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Abstract: Feature extraction and classification are two key steps for activity recognition in 

a smart home environment. In this work, we used three methods for feature extraction: 

Principal Component Analysis (PCA), Independent Component Analysis (ICA), and 

Linear Discriminant Analysis (LDA). The new features selected by each method are then 

used as the inputs for a Weighted Support Vector Machines (WSVM) classifier. This 

classifier is used to handle the problem of imbalanced activity data from the sensor 

readings. The experiments were implemented on multiple real-world datasets with 

Conditional Random Fields (CRF), standard Support Vector Machines (SVM), Weighted 

SVM, and combined methods PCA+WSVM, ICA+WSVM, and LDA+WSVM showed that 

LDA+WSVM had a higher recognition rate than other methods for activity recognition. 

Keywords: activity recognition; principal component analysis; independent component 

analysis; linear discriminant analysis; weighted support vector machines 

 

1. Introduction 

Activity recognition is one of the most important tasks in pervasive computing applications [1–4].  

Research in human activity recognition is aimed to determine a human user’s activity, such as cooking, 

brushing, dressing, sleeping, and so on. Therefore, different types of sensors have been used to sense 

user’s activities in smart environments. 
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Sensor data collected needs to be analyzed using machine learning and pattern recognition 

techniques [5,6] to determine which activities is taking place by the dweller. As for any pattern 

recognition task, the keys to successful activity recognition are: (i) appropriately designed feature 

extraction of the sensor data; and (ii) the design of suitable classifiers to infer the activity. The learning 

of such models is usually done in a supervised manner and requires a large annotated dataset recorded 

in different settings [1–3]. 

The existing activity recognition algorithms suffer from two problems: the non informative of the 

feature space and the imbalanced data result in a degradation of the performance of activity 

recognition. Thus, feature extraction [7] preprocessing steps exist to extract a subset of new features 

from the original set by providing a better selection of relevant features of high-dimensional data, as 

well as high discrimination between classes. In this paper an attempt has been made to study three 

feature extraction methods, which are Principal Component Analysis (PCA) [8], Independent 

Component Analysis (ICA) [9], and Linear Discriminant Analysis (LDA) [10], and their relevance to 

improve the classification accuracy of the existing activity recognition systems. 

Another problem affecting the performance of an algorithm’s activity classification is the 

imbalanced data [11,12]. Activity recognition datasets are generally imbalanced, meaning certain 

activities occur more frequently than others (e.g., sleeping is generally done once a day, while toileting 

is done several times a day). This can negatively influence the learning process due to the known effect 

of minority class, which, in turn, imbalances the outcome, and may yield disastrous consequences for 

human activity recognition systems. This motivates extensive research that aims to improve the 

effectiveness of SVM on imbalanced classification in the activity recognition field [13,14]. Especially, 

approaches for addressing the imbalanced training-data problem can be categorized into two main 

streams: data processing approach and algorithmic approach [15–17]. 

The first approach is to preprocess the data either randomly or intelligently, by using undersampling 

the majority instances [16] or oversampling the minority instances [15]. In this paper, we consider the 

algorithmic approach in the following because it keeps all the information and does not change the 

distribution of training data. The solutions of this approach include the cost-sensitive learning [18,19] 

that treats different misclassifications using the weights assigned to data in order to pursue a high 

accuracy of classification. 

Our paper addresses these issues and contributes on the following topics. Firstly, we have presented 

new schemes using PCA+WSVM, ICA+WSVM, and LDA+WSVM to recognize activities of daily 

living from binary sensor data. The Weighted Support Vector Machine (WSVM) [9] was employed to 

handle the imbalanced classification data problem using three methods, independently, for feature 

extraction: PCA, ICA, and LDA. Secondly, the proposed approaches are assessed and compared with 

the Conditional Random Fields (CRF) [20], the standard SVM, and Weighted SVM methods. 

Especially, CRF has recently gained popularity in the activity recognition field [1,3]. The experiments 

were implemented on multiple annotated real-world datasets from sensor readings in different  

houses [21,22]. 
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2. Proposed Strategy Based Activity Recognition System 

Despite its popularity in machine learning, the SVM technique has not been extensively used in 

activity recognition studies as pointed out in [23–26]. However, by the high accuracy rates obtained in 

other contexts, this would suggest possible success in activity recognition. Nevertheless, it is 

overwhelmed by the majority class instances in the case of imbalanced datasets. The weighted Support 

Vector Machine (WSVM) technique has been suggested as a candidate solution for such a purpose 

because it uses an efficient training approach that will improve its ability to learn from a large or 

imbalanced data set and, therefore, improve the performances of multi-class classifier SVM. 

In this paper, a new activity recognition scheme is proposed; the WSVM method was applied for 

imbalanced classification using three methods, independently, for feature extraction: PCA, ICA, and 

LDA, as shown in Figure 1. PCA aims to eliminate the redundancy information. ICA estimates 

components as statistically independent as possible. LDA improves the separability of samples in the 

subspace and extracts LDA features. Then, these transformed (lower-dimensional space) datasets by 

each feature extraction method will be used for learning and testing a WSVM classifier. The outcome 

of the trained WSVM will then be used to process a new observations during the testing phase, where 

the associated activities of daily living class will be predicted. 

 

Figure 1. Scheme of the proposed strategy based activity recognition system. 

2.1. Feature Extraction Methods 

Suppose { , 1, 2..., }iX x i m   are sets of training data with n
ix R , m is the total of samples, n is 

sample’s feature dimension, N is the total of classes. Projected sample is: p
ix R  (p < n). 

2.1.1. Principal Component Analysis (PCA) 

Principal component analysis [8] is a projection-based technique that approximates the original data 

with lower dimensional feature vectors through the construction of uncorrelated principal components 

that are a linear combination of the original variables. However, PCA is ignorant of the class labels 

attached to the data, so a good class separation in the direction of the high variance principal 

components is not guaranteed [8]. The main process of PCA is as follows. 

In PCA, data matrix *m nX R  are first centered x x x   with x is the mean of the samples.  

Then PCA diagonalizes the covariance matrix as 
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This problem leads to solve the eigenvalue equation 
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2.1.2. Independent Component Analysis (ICA) 

The most commonly used method for generating spatially-localized features is independent 

component analysis (ICA) to produce basis vectors that are statistically independent (not just linearly 

decorrelated, as with PCA) [9]. The algorithm works on the principle of minimizing mutual 

information between the variables; minimizing mutual information is the correct criteria for judging 

independence. Additionally, minimizing mutual information is same as maximizing entropy. 

The ICA model can also be written as: 

U = WX (4)

Based on the knowledge of informatics, negentropy of U can be used as the criteria to estimate the 

independency of vectors, which is approximated by using the contrast function [27]: 
2( ) [ { ( )} { ( )}]T

G i iJ w E G w X E G V   (5)

where V is the standardized Gaussian random variable (zero mean and unit variance). G is a non-quadratic 

function, the commonly used G can be: 

1 1
1

1
( ) log coshG u u 


 (6)

2
2 ( ) exp( / 2)G u u    (7)

where 11 2    is some suitable constant. 

Maximizing formula in Equation (5) leads to estimating iw  by 
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where *
iw  is a new estimated value of iw . g and g' are respectively the first and second derivatives of G. 

Based on the maximal negentropy principal, the whole matrix W can be computed by maximizing the 

sum of one-unit contrast function and taking into account the constraint of decorrelation [27].  

In practice, ICA can often uncover disjoint underlying trends in multi-dimensional data. 

2.1.3. Linear Discriminant Analysis (LDA) 

The aim of LDA is to find the optimal projection matrix n p
optW R   using the Fisher criterion 

below, to find the maximum of ratio of between-class scatter SB to the within-class scatter SW of the 

projected samples: 
T

B

T
W

( ) argmaxopt

W S W
J W

W S W
  (10)

where the between and within class covariance SB and SW are defined as: 
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where /i ip m m  is priori probability of each class, mi is the number of training samples of the ith 

class, ix  is the mean of the ith class, and x  is the overall mean vector. 

To maximize (10), the optimal Wopt are the eigenvectors associated with the largest eigenvalues of 

the following generalized eigenvalue problem: 

SB wi = λi SW wi (13)

The solution can be computed by solving the leading eigenvectors of -1
BWS S  that correspond to the 

eigenvalue λi. Then column vectors wi are row vectors in the transformation matrix W. It should be 

noted that only those eigenvectors should be selected that correspond to eigenvalues carrying most of 

the energy, i.e., the total dispersion. Another interesting property is that this transform decorrelates 

both SB and SW matrices. The rank of SB is at most the N-1, and hence no more than this number of new 

features can be obtained. 

2.2. Weighted Support Vector Machines (WSVM) 

A SVM classifier is more insensitive to the problem of learning from imbalanced data. It considers 

a balanced training set using the same cost parameter C of different classes; this may generate 

suboptimal classification models. The SVM optimization primal problem is given as follows: 

, , 1
min 1/ 2 ( , )

( ( ) ) 1 , 0, 1,...,

m

i
w b i

T
i i i i

K w w C

subject to y w x b i m

 
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 (14)
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The Weighted Support Vector Machine (WSVM) was presented to deal with this problem by 

introducing two different cost parameters C and C  in the SVM optimization primal problem [5] for 

the majority classes (yi = +1) and minority (yi = −1), as given in Equation (15) below: 

, , 1 1
min 1/ 2. ( , )

( ( ) ) 1 , 0, 1,...,

i i

m m

i iw b y y

T
i i i i
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  
    

      
 (15)

The dual optimization problem of WSVM with different constraints on i  can be solved in the 

same way as solving the standard SVM optimization problem [5], which has the following dual form: 
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 Ci0 , if 1iy , and 

 Ci0 , if 1iy  

(16)

where m+ and m− are number of samples from +1 and −1 classes. C  and C  are the cost parameters 

for positive and negative classes, respectively, to construct a classifier for multiple classes. They are 

used to control the trade-off between margin and training error. Some authors [19,28,29] have 

proposed adjusting different cost parameters for different classes of data, which effectively improves 

the low classification accuracy caused by imbalanced samples. Veropoulos et al. in [19] proposed to 

increase the trade-off associated with the minority class (i.e., C C  ) to eliminate the effect of class 

imbalance. However they did not suggest any guidelines to decide what the regularization factors 

should be. The coefficients are typically chosen as [30]: 

C C w    (17)

C C w    (18)

When the two classes which request different sample size have the similar properties boundary (that 

is, the ratio of vectors supported by each class and their total sample size is equal, or these two classes 

have similar error rate), Hong Gunn Chew and others [30] took a detailed analysis for the reasons of 

classification accuracy caused by the size of the class in the SVM algorithm, and put forward the 

corresponding solutions. They obtained the following conclusions like this: 

w m
w m

 

   (19)

where C is the common cost coefficient for both classes in Equations (17) and (18), w+ and w− are the 

weights for +1 and −1 class respectively. In this paper, the weights are typically chosen as w+ = 1 and 

w− = m+/m− for two-class WSVM. This criterion respects this reasoning that is to say that the tradeoff 

C  associated with the smallest class is large in order to improve the low classification accuracy 

caused by imbalanced samples. The modified SVM algorithm would not tend to skew the separating 

hyperplane towards the minority class examples to reduce the total misclassifications as the minority 

class examples are now assigned with a higher misclassification cost. 
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For multiclass imbalanced data classification, we used different misclassification penalties per class. 

Typically the smallest class gets weighed higher. It allows the user to set individual weights for 

individual training examples, which are then used in WSVM training. We give the main ratio cost 

value Ci for each class i (1, …, N) in the function of the class prior probabilities P(C+) and P(Ci) for 

the C+ et Ci classes, respectively; it is given by: 

i iC C w   where ( )
( )i

i

P Cw
P C

    
 (20)

We estimate each class prior probability P(Ci) as the proportion of the number of samples in class i 

to the total number of training samples as follow: 

( )ip C i

i
i

m

m



  
(21)

Based on the above equation, the corresponding cost criterion in feature space can be given  

as follows: 

 / iiC C m m  , 1,...,i N  (22)

where m  is the number of samples of majority classes and mi is the number of samples of the other 

classes. C is the common ratio misclassification cost factor of the WSVM. The search of the optimal 

value of the regularization parameter C is determined with the cross validation method. Where [ . ] is 
integer part of the quantity under square bracket. Notice that it always holds that iC C . 

In this study, a software package LIBSVM [31] was used to implement the multiclass classifier 

algorithm. It uses the one-versus-one method (OVO) [5]. OVO method consists in constructing 
( 1) / 2N N   classifiers and each one is trained on data from the two activity classes. When all 

( 1) / 2N N   classifiers are constructed, a voting strategy is used for the test. The point is predicted in 

the class with the largest number of votes (‘‘Max Wins’’ strategy). Chen et al. [32] discussed issues of 
using the same or different parameters for the ( 1) / 2N N   two-class problems. Their preliminary 

results show that both approaches give similar accuracy. 

3. Experimental Setup and Results 

3.1. Datasets 

To evaluate the performance of our experimentations, we used different annotated datasets using 

different sensor networks in a pervasive environment [21,22]. The details of all the datasets are shown 

in Table 1. Each network was installed in a different home setting and was composed by a different 

number of sensors nodes. These sensors were installed in everyday objects such as doors, cupboards, 

refrigerator, and toilet flush to record activation/deactivation events (opening/closing events) as the 

subject carried out everyday activities. The sensor data were labeled using different annotation methods.  
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Table 1. House settings description. 

Houses TK26M TK57M TAP30F TAP80F 

Age 26 57 30 80 
Gender Male Male Female Female 

Annotation Bluetooth headset Handwritten diary PDA PDA 
Duration 28 days 18 days 16 days 14 days 
Sensors 14 21 77 84 

A list of activities that were annotated for all datasets with the number of observations of each 

activity can be found in Table 2. Any period of time at which no activity took place was labelled 

“Idle”. This table clearly shows how some activities occur very frequently (e.g., “toileting”), while 

others that occur less frequently have a longer duration (e.g., “leaving” and “sleeping”). Therefore, the 

datasets suffer from a severe class imbalance problem due to the nature of the data. 

Table 2. Annotated list of activities for each house and the number of observations of  

each activity. The bold letters represent each activity.  

TK26M TK57M TAP30F TAP80F 

Idle(4627)  
Leaving(22617)  
Toileting(380)  
Showering(265)  
Sleeping(11601)  
Breakfast(109)  
Dinner(348)  
Drink(59) 

Idle(2732)  
Leaving(11993)  
Eating(376)  
Toileting(243)  
Showering(191)  
Brush teeth(102)  
Shaving(67)  
Sleeping(7738)  
Dressing(112)  
Medication(16)  
Breakfast(73)  
Lunch(62)  
Dinner(291)  
Snack(24)  
Drink(34)  
Relax(2435) 

Idle(19025)  
Leaving(87)  
Toileting(776)  
Bathing(459)  
Grooming (484)  
Dressing(149)  
Prep.breakfast(233)  
Prep.lunch(676)  
Prep.dinner(178)  
Prep.snack(137)  
Preparing a beverage (165) 
Washing dishes(68)  
Cleaning(186)  
Doing laundry(246) 

Idle(17673)  
Toileting(630)  
Take medication(185)  
Prep.breakfast(466)  
Prep.lunch(843)  
Prep.dinner(506)  
Prep.snack(320)  
Washing dishes(328)  
Watching TV(717)  
Listen music(1100) 

3.2. Setup 

The models were validated by splitting the original data into a test and a training set using a “Leave 

One Day Out cross validation” approach, retaining one full day of sensor readings for testing and using 

the remaining sub-samples as training data. The process is then repeated for each day and the average 

performance measure reported. 

Sensor outputs are binary and represented in a feature space which is used by the model to 

recognize the activities performed. The vector contained one entry for each sensor, two-state sensors 0 

or 1 are used and the features are the states of all sensors. The raw sensor representation uses the 

sensor data in the same way it was received from the sensor network. The value is 1 when the sensor is 
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active and 0 otherwise. We do not use the raw sensor data representation as observations; instead we 

use the combining “Change point” and “Last” representation which have been shown to give much 

better results in activity recognition [3]. 

In learning imbalanced data, the overall classification accuracy is not considered an appropriate 

measure of performance. Due to the fact that, in our case, we evaluate the models using F-Measure, a 

measure that considers the correct classification of each class is equally important. It is calculated from 

the precision and recall scores. We are dealing with a multi-class classification problem and therefore 

define the notions of true positive (TP), false negatives (FN), and false positives (FP) for each class 

separately. With highly-skewed data distribution, the overall accuracy metric at (23) is not sufficient 

anymore. It does not take into account differences in the frequency of activities. These measures are 

calculated as follows: 
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N

ii TP
Accuracy Total

   (23)

1

TP1 100%N TP FP

N
i

i i i

Precision


     
 (24)
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i
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
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 (25)

2. .
F 100%

Precision Recall
Measure

Precision Recall
  


 (26)

3.3. Results 

In our experiments, the SVM algorithm is tested with a LibSVM implementation [31]. It was used 

to implement the one-versus-one multiclass classifier [5]. We used the radial basis kernel function as 

follows:  2
2

1( , ) exp
2

K x y x y 


. Firstly, we optimized the SVM hyper-parameters (σ, C) for all 

training sets in the range (0.1–2) and [0.1, 1, 10, 100], respectively, to maximize the class accuracy of 

the leave-one-day-out cross validation technique. The best pair parameters (σopt, Copt) = (1.7, 1), (2, 1), 

(1.4, 1), and (1.2, 1) are used for the datasets TK26M, TK57M, TAP30F, and TAP80F respectively. 

Then, locally, we optimized the cost parameter Ci, adapted for each activity class by using WSVM 

classifier with the common cost parameter is fixed C = 1, see Tables 3–6. 

Table 3. Selection of the weights wi using TK26M dataset. 

Activity Id Le To Sh Sl Br Di Dr 

wi 5 1 61 88 2 216 73 419

Table 4. Selection of the weights wi using TK57M dataset. 

Activity Id Le Ea To Sho B.t Sha Sl Dre 

wi 

4 1 32 50 63 118 179 2 107 

Me Br Lu Di Sn Dri Re - - 
749 164 193 41 500 375 5 - - 
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Table 5. Selection of the weights wi using TAP30F dataset. 

Activity Id Le To Ba Gr Dr P.b P.l P.d 

wi 

1 220 24 40 38 126 82 28 101 

P.s P.b W.d Cl D.l - - - - 
131 128 307 96 73 - - - - 

Table 6. Selection of the weights wi using TAP80F dataset. 

Activity Id To T.m P.b P.l P.d P.s W.d W.TV L.m 

wi 1 30 92 38 21 36 72 53 32 17 

We reported in Figures 2 and 3 the selected features using PCA and LDA for all datasets.  

The summary of the performance measures obtained for all classifiers are presented in Table 7.  

For CRF results on these datasets, refer to [3,33,34]. ICA differs from PCA in the fact that the  

low-dimensional signals do not necessarily correspond to the directions of maximum variance.  

We start with the first independent component and keep increasing the number until the cross-

validation error reduces. 

After the selection of the best parameters, we evaluated the performance of different algorithms 

using appropriate metrics for imbalanced classification. The classification results for CRF, SVM, 

WSVM, PCA+WSVM, ICA+WSVM, and LDA+WSVM are summarized in Table 7 below. 

 

Figure 2. Feature selection by Principal Component Analysis (PCA). 
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Figure 3. Feature selection by Linear Discriminant Analysis (LDA). 

Table 7. Recall (Rec.), Precision (Prec.), F-measure (F), and Accuracy (Acc.) results for 

all methods. The values are percentages. 

Dataset Classifier Rec. Prec. F Acc. 

TK26M 

CRF [3] 70.8 74.4 72.5 95.6 
SVM 61.8 73.3 67.0 95.5 

WSVM 72.8 74.6 73.7 92.5 
PCA+WSVM 71.5 71.5 71.5 91.2 
ICA+WSVM 71.2 73.3 72.2 92.7 
LDA+WSVM 77.0 78.4 77.7 93.5 

TK57M 

CRF [33] 30.0 36.0 33.0 78.0 
SVM 35.6 34.9 35.2 80.8 

WSVM 40.8 37.8 39.2 77.1 
PCA+WSVM 36.5 34.2 35.3 76.9 
ICA+WSVM 36.2 38.1 37.1 76.6 
LDA+WSVM 42.3 39.8 41.0 77.2 

TAP30F 

CRF [34] 26.3 31.9 28.8 83.7 
SVM 22.3 34.0 26.9 83.3 

WSVM 30.8 30.6 30.7 23.8 
PCA+WSVM 32.1 31.6 31.8 20.8 
ICA+WSVM 30.4 28.7 29.5 21.7 
LDA+WSVM 38.2 52.9 44.3 33.8 

TAP80F 

CRF [34] 27.1 29.5 28.2 77.2 
SVM 15.2 30.0 20.1 75.6 

WSVM 29.2 29.4 29.3 28.7 
PCA+WSVM 29.6 29.4 29.5 22.4 
ICA+WSVM 26.5 27.9 27.2 22.1 
LDA+WSVM 38.7 45.7 41.9 28.7 

This table shows that LDA+WSVM method gives a clearly better F-measure performance, while 

CRF and SVM methods perform better in terms of accuracy for all datasets. As can be noted in this 
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table, LDA outperforms PCA and ICA for recognizing activities with a WSVM classifier for all 

datasets. The PCA+WSVM method improves the classification results compared to CRF, SVM, 

WSVM, and ICA+WSVM for the TAP30F and TAP80F datasets, compared to other datasets. 

The Figures 4 and 5 give the classification results in terms of the accuracy measure for each activity 

with WSVM, PCA+WSVM, ICA+WSVM, and LDA+WSVM methods. 

In Figure 4, for WSVM, PCA+WSVM, LDA+WSVM models, the minority activities “Toileting”, 

“Showering”, and the kitchen activities “Breakfast” and “Drink” are significantly better detected, 

compared to other methods. LDA+WSVM is an effective method for recognizing activities.  

The majority activities are better for all methods, while the “Idle” activity is more accurate for the 

LDA+WSVM method. 

 

Figure 4. Accuracy for each activity on TK26M dataset. 

 

Figure 5. Accuracy for each activity on TAP80F dataset. 
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We can see in Figure 5 that the minority activities (“Toileting”, “Washing dishes”, “Watching TV”, 

“Listen music”, and the kitchen activities “Prep.Lunch”, “Prep.Snack”) are better recognized with 

LDA-WSVM. Additionally, the kitchen activities perform worst for all datasets. They are, in general, 

hard to recognize but they are better recognized with LDA-WSVM compared to others methods. 

3.4. Discussion 

Based on the experiments carried out in this work, a number of conclusions can be drawn.  

Using experiments on large real-world datasets, we showed the F-measure obtained with TK26M 

dataset is better compared to other datasets for all recognition methods because the TK57M, TAP30F, 

and TAP80F datasets include more activity classes. We supposed that the use of a hand-written diary 

in the TK57M house and PDA in TAP30F and TAP80F houses for annotating data is less accurate than 

using the Bluetooth headset as in TK26M house. For the TK26M dataset, a Bluetooth headset was 

used which communicated with the same server the sensor data was logged on. This means the 

timestamps of the annotation were synchronized with the timestamps of the sensors. In TK57M 

activity diaries were used, this is more error-prone because times might not always be written down 

correctly and the diaries have to be typed over afterwards. 

In this section, we explain the difference in terms of performance between different recognition 

methods for imbalanced dataset. Our experimental results show that WSVM and LDA+WSVM 

methods work better for classifying activities; they consistently outperform the other methods in terms 

of the accuracy of the minority classes. In particular, LDA-WSVM is the best classification method for 

all datasets because the LDA method is more adapted for the features reduction in the datasets with 

consideration the discrimination between classes. 

PCA-WSVM outperforms CRF, SVM, WSVM, and ICA-WSVM for TAP30F and TAP80F 

datasets. In other datasets ICA-WSVM surpasses PCA-WSVM. We conclude that the PCA method is 

more adapted for the features extraction in the datasets with large features vectors. 

A multiclass SVM classifier does not take into consideration the differences (costs) between the 

class distributions during the learning process and optimizes with the cross-validation research the 

same cost parameter C for all classes. Not considering the weights in SVM formulation affects the 

classifiers’ performances and favors the classification of majority activities (“Idle”, “Leaving” and 

“Sleeping”). Although WSVM, including the individual setting of parameter C for each class, is 

significantly more effective than CRF and SVM methods, WSVM is not efficient compared to 

LDA+WSVM. The LDA method significantly improves the performance of the WSVM classifier. 

Thus, it follows that LDA-WSVM can be made more robust for classifying human activities. 

The recognition of the minority activities in TK26M as “Toileting”, “Showering”, “Breakfast” 

“Dinner”, and “Drink” is lower compared to “Leaving” and “Sleeping” activities. This is mainly due to 

the fact that the minority activities are less represented in the training dataset. However, the activities 

“Idle” and the three kitchen activities gave the worst results compared to the others activities.  

Most confusion occurs between the “Idle” activity and the kitchen activities. In particular, the “Idle” is 

one of the most frequent activities but is usually not a very important activity to recognize. It might, 

therefore, be preferable to lose accuracy on this activity if it allows a better recognition of  

minority classes. 
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The kitchen activities are food-related tasks, they are worst recognized for all methods because most 

of the instances of these activities were performed in the same location (kitchen) using the same set of 

sensors. In other words, it is observed that groups of similar activities are more separable if performed 

in different locations. For example, “Toileting” and “Showering” are more separable because they are 

in two different locations in the TK26M dataset. Therefore, the location of the sensors is of great 

importance for the performance of the recognition system. 

4. Conclusions 

In this paper, we have proposed a combination of PCA, ICA, and LDA methods and a Weighted 

SVM prediction model to recognize activities of daily living from home environments using a network 

of binary sensors. The proposed scheme shows two merits: 

(1) After the feature extraction step with PCA, ICA, and LDA, the most significant components to 

the set of features extracted are obtained, the training set is reduced, and the prediction accuracy  

is improved. 

(2) The multi-class Weighted SVM classifier, as the latter processor, has good generalization 

performance in imbalanced human activity datasets. 

Experimental results show that the LDA-WSVM learning method produces interesting results for 

activity recognition success. This model is effective to classify multiclass sensory data over techniques 

such as CRF, SVM, WSVM, PCA-WSVM, and ICA+WSVM. In all datasets LDA-WSVM has the 

highest F-measure metric, while CRF and SVM models produced high accuracy. This is due to the fact 

that CRF and SVM are more sensitive to overfitting on a dominant class than other methods. Finally, 

we observed that differences in the layout of houses and the way a dataset was annotated used for 

training the models can greatly affect the performance in activity recognition. In this work, we have 

used the offline inference. The activities could only be inferred when a full day has passed. It would 

also be interesting to perform the LDA+WSVM method in online inference, which is significantly 

harder; however, it is necessary for specific applications. 
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