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Abstract: To surface the Deep Web, one crucial task is to predict whether a given web

page has a search interface (searchable HyperText Markup Language (HTML) form) or not.

Previous studies have focused on supervised classification with labeled examples. However,

labeled data are scarce, hard to get and requires tedious manual work, while unlabeled HTML

forms are abundant and easy to obtain. In this research, we consider the plausibility of using

both labeled and unlabeled data to train better models to identify search interfaces more

effectively. We present a semi-supervised co-training ensemble learning approach using both

neural networks and decision trees to deal with the search interface identification problem.

We show that the proposed model outperforms previous methods using only labeled data.

We also show that adding unlabeled data improves the effectiveness of the proposed model.

Keywords: semi-supervised learning; Deep Web mining; search interface identification;

ensemble learning

1. Introduction

The Deep Web (also called the Invisible Web and the Hidden Web) refers to a part of World Wide Web

content that is different from the Surface Web, which can be crawled and easily indexed by traditional

search engines [1]. The vast information of the Deep Web is located behind specific web search
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interfaces, usually in the form of HTML forms [2], and can be surfaced only by formulating a search

query on such interfaces [3]. Understanding the search interfaces [4], sampling the web databases [5],

classification and integration of web sources [6,7] are the key problems that often arise in mining the

Deep Web.

In dealing with the above-mentioned problems, one usually assumes that search interfaces are often

identified and ready to use. However, identifying whether a web page contains search interfaces or not

is still challenging and non-trivial to date. If the scale of the deep web under investigation is small, we

could manually judge and collect the search interfaces, as was done in [8,9]. However, this method will

not work for the real Deep Web, which is estimated to be 500 times larger than the Surface Web [1].

The search interface identification process has to be automatic. In a machine learning environment,

a binary classifier is needed to differentiate searchable interfaces from non-searchable ones. The past

decade has seen various approaches to identify search interfaces, including decision trees [2], adaptations

of random forests [10] and other combinations of machine learning techniques [11]. Regardless of which

learning algorithm is used, most identification approaches are supervised and have to face the problem

of the scarcity of labeled data.

In this paper, we introduce a semi-supervised search interface identification approach, which

is different from most previous supervised-based classification techniques [2,10,12,13] and the

semi-supervised proposed method in [14]. In our approach, two-base classifiers, namely neural

networks and decision trees, are trained alternatively to obtain additional diversity data from unlabeled

examples. We then use the unlabeled diversity data to increase the diversity of the base classifiers in

the ensemble. Experiments show that our proposed approach, SSCTE (semi-supervised co-training

ensemble) outperforms state-of-the-art supervised classifiers, such as K Nearest Neighbours (KNN),

Support Vector Machines (SVM) boosting and random forests, in most cases.

As a second contribution, we provide a group of search interface identification datasets for the

Deep Web research community. Previous research mainly adopted the University of Illinois at

Urbana-Champaign (UIUC) Web Integration Repository [15] in their experiments, but the number of

examples actually used in related experiments varies. This is because some of the URLs in the datasets

are out-of-date and no longer available, and thus, their experiments might not be verified. This inspired

us to create a repository of our own and to make it public with both URLs and the downloaded HTML

forms. Our datasets can be downloaded from the web site (https://github.com/whcsu/sscte/) or will be

sent upon request. It is by far the largest dataset available in terms of labeled search interface examples.

The rest of the paper is organized as follows. Section 2 overviews related work in search interface

identification and semi-supervised ensemble learning. In Section 3, we propose a novel search interface

identification approach based on semi-supervised co-training ensembles. Th experimental setup and

result analysis are described in Section 4. Finally, in Section 5, we conclude the paper.

2. Related Work

In this section, we briefly review previous studies on search interface identification and take a

glimpse at semi-supervised classification and semi-supervised ensembles in particular. Later on, we
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shall develop a novel search interface identification algorithm within the semi-supervised ensemble

learning framework.

2.1. Search Interface Identification

The search interface identification problem can be stated formally in the following way: given a set

of web pages WA, find WS ⊂ WA that contains searchable interfaces. Since HTML forms constitute a

large majority of search interfaces on the Deep Web, most studies focus on HTML form-based search

for identification.

A search form, through which a query can be issued by modifying the controls and then submitted

for further processing, is usually a section of an HTML file that begins with a < form > tag and ends

with a < /form > tag. A typical search form on www.arxiv.org and its corresponding source code are

shown in Figures 1 and 2.

Figure 1. Arxiv search interface: a simple search form.

Figure 2. Arxiv search interface: HTML source code.

To automatically identify the search interfaces among a vast amount of HTML forms, a number of

supervised machine learning algorithms have been proposed, and these methods fall into two categories:

pre-query and post-query. Pre-query algorithms use a form classifier to judge an HTML file according

to the form features in the interface. Post-query methods identify the form searchability by submitting

queries through HTML forms in the interface, and a decision is made based on the returned result pages.

Cope et al. [2] proposed a pre-query approach with the C4.5 decision tree as the learning algorithm

to classify them. This method was further developed by [11,12], but far less features were used.

Shestakov [13] also applied decision tree algorithms in identifying search interfaces, but they divided

all HTML forms into two groups based on the number of visible controls and implemented two

separate binary classifiers for classification. They demonstrated that such separation improves the system

accuracy. Ye et al. [10] extended the random forest algorithm by applying a weighted feature selection
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during the building of individual tree classifiers. Wang et al. [16] proposed a hierarchical framework,

which used an ontology in the web page classifier and in the form content classifier, while a C4.5

decision tree in the form structure classifier. Marin-Castro et al. [17] created eight heuristic rules based

on extensive heuristic analysis to discriminate non-searchable from searchable HTML forms.

Bergholz and Childlovskii [18] gave an example of the post-query approach. They constructed a

form analyzer using different heuristics, such as the length of the input field, the presence or absence

of password protection, to identify whether a form was queryable. They then applied a query prober

to manage the automatic form filling and decided the usefulness of the form according to the results of

probing. Lin and Zhou [19] studied simple search interfaces with only one single input field, but could

accept multiple search keywords of different attributes and provided a search interface probing strategy

based on the query words’ hit rate and the reappearance frequency of the query words in the result pages.

From the above, we may notice that as the post-query approach requires automatic filling of HTML

forms, which is very challenging for HTML forms with multiple input controls, it has found very limited

applications so far. Additionally, due to the same reason, pre-query approaches dominate today’s search

interface identification solutions.

Previous search interface identification approaches have demonstrated the power of supervised

classification algorithms. However, in building supervised classifiers, we often face the problem of scare

labeled examples together with a vast amount of unlabeled data. As semi-supervised learning (SSL)

methods can exploit both labeled and unlabeled data to obtain a higher accuracy, we might turn to SSL

for help [20,21].

2.2. Semi-Supervised Ensemble Learning

SSL falls between unsupervised learning (without any labeled examples) and supervised learning

(with labeled examples only) [20]. In a semi-supervised classification framework, l labeled examples

L = {x1, . . . , xl} and u unlabeled examples U = {xl+1, . . . , xl+u} are given and exploited together in

training to find a good classifier with improved accuracy. SSL algorithms usually work in the following

way: first, a classifier is trained on L, and an initial hypothesis H is obtained; then, H is used to classify

the examples in U ; the examples with high confidence are labeled, added to L and deleted from U ; this

process is iterated for a fixed number of times or stopped when U becomes empty.

Semi-supervised ensemble learning (also called semi-supervised multiple classifier systems,

semi-supervised learning by disagreement) [22,23] is a kind of SSL algorithm that exploits unlabeled

data collaboratively to increase the performance of the ensemble. Since highly diverse base classifiers are

the key to the success of ensemble systems [24,25], different strategies in supervised ensemble learning,

such as bagging [26], boosting [27] and random subspace [28], are extended to the semi-supervised

framework to obtain a higher ensemble diversity and, hence, a higher classification accuracy.

Semi-supervised MarginBoost (SSMBoost), proposed in [29], generalized AdaBoost [30] to

semi-supervised classification by redefining the margin notion to include unlabeled data. The

same as SSMBoost, Adaptive Semi-Supervised Ensemble (ASSEMBLE) [31] also adopted the

MarginBoost notation for both labeled and unlabeled data. The major difference is that they assign

pseudo-classes to the unlabeled data in constructing the ensembles. SemiBoost [32] exploited
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both the clustering assumption and the large margin criterion. It also used the pairwise similarity

measurements to guide the selection of unlabeled examples at each iteration. Different from the

above boosting-based semi-supervised ensembles, co-forest [33] incorporated random forest in the

semi-supervised framework and demonstrated the strength of bagging and random space method in

computer-aided medical diagnosis.

3. A Semi-Supervised Co-Training Ensemble

Our proposed method addresses the search interface identification problem by turning it into an

ensemble learning problem using both labeled and unlabeled data. As the key to successful ensemble

learning methods is to construct individual base classifiers that are as diverse as possible, thus increasing

the ensemble’s diversity, a strategy of varying both the training data and the base classifier themselves is

adopted in the proposed algorithm.

In our approach, the most popular methods to achieve diversity from labeled training data obtained

through resampling techniques, such as bagging and random subspace, are applied, and these methods

will be detailed in the first part of this section. Later on, we focus on how to obtain further diversity

from unlabeled training examples, which is also the major novelty of the proposed algorithm. Besides

the data diversity, we also consider the diversity caused by the base classification algorithms themselves

and discuss how to combine the outputs of these base classifiers effectively. Finally, we present our

semi-supervised co-training ensemble (SSCTE) learning algorithm.

3.1. Diversity Generation from Data

In the proposed algorithm, we exploit both bagging and random subspace methods in training the base

classifiers, as is done in co-forest [33]. In bagging [26], base classifiers are trained on a bootstrapped

example of the original training set. In random subspace (attribute bagging) [28], various feature subsets

of the original data are created by sampling the whole feature set without replacement. Additionally,

training data with different bootstrapped versions and subsets of features are used to train diverse

base classifiers.

However, when a large amount of unlabeled data is available, diversity obtained from labeled data

alone is not enough, and we should try to gain further diversity from the unlabeled examples, as well.

Melville et al. [34] introduced a supervised ensemble learning algorithm, called DEcoratE, which

artificially generates new wrongly-labeled examples (termed diversity data) and merges the diversity

data with the training data to train new base classifiers. Their experiments show that the diversity data

did increase the diversity among the base classifiers and, therefore, improved the classification accuracy.

In this paper, instead of obtaining diversity data from labeled training examples, we want to use the

information from the vast amount of unlabeled data to create it.

First, a base classifier trained on the labeled data is applied to make predictions on the unlabeled

data. Then, unlabeled examples with a highly confident prediction probability are selected. These highly

confident examples will be misclassified deliberately (i.e., given class labels opposite of the predictions

of the base classifier) and will be used for the creation of the diversity data pool. The total number of
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examples to be selected is specified as a fraction, Dfra, of the original training set size. The process of

diversity data creation is shown in the following Algorithm 1:

Algorithm 1 Diversity data creation.

Input: L = {xi}li=1, labeled data

U = {xi}l+u
i=l+1

, unlabeled data

BaseLearn, base learning algorithm

pconf , confidence probability threshold

Dfra, factor that determines number of diversity data.

Procedure:

1: train BaseLearn on L;

2: use BaseLearn to calculate class probability pi, for example ui in U ;

3: label ui with class opposite to the prediction if its pi > pconf ;

4: add all uis in Steps 2 and 3 to the diversity data pool;

5: select Dfra most confident examples in the pool to form D.

Output: D, diversity data

3.2. Diversity Obtained from Base Classification Algorithms

Unstable classification algorithms (i.e., a small change in the training set can lead to a remarkable

change in the produced model), such as neural networks and decision trees, are good candidates for

base classifiers in ensemble learning [24,26]. Most supervised or semi-supervised ensemble learning

algorithms only consider one kind of base classification algorithm, either decision trees [33,35,36] or

neural networks [37].

As neural networks and decision trees classifiers are drastically different in nature, and they may make

different (uncorrelated) errors on the same examples, i.e., examples misclassified by neural networks

might be corrected by decision trees and vice versa. This build-in complementary mechanism of the

base classifiers will increase the base classifiers’ diversity and therefore should improve the classification

accuracy of the ensemble on the whole.

Thus, instead of using only one kind of base learning algorithm, we use both neural networks and

decision trees as the base algorithms, and these two kinds of classifiers are trained alternatively in

the whole process, as is done in the co-training algorithm [38]. This is why we call the algorithm

semi-supervised co-training ensemble.

3.3. Aggregating the Base Classifiers

In ensemble learning algorithms, different base classifiers usually have different prediction

capabilities. Classifiers that have high predicative power should be given higher weights. Thus, in

SSCTE, we adopt a weighted majority mechanism in combing the base classifiers, and the weights of

base classifiers are based upon their performance on the so-called out-of-bag data.

In SSCTE, each base classifier is constructed using a different bootstrap sample from the original

labeled data plus some diversity data. About 1/3 of the labeled data are left out of the bootstrap sample

and not used in the i-th iteration. The out-of-bag (OOB) data generated in the i-th iteration are used

to examine the performance of the i-th base classifier. Additionally, the resulting OOB prediction
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accuracy oobi will be used to calculate the weight of the i-th base classifier w[i], according to the

following formula:

w[i] =











1, obbi = oobmax;
(oobmax−oobi)

(oobmax−oobmin)
, oobmin < obbi < oobmax;

0, oobi ≤ max(oobmin, 0.5).

(1)

where oobmax, oobmin are the maximum and minimum values among all OOB accuracy values

oobis, respectively.

3.4. The Algorithm

In SSCTE (see Algorithm 2), a semi-supervised ensemble is generated iteratively.

Algorithm 2 A semi-supervised co-training ensemble (SSCTE) learning algorithm.

Input: L, U , pconf , Dfra

F , feature space f1, · · · , fp of examples in L

Fi, subset of features of F used in the i-th iteration

BaseT ree, decision tree learning algorithm

BaseNet, neural net learning algorithm

Di, diversity data obtained in the i-th iteration using Algorithm 1

K , number of iterations

Initialization: C = ∅; D0 = ∅
1: for (i = 1; i ≤ K; i++) do

2: generate a bootstrapped sample Li of L

3: if i is odd then

4: draw Fi from F using random subspace to form L′

i from Li

5: use Ci = BaseT ree(L′

i +Di−1) to create diversity data Di in U

6: end if

7: if i is even then

8: use Ci = BaseNet(Li +Di−1) to create diversity data Di in U

9: use Ci to predict OOB data and record the prediction accuracy oobi

10: U = U −Di, remove the diversity data from U

11: end if

12: if U is empty then

13: break

14: end if

15: C = C
⋃

Ci

16: end for

17: calculate weights w[i]s for all classifiers based on their oobis according to formula (1)

Output: the learning ensemble C. In prediction, a sample (x, y) is assigned with class label y∗ as the one receiving the

weighted majority of the votes:

y∗ = argmax
y

∑

Ci∈C

w[i] ∗ Ci(x, y)

Initially, a bootstrapped sample is generated from the original labeled dataset. In each iteration, the

current base classifier is trained on a different bootstrapped dataset plus some diversity data created by

the previous base classifier using Algorithm 1. The diversity data are then removed from the unlabeled

data. This iterative process continues until the unlabeled data become empty or the iteration number
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condition is reached. Finally, base classifiers trained in all iterations are combined together using

weighted majority voting.

4. Experimental Results

In this paper, we are going to classify a held out test set using the SSCTE algorithm learned on a

training set consisting of both labeled and unlabeled examples. We first describe the Deep Web search

interface dataset used in the experiments and then discuss two evaluation metrics and the statistic tests

used. Finally, we present the experiment results.

4.1. Dataset Description

We evaluate the performance of our algorithm on real-world search interface datasets in Deep Web

mining. The most related dataset used in previous research is the UIUC Web Integration Repository and

was provided by [15] in 2004. However, as time goes by, many web links out of the 447 query interfaces

in the repository have become broken, and some domain names have even disappeared. Consequently, it

is not adequate to still compare the algorithms’ performance based on the outdated UIUC dataset. Thus,

in this study, we only consider the recently collected dataset by the authors with both the original HTML

forms and processed data that are publicly available. It is by far the largest search interface dataset used in

similar research and can be downloaded from https://github.com/whcsu/sscte/. The Comma-Separated

Values (CSV) and Attribute-Relation File Format (ARFF) files of the dataset are also available upon

request. A brief description of the dataset is detailed in Table 1.

Table 1. Dataset used in the experiments.

Search Forms Non-Search Forms

DMOZ labeled 451 446

DMOZ unlabeled 18,624

The dataset contains 897 labeled examples and 18,624 unlabeled examples and is extracted by

crawling some of the web links indexed in the largest web directory www.DMOZ.org during the period

April 2011, and March 2012. The distribution for the DMOZ dataset varies, ranging from general sites,

academic sites, recreation sites to social sites and science sites.

An important step in classifying search forms from non-search forms is to characterize the HTML

forms embedded in the deep web HTML files. This is usually done through extracting certain features

within the forms. As shown in [2], features, such as the numbers of “text” INPUT control and SELECT

control are good indicators of the form searchability. Suggested in [10], FORM attributes, such as

“method” and “action”, are also considered in our research. These features are extracted from the form

element or control structures and will be called “structural features” in our research. One may notice that

in Figure 2, the word “search” occurs five times within the form body, and such semantically “positive”

words help a human to determine the form searchability. Generally, LABEL name, FORM action URL

and textual contents within the form are of great semantical importance and they become “semantical

features” in our extracted feature set.
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In our approach, we have extracted 18 features to characterize Deep Web search forms. Statistical

distributions of all 18 features in search and non-search forms are shown in the following Figure 3,

where feature occurrences of search forms and non-search forms are indicated by red and blue

colors, respectively.

Figure 3. Feature distributions in HTML forms.
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4.2. Evaluation Metrics and Statistical Tests

We use the following abbreviations for the ease of explanation: P (# positive, i.e., search interface

examples), N (# negative, i.e., non-search interface examples), TP (# true positives), TN (# true

negatives), FP (# false positives) and FN (# false negatives). The evaluation metrics considered in

this paper are classification accuracy (ACC) and area under the receiver operating characteristic (ROC)

curve (AUC).
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Classification accuracy can be calculated easily by the following formula:

Accuracy =
TP + TN

P +N
=

TP + TN

TP + TN + FP + FN
(2)

The AUC of a classifier is equivalent to the probability that the classifier will rank a randomly-chosen

positive example higher than a randomly chosen negative one [39]. The value of the AUC will always

be between zero and one. Additionally, all workable classifiers should have an AUC larger than

0.5, i.e., better than random guessing. Usually, a classifier that has a greater area will have a better

average performance.

To compare the ACCs and AUCs of different classifiers, the Friedman non-parametric test, based on

the average ranks of the classification algorithms in all runs of the experiments, is applied. We calculate

Friedman’s test statistic [40] according to the following formula:

FT =
12

nm(m+ 1)

m
∑

j=1

(

n
∑

i=1

rji

)2

− 3n(m+ 1) (3)

where n denotes the number of experiments, m the number of classifiers and rji the rank of classifier j

on the i-th run. The statistic approximately follows a chi-square distribution, and if FT is large enough,

we can reject the null hypothesis that there is no significant difference among the compared classifiers;

a post hoc Nemenyi test can further be applied to locate the differences [40].

In the Nemenyi test, denote by Rj the mean rank of classifier Cj on all n experiments: Rj =
1
n

n
∑

i=1

rji .

The statistic z for two classifiers C1 and C2 is calculated as follows:

z =
Rj1 − Rj2
√

m(m+1)
6n

(4)

C1 and C2 are significantly different in performance if the z value is larger than the critical difference

value [40].

4.3. Results and Analysis

Here, we randomly partition the DMOZ-labeled data into two parts: labeled training data (70%,

628 examples) and labeled test data (30%, 269 examples).

4.3.1. Parameter Sensitivity

First, we want to test the performance of SSCTE with different iterations k, where parameters Dfra

and pconf use the algorithm default settings one and 0.95, respectively. As shown in Figure 4, SSCTE’s

classification accuracy and AUC increase slowly when the number of iterations increases at the very

beginning. This indicates that a larger ensemble size will lead to a relatively better performance.

However, when k ≥ 40, SSCTE is no longer too sensitive to the number of iterations. Thus, for efficiency

and accuracy reasons, we choose k = 50 as the default setting in later experiments.

Next, we want to discover SSCTE’s performance using various amounts of diversity data, indicated

by the Dfra factor. As shown in Figure 5, diversity data help to increase SSCTE’s performance when the
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amount of diversity data is small (1 ≤ Dfra ≤ 15). However, when Dfra > 16, SSCTE’s performance

begins to deteriorate and becomes unstable. This is because the resulting training set contains too much

noise data. For this reason, we recommend setting Dfra between 1–10 and in our later experiments;

Dfra is set to one.

Figure 4. SSCTE’s performance with different iterations.
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Figure 5. SSCTE’s performance with various amount of diversity data.
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4.3.2. One versus Two

Here, we will test SSCTE’s performance under different combinations of base classifiers: SSCTE with

neural networks and decision trees (SSCTE, the proposed algorithm), SSCTE with only neural networks

(SSCTEnn) and SSCTE with only decision trees (SSCTEtree). For all of these three algorithms, the

same settings, i.e., pconf = 0.95, Dfra = 0.1 and k = 50, are applied. In the experiments, unlabeled data

are kept unchanged, and different sizes (controlled by α) of labeled examples are used as the labeled

training set.

The results shown in Figures 6 and 7 demonstrate that SSCTE beats the other two in most cases

under both classification accuracy and AUC metrics. SSCTE is also much more stable than SSCEnn and

SSCTEtree. This confirms our assumption that neural networks and decision trees are complementary

to each other in the ensemble, and this combination of using two different kinds of base classifiers does

improve the algorithm’s performance.

Figure 6. SSCTE variants’ performance in terms of classification accuracy (ACC).
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Figure 7. SSCTE variants’ performance in terms of AUC.
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4.3.3. Comparisons

Finally, we compare our SSCTE algorithm with state-of-the-art supervised learning algorithms:

monolithic classifiers, such as SVM, KNN and J48 (Java C4.5); and ensemble classifiers, such as

boosting (GBDT, gradient boosted decision trees) and random forests (RF).

The proposed SSCTE algorithm is implemented in R, a free software programming language for

statistical computing. For SSCTE, we randomly choose α% (α ∈ [7, 99]) of data from DMOZ-labeled

training data and use it with DMOZ-unlabeled data to form a new training set. In SSCTE, pconf , Dfra

and k are set to 0.95, 1 and 50, respectively. For supervised methods, only α% DMOZ-labeled data are

used in training, and default parameters suggested in the R [41] packages are adopted. Hereafter, the

reported performance of SSCTE and other methods corresponds to the result out of 93 runs on different

percentages of the labeled training data, with unlabeled training data only for SSCTE.

Experimental results with different α in terms of classification accuracy and AUC are shown in

Figures 8 and 9, respectively.

As shown in Figures 8 and 9, in terms of classification accuracy, SSCTE surpasses SVM, KNN,

J48, GBDT and random forest in a majority of 98%, 97%, 80%, 81% and 81% cases and is inferior to

these algorithms in 2%, 3%, 20%, 19% and 19% cases. In terms of AUC, SSCTE outperforms SVM,

KNN, J48, GBDT and random forest in a majority, 99%, 100%, 100%, 94% and 92%, of cases, and is

secondary to these models in much fewer, 1%, 0%, 0%, 6% and 8%, cases.
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Figure 8. SSCTE’s performance in terms of ACC.
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Figure 9. SSCTE’s performance in terms of AUC.
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As expected, all approaches improve their results with the increase of α, i.e., the size of labeled data,

especially at the very beginning. When α > 20, most approaches, however, are not too sensitive to

the size of the labeled data, while SSCTE still follows a relatively sharp increase in performance. This

means that, if more labeled data are available, SSCTE always implies a better performance.

The Friedman rank sum test statistics for the above comparisons in terms of ACC and AUC

are 319.853 and 425.725, respectively. This is significant (the corresponding p-value is less than

2.2 × 10−16), and a post hoc Nemenyi test was then applied to find out which pairs of algorithms are

significantly different.

For the ease of notation, denote classifiers SSCTE, SVM, KNN, J48, GBRT and RF by A, B, C, D, E

and F, respectively. The average ranks of classifiers A, B, C, D, E and F are:

RjA = 2.096774, RjB = 4.623656, RjC = 4.505376

RjD = 4.537634, RjE = 3.021505, RjF = 2.215054

Using the proposed algorithm (SSCTE, A) as the control algorithm and computing the z statistic of

the Nemenyi test for different classifier pairs, we obtain:

zBA1 = 9.2104, zCA1 = 8.7792, zDA1 = 8.8968

zEA1 = 3.3706, zFA1 = 0.4311

Similarly, in the case of AUC metric, the corresponding z statistic values of the five classifier pairs are:

zBA2 = 15.0110, zCA2 = 12.8553, zDA2 = 2.9787

zEA2 = 8.8185, zFA2 = 6.5453

For α = 0.05, the critical value of the studentized range distribution qα = 4.121 and divide qα value by√
2, we get the Nemenyi’s test critical value of 2.9140.

It can be seen that in terms of ACC, four Nemenyi statics zBA1, zCA1, zDA1,zEA1 exceed 2.9140,

while in terms of AUC, all five Nemenyi statics exceed the critical value. Thus, there exists significant

differences between the proposed SSCTE and SVM, KNN, J48, GBRT in terms of ACC and also

significant differences between SSCTE and SVM, KNN, J48, GBRT and random forests in terms of

AUC. In other words, SSCTE is significantly better than SVM, KNN, J48 and GBRT under both the

ACC and ACC metrics and is also significantly better than RF in terms of AUC.

5. Conclusions and Future Work

Determining whether an HTML web form is searchable or not is vital to further mining of the

vast information of the Deep Web. Different from previous supervised approaches, we have adopted

a semi-supervised co-training ensemble using neural networks and decision trees as the base classifiers.

In the proposed SSCTE algorithm, the bagging and random subspace method are exploited together to

create a diverse ensemble. In SSCTE, data used to diversify the training set are generated from unlabeled

data and, thus, extend the diversity data notion to a semi-supervised learning framework. Furthermore,

the combination of neural networks and decision trees instead of using only one kind of base learners

also increases the ensemble’s diversity.
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Experimental results on the DMOZ datasets have shown that SSCTE outperforms state-of-the-art

classifiers, such as SVM, KNN, random forests, boosting and C4.5 decision trees. In our ongoing work,

we will work toward optimizing SSCTE’s parameters under different scenarios and seeking other base

learners suitable for semi-supervised ensemble learning.
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