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Abstract: With the rapid development of M2M wireless network, damages caused by 

malicious worms are getting more and more serious. The main goal of this paper is to explore 

the influences of removable devices on the interaction dynamics between malicious worms 

and benign worms by using a mathematical model. The model takes two important network 

environment factors into consideration: benign worms and the influences of removable 

devices. Besides, the model’s basic reproduction number is obtained, along with the correct 

control conditions of the local and global asymptotical stability of the worm-free equilibrium. 

Simulation results show that the effectiveness of our proposed model in terms of reflecting 

the influences of removable devices on the interaction dynamics of an anti-treat model. 

Based on numerical analyses and simulations, effective methods are proposed to contain the 

propagation of malicious worms by using anti-worms. 

Keywords: M2M wireless network; malicious worms; benign worms; interaction dynamics; 

basic reproduction number 
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1. Introduction 

Worm is a program that can run by itself and can replicate and spread autonomously in the network. 

With the rapid development of information technology, M2M technologies have been widely used in 

mobile communication, medical care, military reconnaissance, and so on. An M2M wireless network is 

a network which is based on the intelligent interaction among smart devices, and it is a blending of 

several heterogeneous networks, such as WAN (Wide Area Network), LAN (Local Area Network) and 

PAN (Personal Area Network), its application has evolved widely. According to the 2015 Symantec 

Global Internet Security Threat Report [1], the year 2014 was a year with far-reaching vulnerabilities, 

faster attacks, files held for ransom, and far more malicious code than in previous years. While people 

are enjoying the convenience, the damages caused by malicious worms and their variants in M2M 

wireless network are becoming increasingly serious, due to the variety of network forms, the openness of 

information, the mobility of communication applications, the security vulnerability of operating systems, 

the complexity of network nodes, and so on. The most significant difference between a traditional 

computer network infection and M2M wireless network is that the latter evolved much faster and can cause 

broader and more dangerous harm, as the latter contains more mobile devices and wireless devices. 

Currently, a number of detection and defense technologies have been proposed to contain worm 

propagation, but they cannot fundamentally solve those problems. In addition to benign worms, there 

exist beneficial worms which can dynamically proactive defense against the malicious worm 

propagation and patch for the susceptible hosts. Thus benign worms can solve the malicious worm 

propagation problem to a large degree and they have been a potential solution to restrain and resist the 

spread of malicious worms. Even though users lack cybersecurity awareness or take poor security 

measures, benign worms also can maintain the network security. Therefore, worm-anti-worm strategy is 

a best-effort approach to contain the spread of malicious worms. That is why in this paper we first 

consider using benign worms to counter the malicious worms. Motivated by this, we propose a novel 

dynamical model to study the dynamics of interaction infection between malicious worms and benign 

worms. Through theory analysis and simulation, this article studies the dynamical behaviors of the two-

worm interaction. 

As we all know, removable devices provide another way other than the Internet for the spread of 

worms. However, nearly all previous models [2–15] ignore the fact that worms can infect not only the 

computers but also many kinds of external wireless or wired removable devices, e.g., external hard 

drives, USB drives, mobile phones, wireless handheld devices, etc. With the development of WiFi and 

M2M wireless network technology, the M2M wireless network has a certain large coverage area in large 

cities, and even in some remote areas. While people are enjoying the convenience, worms can exploit 

the various wireless networks and threaten the cyber space. According to the Symantec security 

response, the first wireless worm appeared in 2004, which exploited vulnerabilities in the Symbian OS 

and propagated through Bluetooth wireless connections. Different from the spreading form of worms in 

traditional networks, worms can inadvertently send copies of themselves to some other nodes that can 

be infected. Studies show that, due to most wireless protocols allowing neighborhood discovery, 

proximity of wireless devices can promote worm propagation. Besides, the mobility of removable 

devices helps to transport worms to a lager geographic space and allows them to last for a longer time. 
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Therefore, it is important to study the dynamics of interaction infection between computers and 

removable devices. Motivated by this, we propose a novel dynamical model based on the above facts. 

In this article, we analyze the malicious worm propagation in an M2M wireless network by using the 

mathematical model. We consider the influences of removable devices on the interaction dynamics 

between malicious worms and benign worms in our model. By investigating the local stability of the 

worm-free equilibrium, we obtain the basic reproduction number. By choosing a suitable Lyapunov 

function, we prove the asymptotical stability of worm propagation. Crucially, we obtain the effective 

threshold of controlling the spread of malicious worms. 

The rest of this paper is organized as follows. Section 2 describes some related works of worm 

propagation models. Section 3 presents the novel worm anti-treat model and gives the relevant proofs of 

stability. Simulation and control strategies are given in Section 4. Finally, Section 5 concludes this paper. 

2. Related Works 

2.1. Existing Worm Propagation Models 

In the past several decades, based on the great similarity between biological viruses and network 

worms, many worm propagation models were presented to understand the propagation mechanisms of 

worms and study the corresponding control strategies. 

The classical simple epidemic models [2] only consist of two states of nodes: susceptible and 

infectious, which is also called the SI model. Due to the fact that the SI model does not consider the 

cases where the infected and infectious nodes are patched or removed, it is not suitable for a real 

situation. The Kermack-McKendrick epidemic model [3] (also known as KM model) makes up the 

shortcoming of SI model, and considers an additional removal state, the nodes translate from the 

susceptible to the infectious or to the removal state. Paper [4] proposed an extended stochastic diffusion 

model for the KM model in which the infectivity of an individual depends on the time since the individual 

became infective [5]. The article [6] provided a two-factor worm model based on the classical epidemic 

KM model, it carefully analyzed the propagation of Red Code by considering more external factors (one 

is the dynamic countermeasures taken by ISPs and users, the other is the slowed down worm infection 

rate because of network congestion and troubles to some routers). Later, many extended models were 

proposed, e.g., SEIRS model [7], VEISV model [8], SEIQRS model [9], SEIDQV model [10], which 

separate nodes’ states into more varieties and consider passive recovery measures without adding active 

defense measures.  

Worm-Anti-Worm (WAW) models consider two kinds of worms: a malicious worm and a benign 

worm [11]. Benign worm proactive defenses against the malicious worm propagation and patches for 

the susceptible hosts. Models [12–15] explored the interaction dynamics between malicious worms and 

benign worms. When the benign worm is absent, a WAW model is subject to the two-factor model. 

To capture the influences of removable devices on the spread of worm, some worm models have been 

proposed. Based on the KM model, Song et al. presented a model to characterize the essential properties 

of AutoRun worms, in which a removable device would be infected with a certain rate if it was used on 

an infectious computer and then it can infect other computers whenever in was used on them [16].  

In [17,18], Yang et al. addressed the influences of removable devices on the spread of viruses and 
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investigated more complex dynamics. These models provide a reasonable qualitative understanding of 

the conditions under considering the influences of removable devices. 

2.2. The Limitation of Existing Worm Propagation Models 

Researchers have qualitatively understood the propagation mechanisms of worms and studied the 

corresponding control strategies by using mathematical modeling. Unfortunately, to our knowledge, 

none of the existing models have researched the influences of removable devices on the interaction 

dynamics between malicious worms and benign worms. 

2.3. Our Proposed Worm Propagation Model 

In our model, based on the diversity of nodes types in M2M wireless network, we explore the 

influences of removable devices on the interaction dynamics between malicious worms and benign 

worms. We take two important network environment factors into consideration: benign worms and the 

influences of removable devices. We find the basic reproduction number of our model and the correct 

control conditions of the local and global asymptotical stabilities of the worm-free equilibrium. We also 

obtain the effective threshold of controlling the spread of malicious worms. Furthermore, simulation 

results show the effectiveness of our model. Finally, effective control strategies are proposed to combat 

malicious worms. 

3. The Model 

In a wireless M2M network, we divide nodes into two types: fixed nodes and removable nodes. Fixed 

nodes are fixed computers, while removable nodes are wireless mobile devices with networking 

capability, such as mobile phones and tablet computers, or removable devices with no networking 

capability, such as hard drives and USB drives. The worm propagation behavior on fixed nodes is similar 

to the spreading behavior of worms in a traditional network, but different from it when it comes to 

removable devices. All the wireless removable devices autonomously roam in the network: when 

wireless devices are connected to network and move to the sensing area of nodes, the worms can detect 

possible vulnerabilities in the equipment and prepare for the infections. When removable devices without 

networking capability are connected to computers, the worms that exist in them can infect susceptible 

computers; moreover, they also can be infected by worms that exist in those computers. 

Our model is based on the following assumptions: (1) Our model falls under the category of a 

homogeneous worm propagation model, that means, our model ignores the network topology and it is 

based on the concept of a network fully-connected graph; (2) We assume that the number of total fixed 
nodes is N , total removable nodes is NR  and other states of nodes do not change in unit time t ; (3) We 

assume that removable devices are used equally in the whole network; (4) Since the number of 

removable devices users is huge, and the users exist in all over the network, we assume that removable 

nodes are uniform distribution in the whole network; (5) All newly fixed nodes and removable nodes 

accessed the network are susceptible; (6) Once fixed nodes are immunized, they will gain permanent 

immunity and can no longer be infected by malicious worms; (7) We assume all nodes will remain in 
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their state when they get out of the network; (8) Wireless removable devices’ worms have no space 

constrains and can be connected to a network to carry out a wider range of transmission. 

In our model, all nodes are in six compartments: susceptible fixed nodes ( S )-nodes are healthy but 

are not immune to AutoRun worms; fixed nodes infected by malicious worm ( I ); fixed nodes infected 

by benign worm ( B ); immunized nodes ( V )-nodes have been immunized by anti-virus program, 
firewall or benign worms; susceptible removable nodes ( SR )-removable nodes without malicious 

worms; infected removable nodes ( IR )-removable nodes have infected by malicious worm and can 

infect other susceptible nodes. At any time t , the total fixed nodes are ( ) ( ) ( ) ( ) ( )N t S t I t B t V t    , 
and the total removable nodes are ( ) ( ) ( )N S IR t R t R t  . The six states and state transition in our model 

are shown in Figure 1. 
The notations in Figure 1 are listed as follows. 1b  and 2b  respectively are the number of new fixed 

and removable nodes join the network. 1ω  and 2ω  represent the immunized rate of susceptible fixed 

nodes and susceptible removable nodes by using anti-virus program and firewall, respectively. 1β  and 

2β  are the effective infection rates of malicious worms and benign worms, respectively. 1μ  and 2μ  

respectively represent the obsolescence rate of fixed nodes and removable nodes. δ  is the self-destruct 

rate of benign worms after completing repair work.   is the online rate of removable nodes. 

  

Figure 1. State transition diagram of our model. 

Let 1 3 2 3β β , ω ω   , based on Figure 1 we can obtain the equations of the model as follows: 
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From system Equation (1), we can set the model’s feasible region as 
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6U {( , , , , , ) : , , , , , 0, , }S I S I S I NS I B V R R R S I B V R R S I B V N R R R          

U is positively invariant for system Equation (1), we will analyze the stabilities of Equation (1) in  

the set U. 

3.1. The Basic Reproductive Number of Our Model 

The basic reproductive number 0R , is a key concept in epidemiology, and it is one of the most 

important and most valuable ideas that mathematical thinking has brought to epidemic theory [19].  
In epidemiology, the meaning of 0R  is that the number of susceptible nodes infected by an infected node 

in its entire infectious time. When 0 1R  , it means the worms in the network will be cleared finally. 

When 0 1R  , we can predict that the worms will be prevalent. Thus, we can control the propagation of 

worms by controlling 0R . 

By counting, we can easily obtain the equilibriums of model (1). The worm-free equilibrium is 

1 1 1 2
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ω
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In order to obtain the basic reproductive number 0R , let ( , , , , , )T
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According to the Theorem in [20], we know the basic reproductive number of model Equation (1) is 

0 1 2= max( , )R    . Especially, 1  and 2  respectively are the basic reproductive number of 

malicious worms and benign worms in our model. In this paper we will use 0 1 2= max( , )R     to 

analyze the stabilities of system Equation (1). 

3.2. The Stability Analysis for Worm-Free Equilibrium 0P  

In epidemiology, one equilibrium of a propagation model represents one final spreading trend of 
worms. The aim of this section is to prove the correctness of the basic reproductive number 0R  by 

analyzing the stability of worm-free equilibrium, and to get the correct control conditions of worm-free 
equilibrium by adjusting 0R . 

3.2.1. The Local Asymptotical Stability of Worm-free Equilibrium 0P  

Theorem 1. When 0 1R  , the unique worm-free equilibrium 0P  is locally asymptotically stable in the 

model’s feasible region U , and unstable when 0 1R  . 

Proof. The Jacobian matrix at the worm-free equilibrium 0P  is 
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The corresponding eigenvalues of 0( )J P  are 1 1 2 2 3 4 4 2 0 3μ , μ , , βa S a           , 
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in [21], we know that the sufficient conditions are 0i  for the six-dimensional model to be 

asymptotically stable, where 1, 2,3, 4,5,6i  . All parameters of this model are assumed to be positive. 

Obviously, in this model 1 0  , 2 0,   and 3 0  . If 4 0  , it is equivalent to 2 0 3β / 1S a  , that is 
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If 6 0  , it is approximatively equal to 1 1  . Therefore, when the condition meets 

0 1 2max( , ) 1R      , the propagation of malicious worms will be controlled. According to  

Routh-Hurwits criterion [22], the unique worm-free equilibrium 0P  is locally asymptotically stable. 

When 0 1R  , it means that 0( )J P  has two or three positive eigenvalues, therefore 0P  is an unstable 

saddle point in the model’s feasible region U . This proof is completed. □ 

3.2.2. The Global Asymptotical Stability of Worm-free Equilibrium 0P  

Theorem 2. When 0 1R  , the worm-free equilibrium 0P  is globally asymptotically stable in the model’s 

feasible region U , and unstable when 0 1R  . 

Proof. From the first equation in system Equation (1), we can get '
1 1 1( ) (ω μ )S t b S   , so 

    1 1(ω μ )
1 1 1 1 1 1( ) / ω μ (0) / ω μ tS t b S b e        . Thus, when t  ,  1 1 1( ) / ω μS t b  . Similarly, 
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from the fifth equation in Equation (1), we can get '
2 2( ) μS SR t b R  , so 

  2μ
2 2 2 2( ) / μ (0) / μ t

S SR t b R b e   . Thus, when t  , 2 2( ) /μSR t b . To measure the global 

asymptotical stability of worm-free equilibrium, we choose a Lyapunov function like this: 
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We can know that only at 0P , '( ) 0L t  . According to the LaSalle’s invariance principle in [23], 

when 0 1R  , the worm-free equilibrium 0P  is globally asymptotically stable in the model’s feasible 

region U . When 0 1R  , it means that '( ) 0L t   and 0P  is unstable in U . This proof is completed. □ 

4. Simulations and Control Strategies 

4.1. Simulations 

In this section, we will analyze the stability of our model and the influences of removable devices on 

the interaction dynamics between the malicious worms and the benign worms, by using MATLAB 
simulation tool. First, we set 6 5

1 2 1 2 1 2 3100,β 2 10 ,β 2 10 ,ω 0.06,ω 0.05,ω 0.035,b b            
1 2μ μ 0.001,δ 0.5, 1    . At the beginning, the number of all kinds of nodes are 

   (0), (0), (0), (0), (0), (0) 50000,50000,0,0,50000,50000S IS I B V R R  . We can obtain the basic 

reproduction number 0 0.6306 1R    by using above parameters. The results are shown in Figure 2a.  

It shows that the two kinds of malicious worms ( I  and IR ) will gradually disappear, which proves the 

correctness of Theorems 1 and 2. When 5
1 2 10    and other parameters do not change, 

0 6.3063 1R   , and we can see the results in Figure 2b. Different from Figure 2a, the two kinds of 

malicious worms in Figure 2b are prevalent in network, and all states reach their equilibrium points. This 

is also consistent with Theorems 1 and 2. 
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(a) 

 
(b) 

Figure 2. (a) When 0 1R  , worm-free equilibrium is globally asymptotically stable;  

(b) When 0 1R  , the two kinds of malicious worms will be prevalent. 

In the third experiment, we will evaluate the effects of benign worms. Let 

1 2 3ω 0.04,ω ω 0.03, (0) 50B    , and leave the other arguments intact. The results are shown in 

Figure 3. It shows that benign worms can not only decrease the number of two kinds of malicious infected 
nodes, but can also reduce the malicious worm propagation speed. However, when 1 21   , benign 

worms cannot change the prevalent propagation phenomenon of malicious worms; when 2 1 1   , 

these two kinds of malicious infected nodes are all died out, the prevalent propagation phenomenon of 

malicious worms is changed by benign worms. The conclusion provides a strong theoretical basis to take 

effective measures to control the large-scale spreading of malicious worms. 



Information 2015, 6 546 

 

 

 

Figure 3. Effect of benign worms. 

Next, we will evaluate the influences of different initial levels of infected removable nodes on the 
propagation of malicious worms. Let    (0), (0), (0), (0) 99900,100,0,0S I B V   remain unchanged, and 

 (0), (0)S IR R  is respectively equal to        0,0 , 99900,100 , 90000,10000 , 100,99900 -label them as 

0,1,2,3. The results are shown in Figure 4. As can be seen from Figure 4, a larger number of initial levels 

of infected removable nodes results in the increase of number of fixed nodes which infected by malicious 

worms, and can speed up the propagation speed of malicious worms. 

 

Figure 4. Influence of different initial levels of infected removable nodes. 

Finally, we will evaluate the influences of different online rates of removable nodes on the 

propagation of malicious worms. Let   be 0, 0.1, 0.4, 1, respectively, and 

   (0), (0), (0), (0), (0), (0) 99900,100,0,0,50000,50000S IS I B V R R  . The results are shown in Figure 5. 

As can be seen from Figure 5, a larger online rate of removable nodes results in the increase of  

the number of nodes infected by malicious worms, and also can speed up the spreading speed of 

malicious worms. 
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Figure 5. Influence of different online rates of removable nodes. 

4.2. Control Strategies 

In this paper, we focus on the influences of parameters concerned with removable devices. Through 

above analysis we know that a larger number of initial level of infected removable devices and a larger 

online rate of removable devices are all beneficial for the propagation of malicious worms. Decreasing 

the value of online rate of removable nodes and limiting the number of removable nodes can confine the 

propagation of malicious worms. Furthermore, we can increase the basic reproductive number of benign 

worms 2 1
2

1 1 1

β

(μ δ)(μ ω )

b 
 

 by increasing the value of 2β  and decreasing the value of δ , making 2  

larger than the basic reproductive number of malicious worms 1 , when 2 1 1   , the malicious 

worms will disappear from the network. 

However, the temporal form of the benign worm has several unresolved issues and limitations, such 

as network congestion, patching safety, and legal issues. In addition, the benign worm strategy faces two 

problems: (1) When the number of benign worms put into the network is small, it will be difficult to 

contain a great amount of malicious worms; (2) The spreading speed of benign worms will be quick 

without any constraints, and their proactive scans will result in the same problems as malicious worms, 

such as the system overload and the network congestion. Hence we cannot blindly increase the effective 

infection rate of benign worms and reduce their self-destruct rate to contain the propagation of malicious 
worms. Obviously, a larger 2β  will quickly kill off malicious worms but meanwhile a larger 2β  will 

bring a larger amount of traffic than that caused by malicious worms, which could greatly endanger 
normal network application. Thus, we should choose a reasonable value for 2β  and δ  according to the 

actual situation of network, in order to combat malicious worms synthetically and efficiently. 

5. Conclusions 

In this paper, we proposed a mathematical model to explore the influences of removable devices on 

the interaction dynamics between malicious worms and benign worms based on diversity of nodes types 

in an M2M wireless network, which considers two important network environment factors: benign 
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worms and removable devices. Firstly, we found out the model’s basic reproduction number 0R , and its 

threshold value determines whether the malicious worms die out in the network. Numerical analysis 
shows that if 0 1R   the worm-free equilibrium is globally asymptotically stable in the model’s feasible 

region U . Otherwise, malicious worms will be prevalent. Secondly, simulations verify the performance 

of our model is effective in combating with malicious worms. Finally, effective control strategies are 

proposed to combat malicious worms. In the future, we will take more network environment factors into 

consideration, e.g., the time delay of benign worms, the latent period of malicious worms, and more 

characteristics of an M2M network, such as communication technology, communication range, 

communication speed, network protocols or the capabilities of a typical device, making the adaptability 

of our model stronger and broader. 
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