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Abstract: The collection of massive Global Positioning System (GPS) data from travel 

surveys has increased exponentially worldwide since the 1990s. A number of methods, 

which range from rule-based to advanced classification approaches, have been applied to 

detect travel modes from GPS positioning data collected in travel surveys based on  

GPS-enabled smartphones or dedicated GPS devices. Among these approaches, neural 

networks (NNs) are widely adopted because they can extract subtle information from 

training data that cannot be directly obtained by human or other analysis techniques. 

However, traditional NNs, which are generally trained by back-propagation algorithms, are 

likely to be trapped in local optimum. Therefore, particle swarm optimization (PSO) is 

introduced to train the NNs. The resulting PSO-NNs are employed to distinguish among four 

travel modes (walk, bike, bus, and car) with GPS positioning data collected through  

a smartphone-based travel survey. As a result, 95.81% of samples are correctly flagged for 

the training set, while 94.44% are correctly identified for the test set. Results from this study 

indicate that smartphone-based travel surveys provide an opportunity to supplement 

traditional travel surveys. 

Keywords: global positioning system; neural networks; particle swarm optimization;  

travel mode 
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1. Introduction 

With worsening traffic congestion, significant attention has been given to travel behavior research, 

as well as transportation demand analysis, to develop and assess transportation demand management 

strategies. In practice, travel surveys are generally utilized to collect the required information and data 

for travel demand modeling and analysis. However, conventional travel surveys, which are typically 

conducted using paper-and-pencil interviews, computer-assisted telephone interviews, or computer-assisted 

self-interviews, may significantly burden respondents because all relevant information, including travel 

modes, travel start and end times, trip destinations, and trip purposes, related to each trip should be 

reported throughout the entire survey period. Respondents of multi-day travel surveys experience severe 

fatigue, which could decrease the quality of retrieved data and adversely affect travel behavior analysis. 

Furthermore, some travel details are typically recalled or recorded approximately. Wolf et al. [1] 

revealed that respondents were significantly burdened with these surveys and indicated that trip timing 

and trip distance were prone to be rounded in traditional travel surveys. In addition, trip rates may be 

underestimated in conventional travel surveys. Du and Aultman-Hall [2] indicated that trips or trip chains 

with a short duration or distance were usually neglected. 

It has been widely accepted that data collection efforts based on GPS technology can present evident 

advantages over traditional travel surveys. One of the most important benefits is the alleviation of the 

burden on respondents [1,3]. Burden reduction enables researchers to collect detailed travel information 

for a longer period without imposing additional burdens on respondents. Thus, the quality of the 

collected data is enhanced and researchers are allowed to investigate the dynamics of travel patterns over 

several days or weeks. For example, investigating the regularity and variability in trip destination 

decision, trip purpose frequencies, trip duration distributions, the number of daily trips, and temporal 

trip-making distributions over days of the week or even weeks of the month has become viable [4,5]. 

Additionally, employing GPS technology significantly improves the availability of accurate travel 

information. For example, trip rates are expected to be corrected through location acquisition with high 

precision [6,7]. GPS-enabled smartphones and dedicated GPS devices are typically utilized to record 

positioning data in GPS-based travel surveys. In recent years, travel surveys based on the latter have 

encountered more difficulties because of the following facts: (1) dedicated GPS devices are expensive; 

(2) the collected data are likely to be incomplete because respondents tend to forget to take the devices 

or charge them; (3) device distribution and recovery are required each time a new respondent is recruited; 

and (4) the number of respondents simultaneously participating in the survey is confined by the amount 

of available dedicated GPS devices [8]. 

The focus of the current study is to infer travel modes according to GPS positioning data. Rule-based 

algorithms [9–11] and advanced machine learning methods [12] are two frequently used methods to 

detect the travel mode. Although rule-based algorithms are readily understandable and applicable, these 

algorithms exhibit low generalizability [13]. That is to say, there exists a low extent to which the rules 

obtained from one case can be generalized to another, particularly when travel modes are detected in a 

city context with particular rules trained from data collected in another one. Zheng et al. [14] collected 

the GPS positioning data of 65 respondents for approximately 10 months and employed decision trees 

to correctly match 75.6% of trips. Subsequently, Rudloff and Ray [15] split 792 trajectories into training 

and test sets (70% to 30%) and applied a multilayer perceptron to properly infer travel modes for 82.70% 
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of trips. Thereafter, Bolbol et al. [16] explored feature selection and employed a framework with a 

support vector machine (SVM) to achieve a promising accuracy of 88% for detecting travel modes. A 

more recent study by Broach et al. [17] used a multinomial logit (MNL) model to distinguish walk, bike, 

car and bus modes and correctly labelled 90.8% of trips. Table 1 shows the different methods applied to 

travel mode detection and summary of the corresponding accuracies. 

Table 1. Summary of different methods for detecting travel modes. 

Author/s Method Attributes Sample size Accuracy 

Gong et al. [10] Rule-based algorithm GIS, speed, acceleration 340 segments 82.6% 

Zheng et al. [14] Decision trees Speed, acceleration 65 respondents 75.6% 

Rudloff and Ray [15] Multilayer perceptron GIS, speed, acceleration 792 trajectories 82.70% 

Bolbol et al. [16] Support vector machine GIS, speed, acceleration 81 respondents 88% 

Broach et al. [17] Multinomial logit GIS, speed, acceleration 926 segments 90.8% 

Gonzalez et al. [18] Neural networks Speed, acceleration, data quality 114 trips 91.23% 

A study by Gonzalez et al. [18] indicated that NNs are an appropriate approach for detecting travel 

modes from GPS positioning data since they can extract subtle information from training data that cannot 

be directly obtained by human or other analysis techniques. They used a number of statistics derived 

from the GPS data as input to the NNs. An individual looking at the same numbers may not necessarily 

be able to determine if the trip was by a certain mode. However, these features can be used to classify 

travel modes with NNs. In addition, the NNs have a powerful nonlinear pattern classification capacity, 

which makes NNs appropriate methods to extract travel modes from GPS data. They collected 

positioning data on 114 trips with smartphones and achieved a promising accuracy of 91.23%, which 

outperforms most of existing studies. However, the employed NNs were trained by back-propagation 

(BP) algorithms, which utilized gradient descent technique to train the parameters of the network. In this 

way, the fitness function is prone to be trapped into local optimum [19]. To address this issue, we include 

the particle swarm optimization (PSO) technique to search for a global optimum. Although PSO exhibits 

the partial optimism, which may cause lower accuracy at the regulation of its speed and the direction [20], 

the algorithm is a gradient-free approach, making the algorithm conceptually simple. During the iteration 

process of the search, only the globally best particle or the best particle in a group can transmit 

information to other particles, resulting in a high-speed search. In fact, a high searching speed is crucial 

to travel mode detection in GPS-based travel surveys, particularly when respondents are required to 

check the travel modes that are automatically derived from the GPS data. The resulting PSO-NNs are 

expected to achieve a favorable accuracy for travel mode detection. 

The rest of this paper is organized as follows. Data collection and description are described in  

Section 2, and the theoretical and methodological background of NNs and PSO are presented in Section 3. 

The construction of the classifier is described in Section 4. Finally, the main conclusions and directions 

for future research are provided in Section 5. 
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2. Data Collection and Description 

2.1. Respondent Recruitment and Positioning App 

The data used to detect travel modes were retrieved from a travel survey based on smartphones in 

Shanghai city from mid-October 2013 to mid-February 2014. Respondents were typically limited to 

commuters in Shanghai to generate a relatively large number of trips and most of these respondents are 

recruited over the Internet. More details on the survey design are described in one of our previous  

studies [21]. A mobile app was developed to record GPS positioning data before the survey was 

conducted. Android and iOS were the platforms used in app development because of their considerable 

market penetration rates. The app records UTC time, latitude, longitude, altitude, the instantaneous 

speed, bearing, the number of satellites in view and Horizontal Dilution of Precision (HDOP) once every 

second. HDOP represents how these satellites in view are arranged in the sky. HDOP is a factor in 

determining the relative accuracy of a horizontal position. The smaller the HDOP number is, the better 

the geometric arrangement is. In practice, battery consumption might be an intractable problem with 

such a high recording frequency, although this frequency increases the accuracy of travel mode 

imputation. Thus, we gave each respondent a mobile power supply to avoid battery drainage. The 

package is expected to motivate more respondents to participate in the travel survey. In addition, the app 

automatically shut down when the smartphone remains stationary for over five minutes and 

automatically restarts when the smartphone moves again. This function is designed to decrease  

battery consumption to a minimum extent without adversely effecting on the regular location recording 

during trips. 

2.2. Requirements of the Travel Survey 

Respondents were asked to start the app to enable automatic location acquisition before their first trip, 

and keep the device running until their final arrival back home each day during the entire survey period. 

Respondents were requested to shut down the app at home to minimize battery consumption as much as 

possible and relieve privacy issues on the respondents, particularly those who are unwilling to be 

positioned at home. Respondents were asked to upload the positioning data to a database on our server with 

a single touch and recommended to upload the data in a Wi-Fi environment to decrease transmission cost. 

Single-day GPS positioning data were first divided into trips, where each was split into single-mode 

segments (known as segments) prior to detecting travel modes. The approach utilized for trip division is 

described in one of our previous studies [22]. The basic assumption in the study is that trip ends are 

characterized by either GPS point clustering or sudden direction change in the context of normal GPS 

location acquisition, while they display a dwell time exceeding the threshold during GPS signal loss. 

The segments are extracted from trips based on the approach suggested by Gong et al. [10]. After 

automatically deriving the segments from GPS trajectories, we contacted respondents by telephone and 

asked them to check these segments. The partition of the segments was corrected when necessary. The 

respondents were also asked to check the travel modes of each segment. Such a travel survey is also 

called prompted recall survey. As expected the respondents do not experience a significant burden 

because most trip ends and travel modes can be inferred correctly. The travel mode of each segment that 

was validated by the respondents is taken as the “ground truth” in the subsequent study. 
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2.3. Sample Data 

Each respondent was requested to participate in the travel survey for at least five continuous days.  

A total of 113 respondents participated in this survey but only 102 completed it. Those who did not 

complete the survey quit because of various reasons such as smartphone failure and privacy issues. The 

number of respondents who completed this survey was categorized based on the GPS data uploaded 

within a given number of days: 83 respondents with five days and 19 respondents with six to eight days. 

In addition, 73 of the 102 respondents kept their survey days continuous. Although this continuity 

requirement does not substantially affect the travel mode detection, this can prompt the respondents to 

complete the survey quickly. A total of 535 days of GPS data were collected. 

In the current study, we distinguished among walk, bike, bus and car modes. Signal loss during 

subway trips is a serious issue. Thus, it is not included in the analysis. The signal loss for the other  

four travel modes is handled as follows. The GPS positioning data were expected to be retrieved with  

a regular interval of one second. Thus, the duration of each missing trajectory can be calculated easily. 

If the duration of any missing trajectory is less than 10 s, it is compensated with a straight line by itself 

with lost positioning points located uniformly on this line. Based on the experiences gained in the travel 

survey, 10 s is an appropriate criteria that could balance respondent burdens with the accuracy required 

by the travel survey. The positioning data that incorporated missing trajectories greater than 10 s were 

not included in the current analysis to achieve high data accuracy. A total of 1654 segments were 

extracted from the recorded trajectories, and all of these segments were validated by respondents. The 

number of segments for the walk, bike, car and bus modes is 820, 148, 326, and 360, respectively. The 

walk mode exhibits a maximum percentage with an overwhelming advantage because walk segments 

usually play a transitional role when intermodal transfers are made. For example, a person usually needs 

to walk to a subway station after getting off a bus when the bus and subway are sequentially taken during 

a trip. In addition, walk segments usually exist before the bus segment and after the subway segment. 

Based on the preceding analysis, this trip is generally broken down into three walk segments, one subway 

segment and one bus segment. Therefore, effectively imputing walk segments is crucial in the overall 

detection performance. 

3. Travel Mode Detection 

3.1. Feature Selection 

A feature set that incorporates a high distinctiveness provides an opportunity to greatly improve the 

performance of classification. According to existing studies, the average speed, median speed, average 

absolute acceleration, travel distance and the 95th percentile speed are typically used to infer travel 

modes (as shown in Figure 1a–e). However, distinguishing bus segments from car segments is difficult 

when only the aforementioned speed-related features are utilized [9,18]. In most cases, the inclusion of 

a transit network layer can significantly improve the distinction degree of bus segments from car 

segments [23]. However, the transit network layer is not available for most researchers, and we also 

encountered the same difficulty. In addition, the bus network is updated every month and even every 

day at times in a megacity such as Shanghai. A timely update is required to effectively infer bus 

segments. Thus, it is costly to maintain an up-to-date GIS layer of the bus network. All these factors 
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motivated us to develop a new feature called “low-speed point rate”, i.e., the rate of points with a speed 

of less than 1 m/s, which is expected to capture the characteristics of the periodical stops of buses. In 

fact, we investigated four types of critical speeds, i.e., 0.5 m/s, 1.0 m/s, 1.5 m/s and 2.0 m/s, for this 

feature. According to the two-sample Kolmogorov-Smirnov test for each “low-speed rate” (0.5 m/s,  

1 m/s, 1.5 m/s and 2 m/s) between bus segments and car segments, 1 m/s achieves the minimum p value 

(p = 1.9456 × 10−7). The p values of 0.5 m/s, 1.5 m/s and 2 m/s are 8.9686 × 10−7, 9.7462 × 10−5, and 

7.1505 × 10−4, respectively. Thus, 1 m/s is applied because this value can best differentiate these two 

segments (as shown in Figure 1f). The distribution of the six features is shown in Figure 1. 

 

Figure 1. Distribution of six features. 
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3.2. Methodology 

3.2.1. Neural Networks 

A neural network consists of a selection of input, hidden and output neurons. Generally, any two 

neurons between the adjacent layers are directly correlated. The neural network collects the inputs, 

extracts any useful information through hidden neurons and produces the output neurons that can be 

used to classify the input sample. In the current study, the weights are trained by the PSO algorithm, 

which is described in the next subsection. The trained neural network, which is represented by a series 

of weighting matrices, is employed to evaluate the data streams with correct outputs that the researchers 

are unaware of. The neural network can be highly flexible because various types of data are readily fitted 

when the multiple settings of a neural work are adjusted, including the amount of hidden layers, number 

of neurons in each layer, and learning rate. In this study, we employed a three-layer neural network to 

detect travel modes from the GPS positioning data (as shown in Figure 2). Additionally, we applied a 

commonly used logistic function as the activation function. 

Travel distance
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Average absolute 
acceleration
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95% percentile speed

Low speed rate

…
….

Features Input 
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Figure 2. Three-layer neural network. 

3.2.2. Particle Swarm Optimization 

PSO is essentially an evolutionary computation technique proposed by Kennedy and Eberhart [24]. 

PSO originates from a natural system and incorporates a global search ability. The algorithm is 

developed according to studies based on the social behavior of animals, such as fish schooling and bird 

flocking. To improve the probability of convergence to a global optimal, we employed a common ring 

topology [25]. In this topology, each particle corresponds to a specific group of particles, which consists 

of the particle in question and its immediate adjacent neighbors. In addition, the connections within a 

group are undirected and unweighted. The algorithm is initialized with a swarm of random solutions. 

Each initialized solution, also known as a particle, is represented by a random initial location and 

velocity. At each step n, the velocity is updated according to the following equation: 
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1 1 _ 2 2 _( 1) ( ) ( ( )) ( ( ))i i pbest i i lbest i in n c rand n c rand n          v v p x p x  (1)

In the velocity updating equation, the new velocity vector ( 1)i n v  corresponding to particle i can be 

obtained by computing the sum of three components. The first component is known as “inertia” and the 

parameter   is the inertia weight. The second component is known as “individual knowledge”, which 
represents the effect of the known best position vector _pbest ip  that particle i has determined on the 

current velocity. The third component is known as “group knowledge”, which indicates the effect of the 
known best position lbestp  that all the particles in the group have found on the current velocity. The 

acceleration parameters 1c  and 2c  are included in the second and third components to adjust these two 

types of impact, whereas two random numbers 1rand  and 2rand , which have a uniform distribution 

between 0 and 1, are applied to provide random search. 

After the new velocity is calculated, the particle position is updated based on the following equation: 

( 1) ( ) ( 1)i i in n n   x x v  (2)

where ( )i nx  indicates the position vector of particle i in the previous iteration. 

For each iteration, we need to evaluate the fitness of each particle based on the desired optimization 

purpose. To evaluate a neural network, the root-mean-square-error (RMSE) is utilized to describe the 

average detection error and can be calculated according to the following equation: 

2
, ,

1 1

1
( )

nTr nOut

i j i j
i j

RMSE t y
nTr  

   (3)

where nTr represents the amount of the training samples, nOut is the amount of network outputs, and tij 

and yij are the jth derived output and reported output corresponding to the ith training sample, 

respectively. For example, if the reported travel mode of the ith training sample is walk, yi1 is equal to 1. 

Accordingly, if the derived travel mode of the ith training sample is bus, ti1 and ti3 are equal to 0 and 1, 

respectively. The fitness function is defined as follows: 

1

1
fitness

RMSE



 (4)

Fitness can be used to measure the performance of a neural network. According to the evaluation 

results of the initial swarm, the personal best of each particle and the local best of the group will be 

stored. Obviously, the personal best of each particle is equal to its initial position in the initial state, 

whereas the local best records the position of the particle that achieves the best fitness value calculated 

with Equation (4) in a group. The optimization process continues by updating the personal best and the 

local best with Equations (1) and (2). If the fitness of a particle is greater than its personal best, the local 

best is replaced with the particle. Similarly, if the fitness of a particle is greater than the local best, the 

local best is replaced with the current particle. The process does not stop until the criterion set by the 

user is met. The criterion may include the threshold of the RMSE or the maximum iteration number of 

the optimization process. 
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4. Detecting Travel Modes with PSO-NNs 

According to the sample partition applied by Feng and Timmermans [13], three quarters of the total 

sample is taken as the training set, whereas the remaining one quarter of the total sample is regarded as 

the test set. In this way, the number of samples in training set and test set is 1240 and 414, respectively. 
In the current study, the acceleration parameters 1c  and 2c  are taken to be constants 1 and 2 according 

to Lin and Hsieh [19]. To increase the global search ability at the beginning of the iteration process and 

improve the local search ability near the end of the iteration process, we used a linearly decreasing inertia 

weight, which is represented as follows: 

max max( )( ) /s e et t t      (5)

where tmax and t are the maximum number of iterations and the current iteration times, and ωs and ωe are 

the initial and final values of the inertia weight, respectively. Following the recommendation of Shi and 

Eberhart [26], we apply the values of 0.9 and 0.4 for ωs and ωe. In addition, the maximum number of 

iterations tmax = 5000 is used in this study [27]. 

We defined the population size as 50 particles. A particle in the current study is encoded for a vector. 

For a neural network involved, each particle represents all weights of the structure of the neural network. 

If the number of neurons in the hidden layer in Figure 2 is 5, the neural network has the structure of  

7-6-4, including a bias unit in both of the first two layers. In this case, each particle is a vector with a 

length of 66. Before implementing the classification efforts, we rescaled the four dimensions (travel 

distance, average speed, median speed and 95% percentile speed) to the range [0, 1] so that all the 

features have the same range. The formula is given as follows: 

' min( )

max( ) min( )
i

i

x
x





x

x x
 (6)

where '
ix  and ix  are the ith original and normalized sample values for a specific feature, respectively, 

and x is the vector consisting of all sample values for the feature. To avoid a particle exceeding the range 

of the problem, xmax = 1 and xmin = 0 are used for each dimension. Accordingly, the maximum velocity 

vmax = 1 and vmin = −1 are used in this study [28]. Figure 3 illustrates the pseudocode of a PSO using a 

ring topology. In this study, a “wrap-around” ring topology is used. In other words, the last particle is 

the neighbor of the first particle and vice versa. The function neighborhood(.) returns the best personal 

best in the neighborhood of particle i. 

As stated above, we employed a three-layer neural network to detect travel modes. We tested multiple 

NNs that included the number of hidden neurons ranging from 1 to 20 [27]. For each neural network, 

the classification accuracy for the test set is shown in Figure 4. The classification accuracy is represented 

as the ratio of the number of samples that were correctly classified to the total number of samples. The 

highest accuracy of 94.44% was achieved for the neural network that incorporates 12 hidden neurons. 

Figure 4 indicates that the classification accuracy increases rapidly when the number of neurons 

increases from 1 to 8, whereas it gradually decreases after the number of neurons exceeds 12. When 12 

neurons are applied, the classification accuracy reaches 94.44%, which is higher than the results of most 

existing studies [29]. An exception is the study by Stopher et al. [9], which achieves an accuracy of 

approximately 95%. However, it is difficult to compare different studies because the accuracy of travel 
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mode detection depends on the spatial context in which GPS is used, the number of identified 

transportation modes, type of input variables and data used for validation [13]. Therefore, we applied 

the neuron network that includes 12 neurons in the hidden layer. 

 

Figure 3. Pseudocode of a PSO using a ring topology. 

 

Figure 4. Classification accuracy for different number of hidden neurons. 

To further explore the performance of the classifier, we calculated the confusion matrix. Recall and 
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precision, the lowest value is obtained for bike segments, which may be due to the fact that the speed 

related features for bike modes are between walk modes and bus/car modes. 

Table 2. Confusion matrix of the neural network. 

 
Training Set: Detected 

Recall (%) 
Test Set: Detected 

Recall (%) 
Walk Bike Bus Car Walk Bike Bus Car 

Reported 

Walk 598 10 4 3 97.24 198 2 3 2 96.59 
Bike 2 107 1 1 96.40 1 35 1 0 94.59 
Bus 3 3 230 8 94.26 1 2 76 3 92.68 
Car 2 5 10 253 93.70 1 1 6 82 91.11 

Precision (%) 98.84 85.60 94.26 95.47 95.81 98.51 87.50 88.37 94.25 94.44 

In comparing PSO-NNs with other frequently used machine learning methods, we chose several 

representative classifiers, consisting of SVM, MNL, and neural networks with back-propagation  

(BP-NNs), to detect the travel modes. The SVM classifier is implemented with package “probsvm” in 

R, with one-versus-rest used in the multiclass method. The MNL model [31] is used with its primary 

version and all the features are alternative-specific attributes. BP-NNs are performed with the same 

acceleration parameters, inertia parameter strategy, population size, velocity limits, and maximum 

number of iterations and layers of neurons as the PSO-NNs. In addition, BP-NNs are also tested with 1 

to 20 neurons in the hidden layer, and the highest accuracy with 15 neurons was achieved. All these 

approaches share the same training data and test data, ensuring that the classification capacity is 

comparable among classifiers. 

Table 3. Comparison among several classifiers for detecting travel modes. 

 
Training Set Test Set 

# Segments Correctly Flagged Accuracy (%) # Segments Correctly Flagged Accuracy (%) 

SVM 1107 89.27 356 85.99 

MNL 969 78.15 299 72.22 

BP-NNs 1142 91.85 370 89.37 

PSO-NNs 1188 95.81 391 94.44 

The results of the comparison of these classifiers are shown in Table 3 and they are predictable to a 

certain extent. For example, although the MNL model is readily understandable and practicable, this 

model does not fit the problem well because the basic assumption of independence of irrelevant 

alternatives (IIA) may not hold for this issue. The comparison between BP-NNs and PSO-NNs indicates 

that implementing PSO algorithm evidently improves the classification ability of the neural network. 

More specifically, the classification accuracy for the training set is improved from 91.85% to 95.81%, 

while that for test set is improved from 89.37% to 94.44%. According to McNemar’s test, the resulting 

M value (M = 9.30) is greater than the critical value 3.84 (95% confidence level). Thus, this test rejects 

the null hypothesis that BP-NNs and PSO-NNs have the same classification errors. This result indicates 

that it is more reliable to apply the classifier of PSO-NNs to evaluate new samples. 
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5. Summaries and Conclusions 

The current study employed PSO-NNs to distinguish the four travel modes (walk, bike, bus, and car) 

with GPS positioning data collected through a smartphone-based travel survey. The derived travel modes 

for each segment were compared with the “ground truth”, which was obtained by respondents validating 

or correcting the primary travel information that was automatically detected from trajectories uploaded 

by the respondents themselves. Based on comparison of PSO-NNs with several representative classifiers, 

the PSO-NNs achieved the best classification accuracy of 94.44% for the test set and 95.81% for the 

training set. 

By improving the classification accuracy of travel modes with PSO-NNs, respondent burdens are 

expected to be further reduced and the survey duration can be prolonged without requiring additional 

effort from the respondents. With the improvement of the classification accuracy for travel mode 

detection and the decrease of burdens on respondents, the smartphone-based travel surveys provide an 

opportunity to supplement traditional travel surveys. According to the investigation of the confusion 

matrix, newly targeted features may be included to decrease the classification errors between bus and 

car modes in future studies. 
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