymptotically stable; final size formula; control tactics 
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1. Introduction 

With the development of cloud computing and M2M technologies, the threat from worms and their 

variants is becoming increasingly serious. According to the 2015 Symantec Global Internet Security 

Threat Report [1], the year 2014 is a year with far-reaching vulnerabilities, faster attacks, files held for 

ransom, and far more malicious code than in previous years. Many measures are taken against the 

propagation of malicious worms, such as anti-virus software, patch, firewall, etc. However, those 

measures cannot understand the transmission mechanisms of worms, and cannot predict the spread 

trends of worms [2]. Thus, those general defense and detection measures cannot help us to provide 

more effective measures against malicious worms and their variants. 

Mathematical modeling is an important tool in analyzing and controlling the spread of malicious 

worms. The process of model formulation comprehensively uses assumptions, parameters, and variables. 

Besides, those models provide us theoretical conclusions, such as basic reproduction rate, feasible region, 

effective contact rate, and thresholds. Theoretical analysis and numerical simulations are useful tools for 

testing theoretical results, determining how to change sensitive parameter values, getting key parameters 

according to known date, and establishing effective control measures. Mathematical models effectively 

help us understand the mechanisms of worm propagation, predict the spread trends of worm, and develop 

better approaches for decreasing the transmission of malicious worms. 

According to network characteristics, networks can be divided into two kinds: homogeneous and 

heterogeneous networks. In a homogeneous network, most nodes have similar degrees, and nodes’ 

degree distribution is very similar; homogeneous networks include regular networks [3], Erdӧs-Renyi 

random networks [4], and small-world networks [5]. Many epidemic models [6–15] have been 

developed to understand the spreading dynamics based on the fully-connected assumption of the 

homogeneous network. In those models, whole nodes are divided into different compartments 

corresponding to different epidemiological states. Nevertheless, this fully-connected assumption is 

inconsistent with the real world network topology; that is, the assumption that each computer has an 

equal probability of scanning any other individual in the network is unreasonable. Thus, the 

homogeneous mixing hypothesis is an overly simplified assumption, and is generally unrealistic. It is 

not appropriate for modeling epidemic models in heterogeneous networks. Contrary to homogeneous 

networks, most nodes of heterogeneous network have large fluctuations in degree distribution; 

heterogeneous networks include scale-free networks [16], broad-scale networks [5] and M2M wireless 

networks. Several models [17–24] have been developed to model such complex patterns of interactions 

in complex network. Of course, the spreading mechanism and dynamics of worm models in different 

kind networks are different. The M2M (Machine-to-Machine) network is a network that is based on 

the intelligent interaction among smart devices, and the blending of several heterogeneous networks, 

such as WAN (Wide Area Network), LAN (Local Area Network) and PAN (Personal Area Network). 

This decade, M2M communications over wired and wireless links continue to grow, and as such, 

various applications of M2M have already started to emerge in various sectors such as vehicular, 

healthcare, smart home technologies, and so on [25]. In recent years, the damages caused by malicious 

worms and their variants in M2M wireless networks are becoming increasingly serious, due to the 

variety of network forms, the openness of information, the mobility of communication applications, 

the security vulnerability of operating systems, the complexity of network nodes, and so on. Thus, in 
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order to control the large-scale propagation of malicious worms in M2M network, we must consider 

the heterogeneity of the M2M network into the modeling process. 

Although there are approaches to contain the spread of worms, such as antivirus software, intrusion 

detection system and network firewalls, these approaches can only give an early warning signal about 

the presence of a worm so that defensive measures can be taken. Currently, worm–anti-worm strategy 

is one of the most effective ways to restrain the propagation of malicious worms. Benign worms are 

beneficial worms that can dynamically proactive defend against malicious worm propagation and 

patch for the susceptible hosts. Even though users lack cybersecurity awareness or make poor security 

measures, benign worms can also maintain network security. That is why, in this paper, we first 

consider using benign worms to counter the malicious worms in heterogeneous M2M network.  

Many epidemic models [26–30] have studied the spreading dynamics between benign worms and 

malicious worms in homogeneous networks in recent years, and proved the effectiveness of the  

worm–anti-worm strategy on decreasing the transmission of malicious worms. However, to our 

knowledge, there are no epidemic models to consider the worm–anti-worm strategy in a heterogeneous 

network. Motivated by this, in this paper, we first propose a novel dynamical model to study the 

dynamics of interactive infection between malicious worms and benign worms in heterogeneous M2M 

networks. Furthermore, we compare our model to two other worm propagation models that are based 

on different immunization schemes in heterogeneous M2M networks. Through theory analysis, we 

find that the dynamics of those models are completely determined by a threshold value, which is the 

model’s basic reproductive number. Besides, in the absence of birth, death and users’ treatment, we 

obtain the final size formula of malicious worms based on comprehensive immunization scheme. 

Numerical simulations support our results. We believe that the results can help restrain the spread of 

malicious worms. 

The rest of the paper is organized as follows. Section 2 describes some related works of worm 

propagation models. We formulate the models in Section 3. In Section 4, we obtain the basic 

reproductive number and prove the local and global stability of the worm-free equilibrium. Section 5 

determines the final size formula. In Section 6, a series of numerical experiments are given to verify 

the theoretical results. Finally, conclusions are given in Section 7. 

2. Related Works 

2.1. Existing Worm Propagation Models 

In the past several decades, based on the great similarity between biological viruses and network 

worms, many dynamical models [6–15,17–31] were presented to qualitatively and quantitatively 

understand the propagation mechanisms of worms and study the corresponding control strategies, such 

as, homogeneous model, topological model and heterogeneous model. 

The homogeneous worm propagation models are based on the concept of a network fully-connected 

graph, which ignore the real-world network topology. For instance, the classical simple epidemic 

model [6], the Kermack-McKendrick (KM) epidemic model [7], and the two-factor worm model [8] 

are all homogeneous models, which model the propagation of random scanning malicious worms. This 

class of models assumes that each host has an equal probability in connecting to any host in the 
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network. Especially, in [8], Zou et al. extended the KM model [7] and analyzed the propagation of  

Red Code by considering the dynamic countermeasures taken by ISPs (i.e., Internet Service Providers) 

and users, and the influence of network congestion on worm infection rate. Later, many extended 

models [9–15] are proposed, but they all belong to homogeneous models. 

As more and more malicious worms plunge into the Internet, traditional counterwork technologies 

cannot currently scale to deal with the worm threats, and as such worm–anti-worm (WAW) has 

become a new active countermeasure. The idea of an anti-worm is to transform a malicious worm into 

a benign worm, which spreads itself using the same mechanism as the original worm. A benign worm 

can proactively patch and harden configuration setting, and wipe off malicious worms that have 

infected hosts. There are many worm–anti-worm epidemic models [26–29], for instance, based on  

the two-factor worm model, Zhou et al. [26] modeled each sub type of active benign worms and hybrid 

worms under the circumstance of no time delay and time delay. Ma et al. [27] explored the influences 

of removable devices on the interaction dynamics between malicious worms and benign worms, 

effective methods are proposed to contain the propagation of malicious worms using anti-worms.  

The topological worm propagation models describe the worms as relying on the topology for 

spreading themselves. To the best of our knowledge, Fan et al. [30] first proposed a novel logic matrix 

approach to modeling the propagation processes of P2P (i.e., Peer to Peer) worms by difference 

equations, which are essentially discrete-time deterministic propagation models of P2P worms. It is 

suitable for modeling P2P worms because this model considers the topology of a P2P network.  

Wang et al. [31] created a microcosmic landscape on worm propagation and successfully analyzed the 

procedures of worm propagation. Furthermore, some relevant work has been reported in [32–35].  

Faloutsos et al. [36] found that the autonomous Internet topology asymptotically follows a power-

law degree distribution. Stimulated by this theory, several heterogeneous models [17–24] have studied 

the spreading behavior of worms on complex networks. In a complex network, each node represents a 

host in its corresponding epidemiological state, and each edge between two nodes stands for an 

interaction that may allow worm transmission. Those studies indicate that the connectivity fluctuations 

of the network strongly enhance the incidence of infection in complex network.  

2.2. The Limitation of Existing Worm Propagation Models 

Although all the previous models have qualitatively understood the propagation mechanisms of 

worms and study the corresponding control strategies by mathematical modeling, the common 

shortcoming of the existing models is that they do not research the influences of network heterogeneity 

on the interaction dynamics between malicious worms and benign worms in a heterogeneous M2M 

network. That is, those homogeneous models ignore the network heterogeneity, and those 

heterogeneous models ignore the influences of network heterogeneity on the interaction of two worms. 

2.3. Our Proposed Worm Propagation Model 

In our model, we firstly propose a novel dynamic model to study the interaction dynamics of the 

worm–anti-worm strategy in heterogeneous M2M network. We then compare our model to two other 

worm propagation models, which are based on different immunization schemes. Through theory 

analysis, we find that the dynamics of those models are completely determined by a threshold value. 
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By choosing suitable Lyapunov functions, the global asymptotical stability of worm-free equilibrium is 

proved. Besides, in the absence of birth, death and users’ treatment, we obtain the final size formula of 

malicious worms based on comprehensive immunization scheme. After that, the effects of various 

immunization schemes are compared. Finally, numerical simulations verify our results.  

3. The Model 

In order to study the influences of the M2M network heterogeneity on worm spreading, in our 
models, a group ( , )G V E  is used to represent the topological structure of the M2M network, where 

V  is the set of all nodes and E  is the set of all edges. In this group, a node corresponds to a 

computer, and an edge represents the potential communication between two nodes. The number of 

edges emanating from a node is called as the degree of a node. We assume that the total computers can 

be broken into a number of homogeneous sub-compartments, i.e., all nodes in the same  

sub-compartment are dynamically equivalent, without any difference. We classify the nodes into 

compartments based on the number of node degree, i.e., nodes in the same sub-compartment have the 

same number of node degrees. Our model is based on a system of ordinary differential equations 

describing the evolution of the number of individuals in each compartment. 

Based on the above assumptions, we classify the total nodes into   different groups, where 
( 1,2,..., )kN k    is the total number of nodes that have k -degree, and   is the maximum node 

degree of total nodes. ( , 1,2, , )kk
N N N k     is the nodes size of the whole network. In order 

to reflect the heterogeneous nature of an M2M network, we consider nodes degree distribution ( )p k , 

i.e., ( ) /kp k N N , which is the probability that a node degree chosen randomly is k -degree. 

According to our different purposes, the infection rates of nodes can be classified into the following 
compartments: susceptible nodes ( )S , malicious infectious nodes ( )I , benign infectious nodes ( )B  
and recovered nodes ( )V . The corresponding notations are as following: ( ) ( ) ( ) ( )k k k kS t I t B t V t, , , , 

are, respectively, the relative densities of S -nodes, I -nodes, B -nodes, and V -nodes with  

k -degree at time t . Some frequently used notations of this paper are listed in Table 1. 

Table 1. Notations of this paper. 

 The maximum node degree of total nodes
( )kS t  The relative density of S -nodes with k -degree at time t

( )kI t  The relative density of I -nodes with k -degree at time t

( )kB t  The relative density of B -nodes with k -degree at time t

( )kV t  The relative density of V -nodes with k -degree at time t

kN  The total number of nodes with k -degree

N The nodes size of the whole network

1  The effective infection rate of the malicious worms

2  The effective infection rate of the benign worms

3  The effective repair rate of the benign worms wipe off the malicious worms

1  The recovery rate of S -nodes become V -nodes due to the treatment effect

2  The recovery rate of I -nodes become V -nodes due to the treatment effect
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Table 1. Cont.  

 The self-destruction rate of the benign worms in the B -nodes
 The birth or death rate of a node

1( )t  The probability that a randomly chosen link points to a I -node

2 ( )t The probability that a randomly chosen link points to a B -node

( )p k The probability that a node chosen randomly with k -degree

3.1. The Model of k k kS I V  

The k k kS I V  model only contains three compartments: S -nodes, I -nodes, and V -nodes. Figure 1 

is the transfer diagram of each compartment with k -degree ( 1,2,..., )k   . 

 

Figure 1. The transfer diagram of k k kS I V model. 

In Figure 1, 1( ) ( ) / ( ) ( ) / /k k Ik k k
t kp k I kp k kp k I k k k           represents the 

probability that a randomly chosen link points to a malicious infectious node, i.e. the relative density of 
I -nodes at time t .   is the birth or death rate of a node; thus, ( ) ( ) ( ) 1k k kS t I t V t    is 

invariable. Due to the infection of the malicious nodes, S -nodes becomes I -nodes at constant rate 1 . 

Thus, 1 1kkS   is the number of S -nodes turn into I -nodes at time t . 1  and 2  are, respectively, 

the recovery rate of S -nodes and I -nodes due to the treatment effect of users. Based on Figure 1, we 

can get the dynamical differential equations for each compartment with k -degree as following: 

1 1 1

1 1 2

1 2

( )
( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )

( )
( ) ( ) ( )

k
k k

k
k k

k
k k k

dS t
kS t t S t

dt
dI t

kS t t I t
dt

dV t
S t I t V t

dt

   

  

  

     

    



  

 (1)

The initial condition of System (1) is (0) (0) (0) 0k k kS I V , , , and its feasible region is 

  3
1 , , : 1,1k k k k k kU S I V R S I V k

        , which is a positively invariant. 

3.2. The Model of k k k kS I B V  

In the k k k kS I B V  model, we divide nodes into four compartments: S -nodes, I -nodes, B-nodes 

and V -nodes. The transfer diagram of each compartment with k -degree ( 1,2,..., )k    is 

schematically depicted in Figure 2. 
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Figure 2. The transfer diagram of k k k kS I B V  model. 

In Figure 2, 2 ( ) ( ) / ( ) ( ) / /k k Bk k k
t kp k B kp k kp k B k k k           represents the 

probability that a randomly chosen link points to a benign infectious node, i.e., the relative density of 

B -nodes at time t . Due to the repair infection of benign nodes, S -nodes become B -nodes at 
constant rate 2  and I -nodes become B -nodes at constant rate 3 , where 3 2  .   is the  

self-destruction rate of the benign worms in the B -nodes, i.e., the rate B -nodes translate into  

V -nodes. Besides, the other model parameters are the same as defined in Figure 1. Based on Figure 2, 

the dynamical differential equations for each compartment with k -degree is donated as: 

1 1 2 2 1

1 1 3 2 2

2 2 3 2

1 2

( )
( ) ( ) ( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )

k
k k k

k
k k k

k
k k k

k
k k k k

dS t
kS t t kS t t S t

dt
dI t

kS t t kI t t I t
dt

dB t
kS t t kI t t B t

dt
dV t

S t I t B t V t
dt

    

   

   

   

       

      

      


    


 (2) 

The initial condition of System (2) is (0) (0) (0), (0) 0k k k kS I V B , , , and its feasible region is 

  4
2 , , , : 1,1k k k k k k k kU S I V B R S I V B k

         , which is a positively invariant. 

3.3. The k k kS I V  Model Based on Targeted Immunization Strategy 

The endemic equilibrium of System (1) is * 1 1

2 12 1

1

1

*
1

( )( )
k

k

kk
I

k

S 
   


  


  








. It is easy to 

know * * *
1 2I I I    and *

2

lim k
k

I


 



. This indicates that a node with a higher node degree is 

more susceptible to be infected by worms than that with a lower node degree. In addition, we can 

conclude that the higher the degree of nodes, the higher the infection density of a network, and thus the 

density would tend to a constant when the node degree goes to infinity. Indeed, this precisely coincides 

with reality. Thus, we can use targeted immunization strategy to strengthen protection efforts of the 
nodes that have a higher node degree [37]. First, we introduce lower and upper thresholds 1K  and 

2K , such that if 2k K , all nodes with k -degree will be immunized, while if 1 2K k K  , a fraction 

(0 1)a a   of nodes with k -degree will be immunized. Thus, we can define the immunization rate 

k  as following: 
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1 2

1

1 ( )

( )

0 ( )
k

k K

a K k K

k K




  
 

 

Thus, ( )kk
p k   is the average immunization rate of the targeted immunization strategy. Then, 

the ordinary differential equations of System (1) will become 

1 1 1

1 1 2

1 2

( )
(1 ) ( ) ( ) ( )

( )
(1 ) ( ) ( ) ( )

( )
( ) ( ) ( )

k
k k k

k
k k k

k
k k k

dS t
k S t S t

dt
dI t

k S t I t
dt

dV t
S t I t V t

dt

    

   

  

      

     



  

 (3) 

The feasible region of System (3) is same with System (1). 

4. The Global Stability of Models 

4.1. The Global Stability of k k kS I V  Model 

By counting, we can easily obtain the equilibrium of System (1). The worm-free equilibrium is 

1 1
0

1 1 1 1

( ,0, , , ,0, )E
  

       


   
 , i.e., 0 0 0 1

1 1

, 0, , 1, 2,k k kS I V k


   
    

 
 ; and the 

endemic equilibrium is * * * * * * *
1 1 1( , , , , , , )E S I V S I V    , where 

*
* * 1 1

1 1 1 2

, ,k
k k

kS
S I

k


    


 

   
 

* * *1 , 1,2, ,k k kV S I k     , meanwhile, * * *, , 0k k kS I V  . According to the computing method in [38], 

only the infected compartment kI  is involved in the calculation of the basic reproductive number 0R . 

At the worm-free equilibrium 0E , the transmission matrix F  is the rate of appearance of new 

infections and the transmission matrix W  is the transfer rate of nodes among compartments; they are, 

respectively, denoted by 

0 0
, ,

0 0 0 0

A Q
F W 

   

   
    
   

 

where 

 1
2

1

2
1 (1), 2 (2), , ( ) , ( )A p p p Q E

k

   

 
 
     
  
  




 

( E  is the   identity matrix). Hence, 
1

1 0

0 0

Q
W


 

 

 
  
 

. Therefore, according to Theorems  

in [38,39], the basic reproduction number R0 is defined as the spectral radius of the next generation 

matrix 1FW  ; that is, 
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R FW AQ
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Based on 01R , we have the following theorem: 

Theorem 1. When 01 1R  , the worm-free equilibrium *E  of System (1) is locally and globally 

asymptotically stable in the model’s feasible region 1U , and unstable when 01 1R  . 

Proof. To measure the global asymptotical stability of worm-free equilibrium, we choose a Lyapunov 

function like this: 1
2

( ) ( ) ( )kk

k
L t p k I t

 


 . Hence, the time derivative of 1( )L t  along the solutions 

of System (1) is formulated as following: 

 

 

'
1 1 1 2

2
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2

2
1 1
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2
1

1
2

1 01

( ) ( ) ( )

( ) ( )
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1

k kk
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k
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S
k p k kp k I

k p k kp k I

k
k

k
k

k

k R

  
 

 

 


 


 

   



 



 


  
   



  
         
    



 

 
 

We can know that '
1 ( ) 0L t   only if 01 1R  . Therefore, according to LaSalle’s invariance  

principle [40], when 01 1R  , the worm-free equilibrium 0E  of System (1) is locally and globally 

asymptotically stable in the model’s feasible region 1U . When 01 1R  , it means that '
1( ) 0L t  , and 

0E  is unstable in 1U . Thus, Theorem 1 is proved. □ 

4.2. The Global Stability of k k k kS I B V  Model 

The worm-free equilibrium of System (2) is 1 1
0

1 1 1 1

( ,0,0, , , ,0,0, )E
  

       


   
 , which 

means 0 0 0 0 1

1 1

, 0, 0, , 1, 2, , ;k k k kS I B V k


   
     

 
  and the endemic equilibrium is 

* * * * * * * * *
1 1 1 1( , , , , , , , , )E S I B V S I B V     , where  

*
* * 1 1

1 1 2 2 1 3 2 2

* *
* * * * *2 2 3 2

, ,

, 1 , 1, 2, , .

k
k k

k k
k k k k k

kS
S I

k k k

kS kI
B V S I B k


      

 
 


 

       

  
      




 

Meanwhile, * * * *, , , 0k k k kS I B V  . Similarly, let 1 1
1 1

0 0
,

0 0 0 0

A Q C
F W 

   

   
    
   

, where 
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. According to 

Theorems in [38,39], the basic reproduction number R0 is defined as the spectral radius of the next 
generation matrix 1

1 1FW  , the reproductive number is 
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. 

Based on 02R , we have the following theorems: 

Theorem 2. When 02 1R  , the worm-free equilibrium *E  of System (2) is locally and globally 

asymptotically stable in the model’s feasible region 2U , and unstable when 02 1R  . 

Proof. To measure the global asymptotical stability of worm-free equilibrium, we choose a Lyapunov 
function like this: 2 ( ) ( ) ( )kk

L t kp k I t . Hence, the time derivative of 2 ( )L t  along the solutions of 

System (2) is formulated as: 
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At 0E , 0 0kI   and 0 0kB  , thus 
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We can know that '
2 ( ) 0L t   only if 02 1R  . Therefore, according to LaSalle’s invariance  

principle [40], when 02 1R  , the worm-free equilibrium 0E  of System (2) is locally and globally 
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asymptotically stable in the model’s feasible region 2U . Otherwise, 0E  is unstable in 2U . Thus, 

Theorem 2 is proved. □ 

4.3. The Basic Reproductive Number of System (3) 

We have known that the initial condition, and the worm-free equilibrium of System (3) are the same 
as System (1). Besides, the endemic equilibrium of System (3) is * * * * * * *

1 1 1( , , , , , , )E S I V S I V    , where 
*

* * * * *1 1

1 1 1 2

(1 )
, , 1 , 1, 2, ,

(1 )
k k

k k k k k
k

k S
S I V S I k

k

 
     

 
      

    
 , and * * *, , 0k k kS I V  . By 

counting, we can also obtain that the basic reproduction number of System (3) is 
2 2 2

1 1
03

2 2
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( ) ( )
k kk k k

R
k k

  
   

       
   

     
. 

Because 2 2
kk k       , where   is the covariance of k  and 2k , and 

2 2 2( , ) ( )( )k kCov k k k          . Thus, when choosing an appropriately small value of 2K , 

we can ensure 0  , here, 

2 2
1 1

03 01
2 2

(1 ) (1 )
(1 )

( ) ( )

k k
R R

k k

    
   

      
     

     
. 

5. The Final Size Formula if 0 1R   

The expected final size of worms is defined as the total number of nodes affected by the worm at 

the end of the epidemic, which is an important indicator of worm outbreak. In this section, by using the 

same computing method in [38], we will firstly investigate the final size formula of System (2). 

Secondly, we will get the final size formula of worms based on the comprehensive immunization scheme. 

5.1. The Final Size Formula of System (2) 

First, we show that the worms of System (2) will eventually die out, i.e., 
(( ) 0, ) 1 .0,kkI kB        Since the positively invariance of System (2) is 

0 , , , 1, 1, 1k k k k k k k kS I B V S I B V k         , we know that all solutions of System (2) are  

non-negative and bounded. 
In the absence of birth, death and the treatment effect of users, 1 2 0     . Then  

2 2 3 2( ( ) ( )) ( ) ( )k k k k

d
S t I t kS t kI t

dt
        (4)

We see that ( ) ( )k kS t I t  is strictly decreasing whenever ( ) 0kI t  . Because ( ) ( )k kS t I t  is 

bounded below by zero, it has a limit as t  . Because ( )kS t  is decreasing and also bounded by 

zero, it also has a limit as t  . Therefore, ( )kI t  will tend to zero; that is, ( ) 0kI   . Due to 

( ( ) ( ) ( )) ( )k k k k

d
S t I t B t B t

dt
     (5)
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Evidenced by the same token, we know that ( )kB t  tends to zero; that is, ( ) 0kB   . We adopt the 

convention that, for any non-negative continuous function ( )f t , lim ( )
t

f f t 
 , and 

0
( )f f t dt


  , since  

1 1 2 2

( )
( ) ( )k

k k

dS t
kS t kS t

dt
       (6)

If we integrate Equation (6) from 0 to  , we can obtain 

 1 1 2 20
( ) (0) ( ) ( ) ( ) ( )

t

k k k kS t S kS kS d             (7)

Due to 

0
10

( ) ( )
( )

t

t kk
kp k I d

d
k

 
  

 
 

  

0
20

( ) ( )
( )

t

t kk
kp k B d

d
k

 
  

 
 

  

(8)

When t  , we get 1

( ) kk
kp k I

k
 

 
  and 2

( ) kk
kp k B

k
 

 
 . 

From Equation (7), we get 

1 2

(0) ( )k k
k

k k

S S
S

kI kB 
 




, as t   (9)

Through similar calculation, we obtain 

3 1

(0)k
k

k k

I
I

kB kS 



 and 

2 3

(0)k
k

k k

B
B

kS kI  


 
 (10)

From Equations (9) and (10), we can calculate that 

(0) ( ) (0) (0)k k k k
k

S S I B
B


   

  and 
2 2 3

1 2
2

1 2

(0)

2
k

k

M M k I
I

k

 
 

 
  (11)

where 

2 2 2 2
1 2[ (0) ( ) (0)] [ (0) ( ) (0) (0)]

[ (0) ( ) (0) (0)]
k k k k k k k

k k k k

k S S I k S S I B
M

S S I B

  


       


   
 (12)

Integrating System (2) from 0 to t , we get 

 1 1 2 20

1 2

0 0

(0)
ln ( ) ( )

( )

( ) ( ) ( ) ( )

t
k

k

t t

k k
k k

S
k k d

S t

k k
kp k I d kp k B d

k k

    

    

   

 
   



  
 

Letting t  , we have 
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2 2 3
1 21 2
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(0)
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 (13)

Consider three cases: 

Case 1： If 0(0) , (0) 0, (0) 0k k k kS S I B   , then we have 

2 20 2
1 2 0 0

2

ln ( )[ ( )] ( )( )k
k k k kk k

k

S kk
kp k k S S kp k S S

S k k

  
  



    
      

Case 2: If 0 0(0) , (0) , (0) 0k k k k kS S I I B   , then we have 

 2 2 2 2 2 2 2
1 2 1 2 1 2 0

0 2

2

( ) [ ]
ln ( )

2

k
k

k k
k

p k kG kG kIS k
k kp k G

S k k

         
 

     
 

      

0 0k k kS SG I   

Case 3: If 0 0 0(0) , (0) , (0)k k k k k kS S I I B B   , then we have 

 2 2 2 2 2 2 2 2 2 2
1 2 1 2 1 2 0

0 2

2

( ) [ ]
ln ( )

2

k
k

k k
k

p k G kJ G kJ J kIS k
k kp k J

S J k k

         
 

     
 

      

0 0 0k k k kS S I BJ     

We know the final size formula is ( ) ( ) 1 ( )k kk k
V p k V p k S      , which is related to the 

network structure. When other parameters do not change, the degree distribution of the network greatly 

affects the final size of worms; meanwhile, the higher initial value or more effective infection ability of 

malicious worms, the larger-scale of malicious worms will be. 

5.2. The Final Size Formula Based on Comprehensive Immunization Scheme 

Since the compiler program of benign worm needs time, we should use the targeted immunization 

scheme to protect the security of a network before benign worms are put into a network. When benign 

worm has been compiled, we will only use benign worm scheme to repair a network. That is, from 0 to 

T , we will only use targeted immunization scheme, and only use benign worm scheme from T  to 
( )t t T . Then, we have 

 1 1 1 1 2 20

1 1 2

0 0

(0)
ln (1 ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( ) ( ) ( )

T t
k

k T
k

T t t
k

k k kT
k k k

S
k d k k d

S t

k k k
kp k I d kp k I d kp k B d

k k k

        

        

      


  

     

 

    
 

Letting t  , and 0 0 0(0) , (0) , (0)k k k k k kS S I I B B   , we have 
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k
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The final size formula is ( ) ( ) 1 ( )k kk k
V p k V p k S      , which is also related to the 

network structure. 

6. Simulations  

In the real world, the degree distribution of network usually obeys a power-law distribution. We choose 
2( ) 2 ( 3 3)vp k m k m and v   , 100  , 510N   and 0.01  , then we get 29.4297k   and 

2 93.3728k  . We use MATLAB simulation tool to verify our theoretical analysis. 

Example 1. Consider System (1) with 1 1 20.01, 0.2, 0.1, 0.7, 0.3, 0,1k k kS I V k           , 

then 01 0.2884 1R   . Figure 3a exhibits the time plot of System (1). It shows that the malicious 

worms will gradually disappear. When 1 0.1   and the other parameters remain the same, 

01 2.8843 1R   . Figure 3b shows that the malicious worms are prevalent in the network and all states 

reach their equilibrium points. This example proves Theorem 1. Furthermore, considering System (1) 

with the same parameters as Figure 3b, Figure 3c exhibits the time plot of different node degrees of 

malicious infectious nodes. It shows that a higher node degree host is more susceptible to be infected 

than a lower node degree host.  

 
(a) 

Figure 3. Cont.  
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(b) 

(c) 

Figure 3. (a) Globally asymptotically stable of worm-free equilibrium of System (1) when 

01 0.2884 1R   . (b) Malicious worms of System (1) are prevalent when 01 2.8843 1R   . 

(c) The time plot of different node degrees of malicious infectious nodes. 

Example 2: Consider System (3) with 1 2 10.1, 0.02, 0.01, 10K     , Figure 4 shows that 03R  

is a function of a  and 2K . It illustrates that 03R  is a decreasing function of a  but an increasing 

function of 2K , which means, if a  is large or 2K  is small, more nodes will be immune. 

 

Figure 4. 03R  is a function of a  and 2K . 
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Example 3: Consider System (2) with 1 2 3 1 20.2, 0.01, 0.04, 0.02, 0.02, 0.01,            

0.6, 0.3, 0.1, 0,1k k k kS I B V k       , we can obtain 02 0.5004 1R   . Figure 5a exhibits the 

time plot of this system. It shows that the malicious worms will gradually disappear. When 1 0.1   

and other parameters remain the same, 02 5.0035 1R   . Figure 5b shows that the malicious worms are 

prevalent in the network and all states reach their equilibrium points. This example proves Theorem 2.  

 
(a) 

 
(b) 

Figure 5. (a) Globally asymptotically stable of worm-free equilibrium of System (2) when 

02 0.5004 1R   . (b) Malicious worms of System (2) are prevalent when 02 5.0035 1R   .  

Example 4: Letting 1 2 3 1 20.2, 0.1, 0.092, 0.082, 0.02, 0.01, 0.3, 0.05,k kI B              

0,1kV k    , Figure 6 shows the time plot of the average densities of malicious infected nodes for 

different immunization tactics: no immunization, targeted immunization (with 1 210, 20,K K   

0.85 0 7, 0. 8a   ), and benign worms immunization (with the average infection rate of benign worm 

is 2 3( ) / 2 0.087   ). On purpose, we set the average immunization rates for targeted immunization 

and benign worms immunization, which are, respectively, 0.087, and then we can make comparison 

analyses. Figure 6 indicates that, compared to targeted immunization, benign worms immunization has 

the absolute predominance to control the spread of malicious worms, even though the average 

infection rate of benign worms is small. 



Information 2015, 6 629 

 

 

 

Figure 6. The average densities of malicious infected nodes for different immunization tactics. 

7. Conclusions  

To our knowledge, we are the first to study the complex interactions between benign worms and 

malicious worms in heterogeneous M2M network. We, respectively, obtain the equilibriums and basic 

reproduction number of three different models. Meanwhile, we prove that the global dynamics are 
determined by the threshold value 0R . In the absence of birth, death and the treatment effect of users, 

we obtain the final size formula in different immunization schemes. Our results show that the nodes 

with higher node degrees are more susceptible to infection than those with lower node degrees. 

Furthermore, the effects of various immunization schemes are studied. Numerical simulations verify 

our results. This paper provides a strong theoretical basis to take effective measures to control the 

large-scale propagation of malicious worms in heterogeneous M2M network. In the future, we are 

going to incorporate time delay of susceptible and/or infectious computers (malicious infected or 

benign infected) into the proposed worm propagation models, which will greatly enhance the 

practicability of our models. 
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